Unstable Intermediates. Part CXXIII.¹ Electron Spin Resonance Spectra of Radicals in Y-Irradiated Sulphuryl Chloride : The SO₂Cl₂⁻ Radical

By K. V. S. Rao and M. C. R. Symons,* Department of Chemistry, The University, Leicester LE1 7RH

The major species detected by e.s.r. spectroscopy in γ -irradiated sulphuryl chloride at 77 K is thought to be SO₂Cl₂-. The ³³S and ³⁵Cl hyperfine components and the g-tensor components are in accord with this suggestion, and show that the radical anion is comparable with others in this class, having the unpaired electron primarily on sulphur (ca. 76%) with a very high 3s-character (ca. 29%), and on the two equivalent chlorine atoms with a high 3pcharacter (ca. 23%). The form of the molecular orbital involved is discussed.

The radical SeO_4^{3-} has ⁷⁷Se hyperfine coupling parameters² comparable with those for isostructural phosphorus radicals such as PF_4^3 and $PO_4^{-,4}$ with the unpaired electron largely on the selenium atom (ca. 62%), in contrast with the isostructural ion ClO₄²⁻, which has, apparently,⁵ only a small spin-density on the chlorine atom (ca. 7.4%). In order to probe this unusual structural difference further, we have endeavoured to prepare the radical SO_4^{3-} in yields sufficient to enable us to detect features from radicals containing ³³S in natural abundance. All our experiments, including the use of phosphate crystals doped with sulphate, which might have been expected to give good yields of SO_4^{3-6} have so far failed. We therefore turned our attention to other radicals of this type with sulphur as the central atom, and found that sulphuryl chloride gave SO₂Cl₂⁻ radicals

¹ Part CXXII, A. Begum and M. C. R. Symons, J.C.S. Fara-day 11, 1973, in the press.
² K. V. S. Rao and M. C. R. Symons, J.C.S. Dalton, 1972,

147. ³ P. W. Atkins and M. C. R. Symons, 'The Structure of Amsterdam 1967. Inorganic Radicals,' Elsevier, Amsterdam, 1967.

in good yield. Meanwhile Kerr and Williams 7 published an excellent e.s.r. spectrum for this radical in irradiated sulphuryl chloride, and reported values for A_z ⁽³⁵Cl and ³⁷Cl) and g_z . However, they were not able to define the ³⁵Cl A_x and A_y values or the g_x and g_y values, although they suggested that A_{\perp} ⁽³⁵Cl) lies between 0 and 16 G.⁷ They were also unable to detect ³³S satellite features. This work is of interest since ⁷ they suggest that the radical $SO_2Cl_2^-$ does not resemble the others of its kind, such as PF_4 , but can best be thought of as a resonance hybrid between $SO_2^- + Cl_2$ on the one hand, and $SO_2 + Cl_2^-$ on the other, with Cl_2^- as the major component.

Since this approach to the electronic structure of such radicals might shed further light on the anomalous data

⁴ M. C. R. Symons, J. Chem. Phys., 1970, 53, 857.

⁵ M. B. D. Bloom, R. S. Eachus, and M. C. R. Symons, *J. Chem. Soc.* (A), 1970, 1235. ⁶ R. S. Eachus and M. C. R. Symons, *J. Chem. Soc.* (A),

1968, 790. ⁷ C. M. L. Kerr and F. Williams, J. Amer. Chem. Soc., 1971,

93, 2805.

assigned to $ClO_4^{2-,5}$ we have extended this study to include the use of Q-band frequencies to aid in the determination of g-values, and very high gains and doses, to reveal features for radicals containing ³³S isotopes.

EXPERIMENTAL

Sulphuryl chloride (Fisons) was frozen to 77 K by adding droplets directly to liquid nitrogen. The resulting beads were irradiated at 77 K in a Vickrad ⁶⁰Co y-ray source having a nominal dose rate of 4 Mrad h⁻¹. For observation of ^{33}S satellites, the irradiation had to be carried out for ca. 12 h.

E.s.r. spectra were run at 77 K on a Varian E.3 spectrometer at X-band and at Q-band on a home-made spectrometer.8

The irradiated samples were bright green in colour.

RESULTS AND DISCUSSION

A typical e.s.r. spectrum of the species thought to be $SO_2Cl_2^-$ is given in Figure 1, and at high gain and high modulation in Figure 2, whilst the resulting magnetic data are in Table 1, together with those for some isostructural radicals. Orbital populations, estimated by use of the best available atomic wavefunctions⁹ in the usual way,³ are in Table 2.

