Crystal Structure of Chloro[dodeca(dimethylamino)cyclohexaphosphaz-ene-NNNN]cobalt(II) Di- μ-chloro-bis[dichlorocobaltate(II)]-Bischloroform

By W. Harrison and J. Trotter,* Department of Chemistry, University of British Columbia, Vancouver 8, British Columbia, Canada
Crystals of the title compound are monoclinic, $a=13.017, b=17.439, c=23.879 \AA, \beta=93.89^{\circ}, Z=2$, space group $P 2_{1} / c$. The structure was determined from diffractometer data by a combination of direct and Patterson methods, and refined by full-matrix least-squares procedures to $R 0.093$ for 2695 observed reflexions. The cation is similar to that in a related copper complex, cobalt being bonded to four nitrogen atoms of the phosphazene ring and to one chlorine atom in a configuration between a square pyramid and trigonal bipyramid. The anionic cobalt is present as the hitherto unrecognized centrosymmetrical $\mathrm{Co}_{2} \mathrm{Cl}_{6}{ }^{2-}$ ion, in which two chlorine bridges complete tetrahedral co-ordination about the cobalt atoms.

The copper chloride complex of dodeca(dimethylamino)cyclohexaphosphazene of composition $\mathrm{LCu}_{2} \mathrm{Cl}_{3}$ contains the ion $\left[\mathrm{N}_{6} \mathrm{P}_{6}(\mathrm{NMe})_{12} \mathrm{CuCl}\right]^{+}$, with the copper atom bonded to four nitrogen atoms of the phosphazene ring and to a chlorine atom, in a configuration between a square pyramid and a trigonal bipyramid. ${ }^{1}$ Complexes of the general formula $\mathrm{L}\left(2 \mathrm{MCl}_{2}\right)$ have been obtained, ${ }^{2}$ and we describe the structure of the compound with $\mathrm{M}=\mathrm{Co}$.

EXPERIMENTAL

Dark blue crystals of the cobalt complex were obtained from chloroform-carbon tetrachloride as the chloroform solvate of composition $\mathrm{L}, 2 \mathrm{CoCl}_{2}, \mathrm{CHCl}_{3}$; the structure analysis later gave the formula as $\left[\mathrm{N}_{6} \mathrm{P}_{6}\left(\mathrm{NMe}_{2}\right)_{12} \mathrm{CoCl}^{+}\right]_{2}-$ $\left[\mathrm{Co}_{2} \mathrm{Cl}_{6}{ }^{2-}\right], 2 \mathrm{CHCl}_{3}$.

Crystal Data. - $\mathrm{C}_{50} \mathrm{H}_{146} \mathrm{Cl}_{14} \mathrm{Co}_{4} \mathrm{~N}_{36} \mathrm{P}_{12}, M=2355 \cdot 7$, Monoclinic, $a=13.017, b=17.439, c=23.879 \AA, \beta=93.89^{\circ}$, $U=5408 \cdot 1 \quad \AA^{3}, \quad Z=2 . \quad D_{\mathrm{c}}=1 \cdot 446, \quad F(000)=2448$. Mo- $K \alpha$ radiation, $\lambda=0.7107 \AA, \mu\left(\right.$ Mo- $\left.K_{\alpha}\right)=12 \mathrm{~cm}^{-1}$. Space group $P 2_{1} / c\left(C_{2}^{5}\right)$.
The intensities of the reflexions were measured by diffractometer methods as for the copper complex. ${ }^{1}$ Of
${ }^{1}$ W. C. Marsh and J. Trotter, J. Chem. Soc. (A), 1971, 1482.
${ }^{2}$ W. Harrison, N. L. Paddock, J. Trotter, and J. N. Wingfield, J.C.S. Chem. Comm., 1972, 23.
c

4870 reflexions with $20 \leqslant 40^{\circ}, 2695$ were classified as observed.
Structure Analysis.-The analysis was complicated by the weakness of k odd reflexions. In the initial stages, by both Patterson and direct methods, the cation was located lying on either a two-fold axis in $P 2 / c$, with an identically oriented cation displaced by $b / 2$, or on a two-fold screw axis in $P 2_{1} / c$. The unit cell is rather similar to that of the copper complex, ${ }^{1}$ but with a doubled b axis. The pseudosymmetrical electron-density maps could not be interpreted in terms of a reasonable anion; the difficulty was later shown to be a result of the presence of chloroform molecules so situated and oriented in the cell that their chlorine atom positions were related by a pseudo-two-fold axis to some of those of the anion (Figure 1). The structure was finally solved from a difference Patterson function, computed with coefficients $\left[F_{0}-F \text { (cation) }\right]^{2}$, and the presence of the $\mathrm{CO}_{2} \mathrm{Cl}_{6}{ }^{2-}$ anion and chloroform solvent in space group $P 2_{1} / c$ was established.

