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Statistical Methods for the Computation of Stability Constants. Part 1. 
Straight-line Fitting of Points with Correlated Errors 

By G. L. Cumming, Department of Geology and Mineralogy, University of Oxford, Parks Road, Oxford OX1 3PR 
J. S. Rollett, Computing Laboratory, University of Oxford, Parks Road, Oxford OX1 3PL 
F. J. C. Rossotti and R. J. Whewell, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR 

A rigorous method i s  described for fitting a straight line to a set of independent points subject to correlated errors. 
The algorithm is  briefly stated, and includes expressions for the estimated standard deviations of the resultant 
parameters. One application of this general method is  detailed : the computation of stability constants from 
precise potentiometric data for systems of dibasic acids HA, H2A, and mononuclear metal-ion complexes BA, BA,. 
Some other applications are indicated. 

A VARIETY of methods, both graphical1S2 and com- 
puterised? have been described for obtaining values 
of stability constants from the experimentally deter- 
mined formation curve.1 Rigorous statistics have, 
however, seldom been used to obtain the ' best ' values 
of the constants and to assess realistic limits of error. 
The procedure described here, for systems comprising 
two complexes, is rigorous and yet simple to use. 

1 F. J. C .  Rossotti and H. S. Rossotti, ' The Determination 
of Stability Constants,' McGraw-Hill, New York, 1961 ; Mir, 
Moscow, 1966. 

For a system containing only the species B, A, BA, 
and BA, the average value of n is given by equation (1) 

where the symbolism follows that in ref. 1, and charges 
are omitted. The stepwise constants [equations (2)] may 

F. J. C .  Rossotti and H. S. Rossotti, J .  Phys. Chem., 1959, 

3 F. J. C. Rossotti, H. S. Rossotti, and R. J. W'hewell, 
63, 1041. 

J .  Inorg. Nuclear Chem., 1971, 33, 2061. 
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refer either to the successive additions of, e.g., ligands 
A to a metal ion B, or to stepwise addition of protons, 
,4, to a base, B. Equations (1) and (2) can be combined 

K, = [BA]b-%-' (24 
I<, = [BAJ[BA]-'cz-~ (2b) 

to give a number of different (but dependent) linear 
transforms, c.g. (3)-(5). An unweighted least-squares 

(5 - 1)n - K,(2 - ii)a2 1 -- -- 
n ii k'l 

- (li - I) ?I. 1 
(2 - %)a 
-- 

(2 - ii)a2 - K ,  - K ,  - 

(3) 

(4) 
- 
12 (2 - i i )a 

= K ,  K ,  - - K1 (5) (1 - n)a  (i-i - 1) 
treatment of equation (5) has been used4 to determine 
values of K ,  and K,. However, treatments based upon 
equations (3) and (4) are preferable, as the infinity a t  
fi = 1 in equation (5) precludes the use of the data in 
the range 0.95 < ii < 1-05. Equations (3) and (4) 
have been treated by an unweighted least-squares 
procedure and equivalent general linear least-squares 
methods have been used.3 This type of treatment is 
only appropriate when one co-ordinate of each point 
is exact, whereas there is a constant standard deviation 
for the other co-ordinate. In  practice, the linear plots 
involve sets of points for which both co-ordinates have 
standard deviations, which vary from point to point 
by several orders of magnitude, so that an unweighted 
least-squares treatment will give incorrect results. 
In order to deal with variations of standard deviation, 
weighting factors 6-8 are introduced, i.e., equation (6) 

W , Y i  = l/D"Xi) (6) 
where I V Y i  is the weighting factor appropriate to the 
co-ordinate Xi and ."(xi) is the estimated variance of 
Xi. This results in a distribution of unit standard 
deviation, which is necessary for the application of the 
chi-squared test. 

Regression of y upon x can thus be made appropriate 
to data where ~ ( y )  is variable and x is exact, but the 
method is invalid when both co-ordinates are likely 
to be in error. Only a change in the function to be 
minimised will overcome this difficulty. 

A rigorous treatment must also take account of the 
correlation of errors in the co-ordinates, which are both 
functions of errors in i-i and a, cf. equations (3) and (4). 