We agree with Kerr and Williams 7 that this species must be SO₂Cl₂⁻. It contains two equivalent chlorine

FIGURE 1 First derivative X-band e.s.r. spectrum for sulphuryl chloride after exposure to ⁶⁰Co γ -rays at 77 K. Except for the $\pm 3(x)$ components, only the ³⁵Cl lines are indicated in the ponents are indicated since these are clearly resolved

atoms and at least one sulphur atom, the latter having a large hyperfine coupling characteristic of such radicals. ⁸ J. A. Brivati, J. M. Gross, M. C. R. Symons, and D. J. A. Tinling, *J. Chem. Soc.*, 1965, 6504.

The only other structurally and chemically reasonable species, in our view, would be the pyramidal radical SOCl₂⁺, isoelectronic with POCl₂, previously described.¹⁰

FIGURE 2 As above, but at very high gain, showing the $\pm \frac{1}{2}$ features from radicals containing ³³S. The $\pm \frac{3}{3}$ lines were unfortunately lost in noise

However, the latter had a far smaller hyperfine coupling to two equivalent chlorine atoms (ca. 18 G).¹⁰ Also we would have expected SO_2Cl rather than $SOCl_2^+$ to be formed from SO_2Cl_2 , under the action of γ -rays. Unfortunately, the results for radicals containing ³³S are equivocal in this regard, since it is not certain that the features we have labelled $\pm \frac{1}{2}$ in Figure 2 are correctly identified. Were these, in fact, the $\pm \frac{3}{2}$ features, then the resulting hyperfine coupling could at least conceivably arise from $SOCl_2^+$ radicals. We doubt this assignment because the less anisotropic $\pm \frac{1}{2}$ features would be too intense for ³³S satellites, as gauged from the outer features. On the other hand, if these are, as we suppose, the $\pm \frac{1}{2}$ features, then the more anisotropic $\pm \frac{3}{2}$ lines would have intensities below the noise level of our instrument. In fact, we have only been able to accommodate the very unusual form of the satellites

⁸ Calculated from the data of C. Froese, J. Chem. Phys., 1966, 45, 1417. ¹⁰ A. Begum and M. C. R. Symons, J. Chem. Soc. (A), 1971,

^{2065.}

(Figure 2) by assigning the sharply rising initial features to the ${}^{35}Cl$ (+3) x and z lines for the $+\frac{1}{2}{}^{33}S$ line, and to the ${}^{35}Cl$ (-3) x and z lines for the $-\frac{1}{2}{}^{33}S$ line. These x and z lines fortuitously coincide, in contrast with the remainder, thus accounting for the unusual strength of the outermost lines. If this identification and these assignments are accepted, then various structural aspects can be considered.

The 35 Cl Tensor.—Our results show far too great a complexity of lines in the central region of both X- and

In deriving the spin-density on chlorine, we have assumed that the smallest value (35 G) is the correct perpendicular value, and that their axis (y) is normal to the Cl-S-Cl plane (I). Unless $\theta = 180^{\circ}$, A_x and A_z , as measured for the powder spectra, will not be principal values since it is generally found that, for such radicals, powder spectra show strong features only when the two ligand atoms are magnetically equivalent [*i.e.*, for field along x and z in (I)]. If, however, we assume that each ³⁵Cl tensor has axial symmetry, then the principal values

	TABLE 1											
			E.s.r.	data assig	gned to SC	₂ Cl ₂ and to	related radicals					
	Central atom hyperfine tensor components/G			³⁵ Cl Hyperfine <i>•</i> tensor components/G			g-Tensor components					
Radical	N	У	z	х	У	z	x					
$SO_2Cl_2^-$ PO_4^{4-d}	$51 \\ 1097.5$	51 1110	62 ¢ 1232	64 ± 1	35 ± 3	40 ± 3 b	2.005 ± 0.001 2.0017	$2.017 \stackrel{-}{\pm} 0.001 \\ 2.002$	$2.007 \stackrel{2}{\pm} 0.002$ 2.000			
POČl ₃ - «	1359 (iso)			67 (iso)				2.018 (av)				
SeO ₄ 3-f	1023	1032	1193				2.031	2.002	2.000			

• ³⁷Cl components also detected for many features. ^b This is the experimental tensor; it has been modified as described in the text to give the parameters of Table 2. • If our assignment is correct, errors are ca. ± 3 G. ^d Ref. 4. • Ref. 10. ^f Ref. 2.