Refinement by full-matrix least-squares methods gave a final R of 0.093 for the 2695 observed reflexions. Scattering factors were from ref. 3 , and the weighting scheme was adjusted to give constant average values of $w\left(F_{\mathrm{o}}-F_{\mathrm{c}}\right)^{2}$; $\sqrt{ } w=1$ when $\left|F_{0}\right| \leqslant 60, \sqrt{ } w=60 /\left|F_{\mathrm{o}}\right|$ when $\left|F_{\mathrm{o}}\right|>60$, $\sqrt{ } w=0.1$ for unobserved reflexions (with $\left|F_{0}\right|$ taken as

3 ' International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962.
the actual measured value, minimum zero). Final positional and thermal parameters are given in Table 1, bond lengths and angles in Table 2, and measured and calculated structure factors are listed in Supplementary Publication No. SUP 20499 ($6 \mathrm{pp} ., 1$ microfiche).*

DISCUSSION

The complex is ionic, and the crystal contains cobalt bonded to the phosphazene ring in the cation, the pre-
$\mathrm{N}(4)$ axial. The latter is perhaps a closer description, since all the equatorial angles are very close to 120°, with $\mathrm{N}(\mathrm{ax})-\mathrm{Co}-\mathrm{N}(\mathrm{ax}) 163^{\circ}$ (Table 2). The $\mathrm{Co}(1)-\mathrm{Cl}$ bond distance, $2 \cdot 268(4) \AA$, is close to the corresponding distance in the copper compound. The $\mathrm{Co}^{-} \mathrm{N}$ bond lengths are $2.064(10)$ and $2.051(10) \AA$ for the equatorial bonds of the trigonal bipyramid, and $2 \cdot 262(10)$ and $2 \cdot 233(9) ~ \AA$ for the axial bonds. The difference of $0.19 \AA$ between the mean axial and equatorial bond

Table 1
Final positional parameters (fractional $\times 1 \mathbf{1 0}^{\mathbf{4}}$), with standard deviations in parentheses, and thermal parameters *
(a)
a) Cation

* Anisotropic thermal parameters are in the form: $\exp -10^{-5}\left(b_{11} h^{2}+b_{21} k^{2}+b_{33} l^{2}+2 b_{12} h k+2 b_{13} h l+2 b_{23} h l\right)$.
viously unrecognized $\mathrm{Co}_{2} \mathrm{Cl}_{6}{ }^{2-}$ anion, and chloroform solvent (Figure 1).

The cation is similar to that in the related copper complex. ${ }^{1}$ The cobalt atom, $\operatorname{Co}(1)$, is co-ordinated to four nitrogen atoms of the phosphazene ring and to a chlorine atom. The five-fold co-ordination can be described as a distorted square pyramid (chlorine apical), or as a distorted trigonal bipyramid, with $\mathrm{N}(1)$ and
lengths is highly significant, and larger than and in the opposite sense to the difference in the copper compound (Figure 2). There is no immediate explanation for these variations.

The phosphazene ring has very nearly C_{2} symmetry

* For details see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20 (items less than 10 pp . are sent as full size copies).
(crystallographically required in the copper complex ${ }^{1}$), and the mean ring parameters are summarized in Figure

Table 2
Bond lengths (\AA) and valency angles $\left({ }^{\circ}\right)$, with standard deviations in parentheses (σ for the mean values is the larger of the least-squares value and the r.m.s. deviation from the mean)
(a) Cation
(i) $\mathrm{Co}(1)$ co-ordination

