Reactions of Tetrasulphur Tetranitride with Halides. Part V.¹ The Preparation of Cyclopentathiazenium ($S_5N_5^+$) Salts and Some Observations on the Structure of the Cyclopentathiazenium Cation

By Arthur J. Banister * and Howard G. Clarke, Chemistry Department, University Science Laboratories, Durham

The cyclopentathiazenium salts, $S_5N_5^+A^-$ ($A^- = AlCl_4^-$, $FeCl_4^-$, $SbCl_6^-$), are readily prepared in high yield from tetrasulphur tetranitride, trichlorocyclotrithiazene (NSCI)₃, and the metal chloride : $AlCl_3$, $FeCl_3$, or $SbCl_5$. Other salts can be prepared by metathesis in anhydrous formic acid. The nature of the bonding in the cation is discussed with respect to its unusual stability.

THE sulphur-nitrogen cations $S_3N_2Cl^+$, $S_4N_3^+$, and $S_5N_5^+$ are Hückel species with 6, 10, and 14 π -electrons respectively.^{1,2} Salts of the first two cations are readily prepared from their chlorides ($S_3N_2Cl_2$ and S_4N_3Cl) by metathesis ³ or by reaction with a Lewis acid which can accept chloride ion.^{1,3} Hitherto, salts of the planar heart-shaped cation $S_5N_5^+$ have been obtainable only after tedious separation from a mixture with $S_3N_2Cl^+$

¹ Part IV, A. J. Banister and P. J. Dainty, preceding paper. ² D. B. Adams, A. J. Banister, D. T. Clark, and D. Kilcast, *Internat. J. Sulfur Chem.*, A, 1971, **1**, 143. and $S_4N_3^+$ salts produced simultaneously. Pure $S_5N_5^+$ -FeCl₄⁻, $S_5N_5^+$ AlCl₄⁻, and $S_5N_5^+$ SbCl₆⁻ are now easily prepared in thionyl chloride solution from tetrasulphur tetranitride, trichlorocyclotrithiazene (NSCl)₃, and the iron(III), aluminium or antimony(v) chloride. The probable mechanism for the reactions is discussed. Other salts may also be prepared from $S_5N_5^+$ FeCl₄⁻ and $S_5N_5^+$ AlCl₄⁻, by metathesis. The nature of the bonding

³ M. Becke-Goehring and H. P. Latscha, Z. anorg. Chem., 1964, **333**, 181.

in the cation is discussed with regard to the unusual chemical stability of pentathiazenium salts (for instance, warm concentrated nitric acid merely converts S₅N₅⁺⁻ $AlCl_4^-$ to the nitrate).

EXPERIMENTAL

I.r. spectra of Nujol mulls prepared under nitrogen, were recorded on a Grubb-Parsons Spectromaster (400-4000 cm⁻¹) prism grating spectrophotometer. U.v. spectra were recorded on a Unicam SP 800 spectrophotometer. Formic acid was dried over boric oxide and purified by fractional distillation.⁴ Trichlorocyclotrithiazene was prepared ⁵ from S₃N₂Cl₂, and sulphuryl chloride; tetrasulphur tetranitride was prepared by the method described by Jolly.⁶ Thionyl chloride was purified by fractional distillation from triphenyl phosphite.7 Aluminium chloride was purified by sublimation and ferric chloride by heating with refluxing thionyl chloride for 1 h, antimony pentachloride was freshly distilled at reduced pressure under nitrogen.

The cyclopentathiazenium salts were slightly moisture sensitive and so were manipulated under nitrogen or in a dry box. Nitrogen was analysed by the standard micro-Kjeldahl method. In the analysis for (i) chlorine and (ii) sulphur, oxygen flask combustion was followed by (i) potentiometric titration of chloride ion with 0.01M-silver nitrate solution and, with a separate aliquot, (ii) titration vs. 0.01M-barium perchlorate solution using Sulphonazo III as indicator.⁸ Aluminium and iron were analysed using a Perkin-Elmer 403 Atomic Absorption Spectrophotometer.