Input for the programme FAJAF45 for computing 
stability constants from potentiometric data are volumes 
and concentrations of reagents, and cell potentials ; 
the formation function %?(a) is calculated by use of 
equation (1) and hence co-ordinates X i  and Yi for the 
linear plots based on equations (3) and (4). Random 
errors are estimated as standard deviations for each 

H. Irving and H. S. Rossotti, J .  Chern. SOC., 1953, 3397. 
L. D. Pettit, A. Royston, C. Sherrington, and R. J. Whewell, 

E. Whittaker and G. Robinson, ' The Calculus of Observ- 
J .  Chent. SOC. ( B ) ,  1968, 588. 

ations,' London, Blackie, 1924. 
5 B  

measurement made, and these errors combined to give 
estimates of the variances a2((.ii), u2(a) ,  and their co- 
variance cov(.ii, a).  (Covariance is the expected value 
of the product of the deviations of two variates from 
their means.) Further combination of these estimates 
gives .,(Xi) ,02( Y;) , and cov(Xi, Yi) for each linear 
plot. This lengthy procedure will not be detailed, but 
an illustrative example is given in Appendix 1. 

Systematic errors, e g . ,  in analyses of stock solution, 
affect the accuracy, but not the precision, of the cal- 
culated stability constants. Their effects can be 
assessed separately,l but cannot be incorporated into 
the calculation of weighting factors. 

The Line-Jitting Procedure.-Introductio?~. The follow- 
ing symbols are used: 9, the number of experimental 
points; Xi,Y;, the co-ordinates of the ith experimental 
point; xi,yi, the co-ordinates of a point on the line 
fitted, closest to the ith experimental point in the 
sense of yielding the minimum value for the ith term 
on the right-hand side of equation (12) below; and 
Y, s, t, parameters of the line YX + sy + t = 0 fitted to 

= G2(XZ)02(Yi) - COV(Xi,Yi,2 (7) 

w, = 02(X;)lV,I-l (9) 
wxyi = -cov(x~,YJpq-1 (10) 

the points. 
equations (7)-(10). 

From the variances input we can calculate 
The straight line (11) is obtained 

YX + sy + t = 0 (11) 
so that equation (12) is minimised subject to the follow- 

P 

i = l  
s = 2 (W&i - XJ2 + TVPi(Yi - q2 + 

2WXPi(Xi - Xi)(Yi - Yi)) (12) 

Y2 + s2 = 1 (13) 
Y X ~  + syi + t = 0 for all i (14) 

ing subsidiary conditions (13) and (14). 

Equation (la), the redundant form for equation 
(11) is used so that neither Y nor s becomes infinite for 
any slope. The function S is proportional to the 
logarithm of the product of the probability densities 
at (xi,yi), given bivariate normal distributions of 
error centred on (Xi,Yi) with variances defined by 
.,(Xi), .,(Yi), and cov(Xi,Yi). The line obtained is 
therefore that which maximises the likelihood that the 
given points (Xi,Y,) deviate from the collinear points 
(xi,y;) by experimental errors alone, provided that these 
errors are correctly estimated by c2(X;), c2(Yi), and 
cov(X,,Y;), and their distributions are normal. 

We start with un-normalised values of 
Y and s, Y = s = 1 (ie., y2 + s2 = 1 is not satisfied; 
this ensures that the test for convergence will fail on 
the first iteration) and compute a weight (15) for each 

AZgorithrn. 

W; = l/[Y2C2(Xi) + ~ Y S  . COV(X;Y;) -+ s202(Yi)] (15) 
' F. S. Acton, ' Analysis of Straight-line Data,' Wiley, New 

W. C. Hamilton, ' Statistics in Physical Science,' Ronald, 
York, 1959. 

New York, 1964. 
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point, the centroid (16) of the points, and co-ordinates 

referred to the centroid, given by equations (17). Ex- 

Xi’ = xi - X 
Yi‘ = Yi - Y 

cept for the first iteration (where A; = 0) ,  we define (18). 