$\mathrm{Co}(1)-\mathrm{N}(1)$	2-262(9)	$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{N}(4)$	163.3(4)
$\mathrm{Co}(1)-\mathrm{N}(4)$	2.233(10)		
$\mathrm{Co}(1)-\mathrm{N}(3)$	2.064(10)		
$\mathrm{Co}(1)-\mathrm{N}(6)$	$2.051(10)$	$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{N}(3)$	$100 \cdot 1(3)$
$\mathrm{Co}(1)-\mathrm{Cl}(1)$	2.268(4)	$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{N}(6)$	70.9(4)
		$\mathrm{N}(1)-\mathrm{Co}(1)-\mathrm{Cl}(1)$	$99 \cdot 0$ (3)
$\mathrm{N}(3)-\mathrm{Co}(1)-\mathrm{N}(6)$	120.3(4)	$\mathrm{N}(4)-\mathrm{Co}(1)-\mathrm{N}(6)$	$101 \cdot 4(4)$
$\mathrm{N}(3)-\mathrm{Co}(1)-\mathrm{Cl}(1)$	$120.4(3)$	$\mathrm{N}(4)-\mathrm{Co}(1)-\mathrm{N}(3)$	70.5(4)
$\mathrm{N}(6)-\mathrm{Co}(1)-\mathrm{Cl}(1)$	$119 \cdot 3(3)$	$\mathrm{N}(4)-\mathrm{Co}(1)-\mathrm{Cl}(1)$	97.7(3)
(ii) Phosphazene ring			
$\mathrm{N}(1)-\mathrm{P}(1)$	1.613(10)	$\mathrm{P}(1)-\mathrm{N}(7)$	1-629(4)
$\mathrm{N}(1)-\mathrm{P}(2)$	1-596(10)	$\mathrm{P}(1)-\mathrm{N}(8)$	1-648(4)
$\mathrm{N}(3)-\mathrm{P}(3)$	1.626(10)	$\mathrm{P}(4)-\mathrm{N}(13)$	$1.630(4)$
$\mathrm{N}(3)-\mathrm{P}(4)$	1.634(9)	$\mathrm{P}(4)-\mathrm{N}(14)$	$1 \cdot 640$ (4)
$\mathrm{N}(4)-\mathrm{P}(4)$	$1.594(11)$	(4ean	$1.637(5)$
$\mathrm{N}(4)-\mathrm{P}(5)$	1.618(10)		
$\mathrm{N}(6)-\mathrm{P}(6)$	$1 \cdot 633$ (10)	$\mathrm{P}(2)-\mathrm{N}(9)$	$1 \cdot 653(4)$
$\mathrm{N}(6)-\mathrm{P}(1) \quad$ Mean	1.633(10)	$\mathrm{P}(2)-\mathrm{N}(10)$	$1.651(4)$
	1-618(6)	$\mathrm{P}(3)-\mathrm{N}(11)$	$1.661(4)$
		$\mathrm{P}(3)-\mathrm{N}(12)$	1-656(4)
$\mathrm{N}(2)-\mathrm{P}(2)$	1.557(11)	$\mathrm{P}(5)-\mathrm{N}(15)$	1-643(4)
$\mathrm{N}(2)-\mathrm{P}(3)$	1.575(11)	$\mathrm{P}(5)-\mathrm{N}(16)$	$1.658(4)$
$\mathrm{N}(5)-\mathrm{P}(5)$	$1.579(12)$	$\mathrm{P}(6)-\mathrm{N}(17)$	$1.647(4)$
$\mathrm{N}(5)-\mathrm{P}(6)$ Mean	1-568(11)	$\mathrm{P}(6)-\mathrm{N}(18)$	$1 \cdot 648(4)$
	$1.570(6)$	Mean	1.652(2)
$\mathrm{N}(6)-\mathrm{P}(1)-\mathrm{N}(1)$	101.1(5)	$\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{P}(2)$	133.6(7)
$\mathrm{N}(1)-\mathrm{P}(2)-\mathrm{N}(2)$	116.6(5)	$\mathrm{P}(2)-\mathrm{N}(2)-\mathrm{P}(3)$	$135 \cdot 8(7)$
$\mathrm{N}(2)-\mathrm{P}(3)-\mathrm{N}(3)$	111 -2(5)	$\mathrm{P}(3)-\mathrm{N}(3)-\mathrm{P}(4)$	$136 \cdot 9(7)$
$\mathrm{N}(3)-\mathrm{P}(4)-\mathrm{N}(4)$	$100 \cdot 7(5)$	$\mathrm{P}(4)-\mathrm{N}(4)-\mathrm{P}(5)$	$133 \cdot 4(7)$
$\mathrm{N}(4)-\mathrm{P}(5)-\mathrm{N}(5)$	115.7(5)	$\mathrm{P}(5)-\mathrm{N}(5)-\mathrm{P}(6)$	133.6(8)
$\mathrm{N}(5)-\mathrm{P}(6)-\mathrm{N}(6)$	111-1(5)	$\mathrm{P}(6)-\mathrm{N}(6)-\mathrm{P}(1)$	136.6(7)
$\mathrm{Co}(1)-\mathrm{N}(1)-\mathrm{P}(1)$	90.3(4)	$\mathrm{Co}(1)-\mathrm{N}(4)-\mathrm{P}(4)$	91-7(4)
$\mathrm{Co}(1)-\mathrm{N}(1)-\mathrm{P}(2)$	$116.0(5)$	$\mathrm{Co}(1)-\mathrm{N}(4)-\mathrm{P}(5)$	$114.8(5)$
$\mathrm{Co}(1)-\mathrm{N}(3)-\mathrm{P}(3)$	126.1(5)	$\mathrm{Co}(1)-\mathrm{N}(6)-\mathrm{P}(6)$	$125 \cdot 9(6)$
$\mathrm{Co}(1)-\mathrm{N}(3)-\mathrm{P}(4)$	96.9(5)	$\mathrm{Co}(1)-\mathrm{N}(6)-\mathrm{P}(1)$	97•6(5)