Reaction between Trichlorocyclotrithiazene and Iron(III), Aluminium and Antimony(v) Chloride.-Iron(III) chloride was added in the molar ratio 1:1 to a stirred solution (at 20 °C) of trichlorocyclotrithiazene, (NSCl)₃, in thionyl chloride [ca. 10 ml of solvent per g of (NSCl)₃]. Precipitation of a bright red adduct was complete after ca. 2 h. The supernatant thionyl chloride solution was deep red. Addition of further iron(III) chloride to give an (NSCl)_a: $FeCl_{3}$ molar ratio of 1:2, gradually converted the bright red 1:1 adduct into the rust coloured $({\rm NSCl})_3, 2{\rm FeCl}_3,$ which is an intermediate in the $S_5N_5FeCl_4$ synthesis. A small amount of unchanged iron(III) chloride remained even after several days. Further iron(III) chloride, added in excess of the ratio 1:2 remained undissolved. Addition of a molar equivalent of $(NSCl)_3$ to the 1:2 adduct converted it back (in ca. 30 min), into the bright red 1:1 adduct. An equimolar quantity of tetrasulphur tetranitride was found to react with a vigorously stirred suspension of either of these adducts, or with the 1:3 mixture, and cyclopentathiazenium tetrachloroferrate was gradually precipitated. Similar adducts were formed with aluminium chloride and with antimony(v) chloride. The (NSCl)3-AlCl3 adducts were red (1:1) and yellow-orange (1:2). All the adducts were very moisture sensitive. Three adducts of antimony(v) chloride: $(NSCl)_3, xSbCl_5(x = 1, 2, or 3)$ have already been described.9

Cyclopentathiazenium Tetrachloroferrate, S₅N₅FeCl₄.-Trichlorocyclotrithiazene, anhydrous iron(III) chloride, and tetrasulphur tetranitride were allowed to react in the molar ratio 1:3:3. The iron(III) chloride was added to a solution of trichlorocyclotrithiazene in thionyl chloride [ca. 15 ml of SOCl₂ per g of (NSCl)₃] and the mixture was stirred (20° ca. 1 h) until the rust-brown adduct (NSCl)_a,-2FeCl₃ was precipitated. On adding the tetrasulphur tetranitride, and stirring vigorously, the adduct and undissolved iron(III) chloride dissolved rapidly to give a very dark solution, from which the rust-brown S₅N₅FeCl₄ slowly precipitated (during ca. 1 h). Recrystallisation from thionyl chloride gave dark orange crystals; yield 55% (80% of crude product), m.p. 181 °C (decomp.) (Found: S, 37.3; N, 16.3; Fe, 13.6; Cl, 32.5. Calc. for S₅N₅FeCl₄: S, 37.5; N, 16.4; Fe, 13.0; Cl, 33.1%).

Cyclopentathiazenium Tetrachloroaluminate and Hexachloroantimonate(v).—Similar reactions occur with (i) aluminium chloride and with (ii) antimony(v) chloride.

(i) The intermediate solid adduct (NSCl)₃,2AlCl₃ appears a little more slowly than (NSCl)₃,2FeCl₃. The yellow $S_5N_5AlCl_4$ after recrystallisation from thionyl chloride has m.p. 181° (decomp.) 1 (Found: S, 39·1; N, 17·4; Al, 6·6; Cl, 34.7. Calc. for $S_5N_5AlCl_4$: S, 40.2; N, 17.5; Al, 6.8; Cl. 35.5%). Cyclopentathiazenium tetrachloroaluminate dissolves in concentrated nitric acid (70% w/w) at room temperature with evolution of hydrogen chloride. The $S_5N_5^+$ cation decomposes slowly in nitric acid solution; for the visible absorption at 427 nm, ε values for a 0.00054M solution were 2500 (freshly prepared); 1600 (after 19 h at 20°); 360 (after 18 h, at 20° and 1 h at 60°). The salt also dissolves with evolution of hydrogen chloride in anhydrous formic and concentrated sulphuric acids. Decomposition of the solution again occurs very slowly, in sulphuric acid during a matter of weeks.