Ai = YX~’  + sYil 

Equations (19) and (20) (derived in Appendix 2) are 

(174 
(17b) 

(18) 

f [ ~ i x i ) ~  - o2(Xi)wi2A?]y + $, [wiXi‘Y,’ - i = l  i = l  

C O V ( X ~ , Y ~ ) W ~ ~ A ~ ~ ] S  = 0 (19) 

f [Wx[Yil - cov(Xi,Yi)wi2Ai2]r + f [wiYi’2 - 
i = l  i = l  

o2(Yi)~i2Ai2]s = 0 (20) 

obtained for new values of Y and s. There is no exact 
solution of these equations except Y = s = 0 unless 
the determinant of their matrix is zero. We therefore 
take Y and s to be the elements of the latent vector 
corresponding to the smaller latent root of the matrix, 
normalised so that y2 + s2 = 1. If the sums of squares 
of differences between the old and new values of Y and s 
is less than 10-l2, calculation ceases (this cannot happen 
on the first iteration). Otherwise the new values of 
Y and s are substituted for the old and the calculation 
repeated from equation (15). In all experimental 
tests so far four iterations have been sufficient to give 
convergence, and the smaller latent root of the matrix 
of equations (19) and (20) has been <lo+. 

These operations give the position of the centroid 
(x,p) through which the line passes, and its slope 
-Y/s.  If the line is required in the form of equation 
(ll), t = -(YX + SP) can be computed. 

The co-ordinates of the collinear points (xi,yi) are 
obtained from equations (21) and (22). 

xi = Xi - wiAi[yo2(Xi) + s . COV(X~,Y~)]  
y i  = Yi - w~A$[Y - COV(X~,Y~) + so2(Yi)] 

(21) 
(22) 

The algorithm has been extended to provide estimates 
of error for various quantities, but since we have been 
dealing with sloping lines this part of the work has not 
been made valid for vertical and horizontal cases. A 
test has been included to by-pass the error estimate 
calculation for exactly vertical and horizontal lines, 
so avoiding division by zero. 

A difficulty is that the expressions for most quantities 
include the variances o2(wi) of the weights of the points, 
and these depend in turn on a number of the other 
variances. To avoid the complications which would 
result from an attempt to derive all the error estimates 
directly, a rapidlj7 convergent iteration procedure 

J.C.S. Dalton 

been small in our applications and in many cases it 
might perhaps be ignored. 

We set, initially, the condition (23) and compute 

.2(w,) = 0 i = 1, . . ., p (23) 

equations (24)-(32) with c2(w,\ from (23) or later from 
equation (48). 

W 

G(X) = 

.“(P) = 

cov(X,Y) = 

COV(Y(,P) = 

C O V ( X i , P )  = 

.“Xi’) = 

.“Yi’) = 

(COvXi’, Y[) = 

Since Y and s satisfy equations (19) and (20), we obtain 
equation (33) and hence equations (34)-(42). 

2 [ w ~ Y ( ~  - wi202(Yi)Ai2] 
i = l  - = (33) 

(aU/aYi’) = 2wiYi‘ (34) 
(aU/aAi) = -22e/i202(Yi)Ai (35) 
( a U / h i )  = Yif2 - ~ w ~ o ~ ( Y Z ) A ~ ~  (36) 

(aL/aXal) = 2wiXi‘ (37) 
(aL/i?Ai) = -2w,202(Xi) At (38) 
(aL/awi) = Xif2 - 2wio2(Xi)Ai2 (39) 

(‘) = 2 [-wix;2 - 
i = l  

o2(A8) = r202(Xi1) + 2 ~ s  . COV(X~‘ ,Y~~)  + 
s2o2(Y$‘) (40) 

COV(X~‘,A~) = YG~(X%’) + s . COV(Xi’,Yi’) 
COV(Y~’,A~) = Y . COV(X~~,Y~’)  + SO~(Y~’)  

(41) 
(42) 

We have ignored COV(Xi’,wi), cov( Y,’,wi), and COV(Ai,W,) 

and computed equations (43)-(47). It can be shown 

oyu)  = .$ ((au/aYi’>“2(Yi1) + 

02(L) = 5 { (aL/ax,’)202(xff) 4- 

a = 1  

(aU/aAi)2~2(Ai) + (aU/awi)202(wi) + 
2 (a U /  aYi’) (a U /  a A,) COV( Yi’, hi) 1 (43) 

i = l  

( ~ L / ~ A ~ ) ~ c J ~ ( A ~ )  + (aL/aw,)2a2(wa) + - -  
has again been adopted. TGe effect of the i 2 ( w a )  has 2 ( aL / axi l )  (aL/ a Ai) COV(X~’, Ai) 1 (44) 
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cov(U,L) = 2 {(au/aY;)(aL/aXi')cov(X;,Y;) + 
i = l  