Q-band spectra for the axial symmetry previously assumed.⁷ The best fit, indicated for X-band in Figure 1 but equally satisfactory at Q-band, was derived so as to ensure that the relative intensities of the well resolved x-features were properly reproduced. We have previously found that this is an important aid in the interpretation of powder spectra.¹¹ The x features are regularly spaced indicating no large quadrupole effect.

can be calculated from the value for A_y . This gives (+69, +35, +35)G for the corrected tensor, which leads to the orbital populations given in Table 2. We estimate that a bond angle of $\theta = 135 \cdot 5^{\circ}$ would accord properly with this theory. This result depends markedly upon the assumption of axial symmetry, which is not required by the molecular symmetry, so should not be given great significance.

TABLE 2 Some derived orbital populations (%) for $SO_2Cl_2^-$ and related radicals

Radical	a_s^2	a_{p}^{2}	$a_{s^{2}} + a_{p^{2}}$	a_{p}^{2}/a_{s}^{2}
SO ₂ Cl ₂ -(33S)	29	47	76	1.6
(35Cl)	2.76	22.67	25.43	$8 \cdot 2$
PO44-a	31	42	73	$1 \cdot 3$
POCl ₃ ^b	37			
SeO43- c	22	4 0	62	1.7
	^a Ref. 4.	^b Ref. 10.	• Ref. 2.	

Some quadrupole effect is expected for the y and z lines, but the data derived from the 0 and ± 1 components is thought to be satisfactory.

In deriving the orbital populations in Table 2, we have assumed that all the hyperfine components for ³⁵Cl and ³³S are positive. Any other sign combination gave impossibly high spin-densities.

Electronic Structure.—The orbital populations for sulphur (Table 2) are in fair accord with those found previously for isostructural radicals.^{2-4,10} Thus this radical is not anomalous, as previously supposed.⁷ However, the results for chlorine, despite their uncertainty, can be taken as proof that there is a relatively high spin-density on these ligands, whilst that on the oxygen ligands must be close to zero. This accords well with expectation,¹⁰ and with the results of theoretical calculations.¹²

¹¹ M. C. R. Symons and J. G. Wilkinson, *J.C.S. Faraday II*, 1972, 1265.

¹² J. Higuchi, J. Chem. Phys., 1969, **50**, 1001.

The most striking result for sulphur is that the parallel direction makes an angle of 90° with the apparent chlorine ' parallel ' direction. Thus, as expected, the sulphur

part of the orbital concerned lies along the C_{2v} axis, bisecting the \angle ClSCl angle.

The results clearly rule out the model suggested previously⁷ which would require (i) that the orbital on sulphur be pure 3p in character, and (ii) that its major axis should be parallel with that for the chlorine hyperfine coupling. However, the data for the two chlorine atoms do confirm the contention that there are some similarities with Cl₂⁻ radicals, and it might be helpful to think of the structure in terms of overlap between the chlorine $3p(\sigma)$ orbitals directed somewhat away from the S-Cl directions with the $3s-3p_z$ hybridised sulphur orbital, as depicted in (II). If this were correct, then, of course, our rough estimate of θ refers to the interorbital angle rather than to the bond angle. It is not clear, however, that descriptions of this type have any merit compared with a normal M.O. treatment, and we feel that a model such as that in (III) serves as a satisfactory initial pictorial representation. (It is clear that an earlier suggestion, that spin-polarisation of the σ bonding electrons was responsible for the large ligand hyperfine coupling,¹⁰ was in error since the magnitude of the present effect is too large for such a mechanism.)

The g-tensor components accord satisfactorily with

this description. Thus $g_z > 2.0023$ because of spin on chlorine, whilst $g_x > 2.0023$ mainly because of spin on sulphur. Then the larger deviation for g_y arises because spin on both sulphur and chlorine is involved in coupling with filled levels.

We conclude that the fairly detailed structural information derived for $SO_2Cl_2^-$ accords well with expectation for such radicals, but sheds no further light on the anomalous results for $ClO_4^{2^-}$.

Mechanism.—As usual, we envisage an initial ionisa-

$$2SO_2Cl_2 \longrightarrow SO_2Cl_2^+ + SO_2Cl_2^-$$
(1)

tion and electron-capture (1). We have not been able to detect $SO_2Cl_2^+$ radicals, but, since the hyperfine coupling to chlorine is likely to be small,¹⁰ the spectrum could well be concealed beneath the intense central features of $SO_2Cl_2^-$. If these radicals decompose, they might well give sulphur dioxide and Cl_2^+ , but the chances of our detecting the latter by e.s.r. spectroscopy are small.¹³

We thank the S.R.C. for a grant (to K. V. S. R.).

[2/1356 Received, 14th June, 1972]

¹³ R. S. Eachus, T. P. Sleight, and M. C. R. Symons, *Nature*, 1969, **222**, 769.