(ii) The intermediate adduct with antimony(v) chloride precipitates immediately. Since this reaction is quite strongly exothermic, slow addition is advisable. The $S_5N_5SbCl_6$ is only sparingly soluble in thionyl chloride. Solvent extraction with thionyl chloride yields a yellow powder m.p. 188° (decomp.) (Found: S, 28.3; N, 12.3; Sb, 21.8 (by difference); Cl, 37.6. Calc. for $S_5N_5SbCl_6$: S, 28.4; N, 12.4; Sb, 21.6; Cl, 37.6%). Cyclopentathiazenium hexachloroantimonate is insoluble in water; i.r. spectra revealed slight decomposition after contact with water at 20° for 12 h.

The order of addition of the reagents is important. Tetrasulphur tetranitride reacts in thionyl chloride with antimony(v) chloride to give the 1:1 adduct, and this does not react with trichlorocyclotrithiazene. Each cyclopentathiazenium salt shows the characteristic i.r. absorptions of the S₅N₅⁺ cation.¹

Cyclopentathiazenium Reineckate, $S_5N_5[Cr(NH_3)_2(NCS)_4]$. $-S_5N_5FeCl_4$ was stirred at room temperature with a molar equivalent of $\mathrm{NH}_4[\mathrm{Cr}(\mathrm{NH}_3)_2(\mathrm{NCS})_4]$, (Reinecke's salt), in anhydrous formic acid, (ca. 20 ml of formic acid per g $S_5N_5FeCl_4$). A brownish precipitate was gradually formed (ca. 1 h), and was washed with fresh, cold formic acid. Analysis, i.r. and u.v. data indicated that the product was $S_5N_5^+[Cr(NH_3)_2(NCS)_4]^-$. The tetraphenylborate, $S_5N_5^+$ - BPh_4^- , was prepared similarly from $S_5N_5FeCl_4$ and $NaBPh_4$.

DISCUSSION

The reactions between tetrasulphur tetranitride, trichlorocyclotrithiazene, and metal chloride were suggested

⁶ W. L. Jolly, 'Synthetic Inorganic Chemistry,' Prentice

Hall International, London, 1960, p. 166.
⁷ L. Friedman and W. P. Wetter, J. Chem. Soc. (A), 1967, 36.
⁸ B. Budesinsky, Analyt. Chem., 1965, 37, 1159.

9 O. Glemser and J. Wegener, Inorg. Nuclear Chem. Letters, 1971, 7, 623.

⁴ A. Weissberger, 'Technique of Organic Chemistry, vol. VII, Organic Solvents,' Interscience, New York, 2nd edn., 1955. ⁵ G. G. Alange, A. J. Banister, and B. Bell, *J.C.S. Dalton*, 1972, 2399.

by the results of reactions between iron(III) chloride or aluminium chloride and tetrasulphur tetranitride in thionyl chloride.¹ The reaction sequence proposed ¹ can be summarised:

$$\mathbf{S_4N_4} \xrightarrow{\mathrm{SoCl}_1} \mathrm{NSCl} \xrightarrow{\mathrm{FeCl}_3} [\mathrm{NS^+FeCl}_4^-] \xrightarrow{\mathbf{S_sN_4}} \mathrm{S_5N_5^+FeCl}_4^-$$

The present results indicate that again an intermediate thiazyl chloride adduct [in this instance, of the trimer $(NSCl)_3$ is a potential source of NS⁺, which is abstracted by S_4N_4 as $\overline{S_5N_5}^+$. The fact that $(NSCl)_3$ does not react with the adduct S₄N₄,SbCl₅ is also consistent with the proposed mechanism. The recommended reactant ratios 1:3:3, $(NSCl)_3:S_4N_4:FeCl_3$, AlCl₃ or SbCl₅, are the same as the reaction stoicheiometry.