( a  U /  a Ai) (aL/ 8 Ai) 02( Ai) + ( a  U /  a ~ i )  (aL/ a ~ i )  02(wi) + 
(a U/aY{) ( ~ L / ~ A ~ ) c o v (  Yi', Ai) + 

(aU/aAi)(aL/aXi')co~(X,',A.,)} (45) 
02[(Y/S)2] = ."U)/L2 + 

U2~' (L) /L4  - 2U.  COV(U,L)/L~ (46) 
G 2 ( Y 2 )  2 S8 . 02[(?'/s)2] (47) 

that 02(wi) is given by equation (48). The calculation 

0 2 ( W i )  = Wi4O2(Y3)([Ci2(Xi) - G 2 ( Y i ) ]  + 
[ ( s l y )  - (r/s)lcov(xi,Yi)}2 (48) 

from equation (24) to equation (48) is repeated until 
two successive values of ~ ~ [ ( r / s ) ~ ]  agree to one part in 
104. For this iteration again no more than four cycles 
have proved necessary, so that the convergence of the 
algorithm has been in no doubt. Having obtained 
convergence, we get equation (49) where 02(r/s) is the 

(32(Y/S)  = 0*25(s/r)202[(r/s)2] (49) 

variance of the slope of the line. 
When cov(X,r/s) and cov( P,r/s)  are neglected, 

equation (50) can be calculated, to obtain the variance 

u2(y) = 0°F) + (r/s)"."(X) 3- 
( X  - X)202(r/s)  + 2(r/s)cov(X,P) (50) 

of the intercept on a vertical line at  a given value of x. 
We have also computed S, of equation (12), for com- 
parison with ( p  - 2), the number of degrees of freedom, 
in a x2 test of the hypothesis that the (X;,Yi) do not 
deviate significantly from the fitted line. The validity 
of this test depends on the correctness of the variances 
02(Xi),  G ~ ( Y ~ ) ,  and cov(Xi,Yi) assigned to the (X;,YJ 
at the outset, since the weights assigned to the points 
are not altered in the light of their actual deviations 
from the line. 

Since these expressions involve wi4, it is unwise to use 
data with variances differing from unity by many 
orders of magnitude. This may lead to floating-point 
overflow unless the computer used has capacity for an 
exceptionally large range of floating point numbers. 
The co-ordinates are thus scaled suitably before input 
to the line-fitting procedure, and the variances and 
covariances scaled accordingly. 

Comdusion.-The straight-line-fitting procedure de- 
scribed above is an improvement on the least-squares 
cubic method suggested by York9 for two reasons: 
(a) correlation between the co-ordinate errors is allowed 
for, and ( b )  vertical and horizontal lines will not cause 
programme failure. The algorithm has been tested 
by comparison with a programme which uses the York 
algorithm, which ignores correlation between the 
errors of Xi and Yi. The resulting parameters were 
identical, but there were cases in which the York 
programme failed because it attempted to compute 
three real roots for the least-squares cubic equation, 

D. York, Canad. J .  Phys., 1966, 44, 1079. 
lo D. York, Earth and Planetary Sci. Letters, 1969, 5, 320. 

when two of them were complex. This is a criticism 
of a deficiency in the programme rather than of the 
York algorithm. However, the method given in this 
paper is not subject to such a difficulty. 

York lo  subsequently published a method during the 
course of the present work in which allowance was 
made for correlation. Our own method is equivalent, 
but more easily extended to situations with more than 
two parameters (see Part 11). 

When our method was used on data with correlation 
between the errors in X i  and Yi, it produced larger 
values of x2 when the points were more likely to be in 
error parallel to the line than at  right angles to it than 
it did for calculations in which correlation was neglected. 
For such data our method gave a more critical test of the 
agreement between the experimental points and the 
calculated line than did York's m e t h ~ d . ~  

2 

IC 

1 

I 

12 10 8 
-log (a / mol drn-9 

FIGURE 1 The formation curve for the copper(r1)-ethylene- 
diamine system in aqueous methanol (ref. 11) (experiment 1 
of Table 1). The calculated error ellipses are enlarged to  100 
for clarity 

When line-fitting techniques are applied to the 
computation of two stability constants, whether for 
proton complexes or metal-ion complexes, it is instruc- 
tive to compare the results obtained by using both 
equations (3) and (4). As an example we recompute 
some published data l1 to obtain the two protonation 
constants of ethylenediamine and the stability constants 
of the two mononuclear ethylenediaminecopper (11) 
complexes in mixed solvents. A formation curve is 
shown in Figure 1 and the linear plots based upon 
equations (3) and (4) are shown in Figures 2 and 3;  
see also Tables 1 and 2. Although the intercept is 
extremely small in each example by comparison with 
the values of Yi, our method gives values of the con- 
stants and their standard deviations which agree to 
about 0.27,. Where the intercept is larger, the con- 
stants agree to the four significant figures printed. 
The constant determined from identical data (where 
0-05 < G < 1.95) by an unweighted least-squares ad- 
justment may vary by as much as a power of ten 

Chiwz. Acta, 1970, 4, 488. 
l1 G. Faraglia, F. J. C .  Rossotti, and H. S. Rossotti, Inorg. 
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between the two calculations, although relatively 
reliable values of the constants are obtained from the 
gradients of the graphs (cf. Figures 2 and 3). Inclusion 
of data restricted to 0.2 < +i < 1.8 improves the results 
of the unweighted squares treatment somewhat (see 
Table 1). The estimates of errors in the constants 
calculated by standard unweighted least-squares 
formulae are evidently misleading, since they are 
uniformly below 0.01 log unit and frequently as low as 
0.003 log unit. 

These data have also been treated by graphical 
methods. Although the orders of magnitude of the 

most satisfactory (see Table 2). The equality in size 
of the error ellipses (enlarged to 100 in Figure 1 for 
clarity) for the formation curve of the copper(I1)-ethyl- 
enediamine system accounts for the success of the pro- 
jection strip method. However, a(%) is more nearly 
proportional to ii for systems of weaker c0mp1exes.l~ 
Moreover, the effects of the errors are by no means 
uniform in linear plots derived from the formation 
curve. Experimental points a t  high values of ii in 
equation (3) (see Figure 2) and at  low values of % in 
equation (4) (see Figure 3) have large associated un- 
certainties. Although such points are commonly 

TABLE 1 

titration data a t  25.00 f 0.05 "C in O.~M-L~CIO, from ref. 11 
Examples of calculated stability constants with standard deviations ( x lo3) in parentheses. Potentiometric 

log h', 1% K,  
r A 

1 I > 
Experiment 1 Experiment 2 Experiment 1 Experiment 2 

Intercept e Gradient a Intercept 6 Gradient Gradient Intercept d Gradient e Intercept d 

Ethylenediamine in 48-1 yo (w/w) aqueous dioxan 
Projection strip (ref. 2) 9.805 (1 0) 9.805 (1 0) 6 * 996 ( 1 0) 6*995( 10) 
FA JAF45 9.811(6) 9*810(6) 9*820(6) 9*819(6) 6.994(6) 6*994(6) 6*995(6) 6.995(6) 
Unweighted least sq.0 9.260(5) 9-744(6) 9.441(20) 9.733(8) 6.998( 1) 8.301(8) 6.995(1) 8-439(2) 
Unweighted least sq.b 9.924(4) 9.803(2) 10.114(43) 9.810(2) 6-991(1) 7.306(9) 6-991(1) 7.386(4) 

Copper(I1)-ethylenediamine in 54.3% (w/w) aqueous methanol 
Projection strip (ref. 2) 10*835( 10) 10*825( 10) 9 465 ( 1 0) 9*455( 10) 
FA JAF45 098  10*833(4) 10*834(4) 10*828(6) 10*828(6) 9*464(4) 9*460(4) 9*457(6) 9.454(6) 
Unweighted least sq.a 11.152(40) 10.841(1) (I< -ve) 10-821(2) 9.420(3) 9.405(3) 9.348(9) 9-470(4) 
Unweighted least sq.b 10.860(6) 10-831(2) 10.866(3) 10.832(2) 9.455(2) 9.469(2) 9.447(3) 9.447(7) 