Excess of tetrasulphur tetranitride is avoided, as it reacts ¹⁰ with the solvent, to give S_4N_3Cl . In the case of the FeCl₄⁻ salt, excess of iron(III) chloride is avoided as it is sparingly soluble. It is important to avoid simultaneous excess of (NSCl)₃ and metal halide, as these combine to form a sparingly soluble and highly airsensitive adduct.

As found for $S_4N_3^+Cl$, $S_5N_5^+FeCl_4^-$ undergoes metathetical reactions in formic acid, e.g. with NaBPh₄ and Reinecke's salt, $NH_4[Cr(NH_3)_2(NCS)_4]$. This appears to be a general method for preparing other $S_5N_5^+$ salts.

Bonding in $S_5N_5^+$.—Structural parameters are shown ¹⁰ A. J. Banister and J. S. Padley, J. Chem. Soc. (A), 1967, 1437. ¹¹ A. C. Hazell and R. G. Hazell, Acta Chem. Scand., 1972, 26, 1987.

in the Figure. The $S_5N_5^+$ ion is almost planar, and heart-shaped but without a mirror plane perpendicular to the ring.¹¹ It is a 14- π -electron system² and so the total complement of 54 valence electrons $[(5 \times 6) +$ $(5 \times 5) - 1$ can be regarded as being composed, essentially, of the following types of electron pairs: $10\sigma + 7\pi + 10$ 'non-bonding' (one per atom).

The structure of $S_5N_5^+$ is unusual in several ways: (i) The wide bond angles at the nitrogen atoms (between 137 and 178°) indicate extensive in-plane lone-pair delocalisation. This has been confirmed by a recent allvalence electron SCFMO treatment.² The 10 'nonbonding ' electron pairs are therefore not entirely nonbonding.

(ii) The shortest SN ring distances known (146.5 pm) are shown by the almost-linearly co-ordinated nitrogen atoms [N(4)] and N(6) of $S_5N_5^+$. Thus, each of these nitrogen atoms has two multiple NS bonds, the distance of one being close to that $(144.6 \text{ pm})^{12}$ of N=S-F.

(iii) The ring distances are so short (average $d_{\rm SN} =$ 154 pm) that the sulphur atoms on either side of each nitrogen atom are closer than the sulphur van der Waals diameter of ca. 370 pm.¹³ The shortest 'nonbonded' SS distance (280 pm) is $d(S_1 - S_9)$. Ring distances are also short in the 10π system $S_4N_3^+$ (average $d_{\rm SN} = 155$ pm)¹⁴ which is the only other planar SN species known.

The short ring distances in $S_4N_3^+$ and $S_5N_5^+$ are less surprising when one calculates the average number, n, of σ and π electrons per SN bond $[7\sigma + 5\pi$ pairs in $S_4 N_3^{+}$, n = (14 + 10)/7 = 3.43. $10\sigma + 7\pi$ pairs in $S_5N_5^+$, n = (20 + 14)/10 = 3.40]. Thus each ring atom in $S_5 N_5^+$ exercises an apparent covalency (on average) of 3.40. This is remarkable for the nitrogen atoms which all carry a negative charge.²

The extensive π delocalisation and the high bond orders in $\mathrm{S_4N_3^+}$ and $\mathrm{S_5N_5^+}$ no doubt contribute to the striking chemical stability (under acid conditions) of the salts. A further important consequence is that satisfactory sets of canonical structures cannot be written. This perhaps explains why $S_4N_3^+$ was not earlier recognised as being one member of a potentially large class of sulphur-nitrogen aromatic species.

We thank Staveley Chemicals Limited and the S.R.C. for a CAPS Studentship (to H. G. C.), and Mr. R. Coult for analyses.

[2/740 Received, 29th March, 1972]

12 W. H. Kirchhoff and E. B. Wilson, J. Amer. Chem. Soc., 1963, 85, 1726.

¹³ F. A. Cotton and G. Wilkinson, 'Advanced Inorganic Chemistry,' 2nd edn., Interscience, New York, 1966.
 ¹⁴ D. A. Johnson, G. D. Blyholder, and A. W. Cordes, *Inorg.*

Chem., 1965, 4, 1790.