Fc- 0.05 < fi < 1.95. b For 0.2 < < 1.8. e From equation (3); gradient = K,, intercept = - l /Kl .  From equation 
(4); gradient = - l /Kl ,  intercept = K,. 6 FAJAF45 sets 6(E)  = 0.12 mV, a(E,) = 0.10 mV, a(concentration) = 0.157/,, 
o(vo1ume) = 0.005 ml for a grade A 10 ml burette, 0.02 ml for a 26 ml burette. 

co-ordinates of the linear plots makes these difficult to 
treat graphically, no such restriction applies to the 
projection strip This well-proven technique, 

TABLE 2 
Further examples of calculated stability constants with 

standard deviations ( x lo3) in parentheses. Proton- 
ation constants of ethylenediamine in 48- 1 yo (w/w) 
aqueous dioxan. Combined data for experiments 
1 and 2 of Table 1 

1% K l  log I<, 
Intercept Gradient Intercept Gradient 

FA JAF45 9-815(4) 9*814(4) 6*994(4) 6*994(4) 
Projection strip 9-805( 10) 6*995( 10) 

LETAGROP ( A H )  0 9.815(3) 6*996( 7) 

LETAGROP (AE) b 9*806(5) 6*998( 11) 

(ref. 2)  

VRID 

VRID 

cal hydrogen-ion concentration, cf. equation (1). 
ing C(Ecalc - Eobs)2; E is proportional to log h. 

0 Minimising C(Hcatc - HSba)2, where H is the total analyti- 
b Minimis- 

if used properly, yields results of high precision l1 

(although limits of error are inevitably subjective), 
and the agreement between the constants obtained by 
using the projection strip, from our programme 
FAJAF45 and indeed from LETAGROP VRID l2 is 

l2 L. G. Sillc'n and B. Warnqvist, Arkiv Ilemi, 1969, 31, 377. 
l3 V. S. Jacewicz and F. J. C. Rossotti. to be published. 
l4 I. G. Sayce, Talanta, 1969, 15, 1397. 

arbitrarily omitted (cf. ref. 4), an unweighted regression 
is capable of producing a ' best ' straight line consider- 
ably different from that corresponding to our definition 
(see Figures 2 and 3). 

Other major programmes for stability-constant cal- 
culations, such as LETAGROP VRID l2 and SCOGS,14 
are more general than our FA JAF45, but the simplicity 
of the last permits greater rigour. Nevertheless, it 
must be stressed that no statistical treatment, however 
sophisticated, can improve poor experimental data. 

The present method has been applied to problems 
other than those of computing formation constants 
for dibasic acids HA, H,A, and mononuclear metal-ion 
complexes BA and BA,. For example, the Gran 
plot 1915 used particularly in the standardisation of 
glass  electrode^,^^^^^ has been programmed so that a 
rigorously determined value of E, can be obtained in a 
few minutes via a remote link to a computer. It has 
also been applied in radiometric dating calculations by 
Cumming.18 In fact, the line-fitting procedure was 
originally written for use in the latter field, where it is 
also oiten important to allow for correlated errors 
between the co-ordinates. 

42, 375. 

well, Chem. Comwz., 1971, 868. 

l 5  F. J. C. Rossotti and H. S. Rossotti, J .  Chem. Educ., 1965, 

l6 R. Y. Henry, J. E. Prue, F. J. C. Rossotti, and R. J .  Whe- 

l7 F. J .  C. Rossotti and R. J .  Whewell, to be published. 
l8 G. L. Cumming, Canad. J .  Earth Sc i . ,  1969, 6, 719. 
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Our original programme FA JAF45 was written in 
1968 for the English Electric-Leo Marconi (Inter- 
national Computers Ltd) KDF9 computer. It is now 
also available as part of programme MERCURY 
written for the newer 1906A computer. An extension - i i= 1.96 

1.92 

1-89 

1-73 
1 47 

I < I 4  

FIGURE 2 The linear plot of equation (3) derived from experi- 
mental points for the copper(II)-ethylene diamine system 
shown in Figure 1. Note that 16 of the 20 experimental 
points bunch together on the scale used. Error ellipses 
correspond to 30. The broken line is the unweighted least- 
squares ' best' fit. The full line is obtained by using the 
present treatment 

-7 m D 4- \ 0.22 

0 2 3 

FIGURE 3 The linear plot of equation (4) derived from the 
experimental points for the copper( 11)-ethylenediamine system 
shown in Figure 1. Note that 15 of the 20 experimental 
points bunch together on the scale used. Error ellipses 
correspond to 30. The broken line is the unweighted least 
squares ' best ' fit. The full line is obtained by using the 
present treatment 

of the method is in progress, whereby a hyperplane is 
fitted to a set of co-ordinates in several dimensions. 
This has enabled a rigorous method to be applied to 
systems of complexes BA,, HjA (TZ, j > 2), or BA, + 
BHA (see Part 11). 

APPENDIX 1 
The variances 02(fi), 02(a) of f i  and a respectively, 

together with their covariance cov(fi,a), are calculated 
for each experimental point from the variances estimated 
for the measurements. A similar calculation then 

gives c2(X),  a2 (Y) ,  and cov(X,Y) for the co-ordinates. 
From equation (3) we obtain (51) and thus (62) and 

Y = ( fi- l )a / f i  (51) 
a 

d Y =  ( y d a  + dfi =fida + f2dfi (52) 

(53) X = (2 - ii)a2/+i 

fi2 
(' - ')2ada - - 2a2 dfi =f3da + f4dji (54) dX=- n 

similarly (53) and (54), whence equations (55)-(57) 
follow. The co-ordinates corresponding to equation (4) 

02( Y) = fi2a2(u) + f202(ji) + 2flf2cov(fi,a) 
02(X) = f3202(a) + f202(fi) + 2f3f4c0v(fi,a) 

(55) 
(56) 

cOv(x,y) =fif3a2(a) +f2faC2(') + ( f l f 4  + 
f 2 f A  cov(+i , a> (57) 

are treated in the same way; were the errors uncorre- 
lated, cov(X,Y) would be zero. 

APPENDIX 2 
In deriving equations (19) and (20) matrix notation 

is used for brevity. We set r = ( Y , s ) ,  xi = (x&, 
xi' = xi - x, Xi = (Xi,Yi) ,  Wi = {Wjki) and so on, 
and use the equation rT. xi' + t' = 0 for the line. 
Hence we obtain equation (58). At the minimum of S, 

S = .f [(xl - X[)TWi(~i l  - 

we have equations (59) and (60) for all i. We multiply 

(58) 
a = 1  

P 

o = l  
dS = 2 . 2  [(xi' - Xi')Wid~l] = 0 (59) 

rT. dx[ + dr + dt' = 0 (60) 

each equation (60) by a Lagrangian multiplier Ai,  
add to equation (59), and then set equal to zero the 
coefficients of dt' and of the elements of da and dxi'. 
This yields equations (61)-(63) for all i, and hence (64) 

P 

i = l  
2 &Xi' = 0 (62) 

(63) 
(64) 

Wi(xz - Xi') + &r = 0 
ViWI(xi' - X[) = -&Vir 

where Vi = (Vjk;} from the matrix of variances. But 
ViWi = I ,  the identity matrix, and hence we obtain 
equation (65). Since x( lies on the fitted line, equations 

r T  . xi' - r T  . Xi' = - ~ , ~ r ' V ~ r  (65) 

(66) and (67) hold. If we set (68) we obtain (69), 

rT - xz' + t' = 0 (66) 
rT * Xi' + t' = AirTVir (67) 

wi = (rTVir)-l (68) 
hi = wi(rT . X,' + t') (69) 
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and we now eliminate Xi and x(. 
we obtain (70) and (71). 

From equation (64) 
Hence, from (62) and (61) 

Xi ‘  = X( - &Vir (70) 
= A&‘ - @Vir (71) 

respectively we obtain equations (72) and (73), but 
because of equation (74) t’ = 0 and the line passes 

5 [wi(rT . xi’ + t ’ )Xi’  - 
i = l  wi2(rT . Xi’ + t’)2Vir] = 0 (72) 

through the centroid X. Also we can reduce equation 
(72) to equation (75) which is equivalent to equations 
(19) and (20). 

5 [ w i ( x i ’ ~ .  r)X; - ~ ? ( X Z ’ T .  r > z ~ ~ r ]  = o (75) 
i = l  
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