Exocyclic angles at P $\mathrm{N}($ exo $)-\mathrm{P}-\mathrm{N}(e x o)$

	$\mathrm{N}(e x o)-\mathrm{P}-\mathrm{N}(e x$
$\mathrm{P}(1)$	$104 \cdot 4$
$\mathrm{P}(2)$	$107 \cdot 5$
$\mathrm{P}(3)$	$102 \cdot 4$
$\mathrm{P}(4)$	$104 \cdot 7$
$\mathrm{P}(5)$	$109 \cdot 5$
$\mathrm{P}(6)$	$102 \cdot 3$

$\mathrm{N}(e x o)-\mathrm{P}-\mathrm{N}$ (ring)
$107 \cdot 0,119 \cdot 3,116 \cdot 5,109 \cdot 2$
$111.5,103 \cdot 1,106.5,111 \cdot 3$
$115 \cdot 0,106 \cdot 1,106 \cdot 3,115 \cdot 8$
$116 \cdot 5,108 \cdot 6,107 \cdot 1,120 \cdot 0$
$110 \cdot 8,104 \cdot 4,105.9,110.5$
$116.5,105 \cdot 1,105 \cdot 6,116 \cdot 1$
$\mathrm{N}-\mathrm{C}$ 1.465-1.548, mean 1.499 ; $\mathrm{P}-\mathrm{N}-\mathrm{C}$ 114-129, mean 121; $\mathrm{C}-\mathrm{N}-\mathrm{C} 112-116$, mean 114; sum of three angles at exocyclic N 349-360, mean 356
(b) Anion

See Figure 4
(c) Chloroform solvent

$\mathrm{C}(1)-\mathrm{Cl}(5)$	$1.659(16)$	$\mathrm{Cl}(5)-\mathrm{C}(1)-\mathrm{Cl}(6)$	$117.7(12)$
$\mathrm{C}(1)-\mathrm{Cl}(6)$	$1.625(16)$	$\mathrm{Cl}(5)-\mathrm{C}(1)-\mathrm{Cl}(7)$	$108 \cdot 5(10)$
$\mathrm{C}(1)-\mathrm{Cl}(7)$	$1.776(17)$	$\mathrm{Cl}(6)-\mathrm{C}(1)-\mathrm{Cl}(7)$	$111 \cdot 1(10)$
Mean	$1.69(5)$		Mean $112(3)$

3. All of the features noted for the copper compound are confirmed, and established more definitely since the accuracy is much better in the present analysis. The $\mathrm{P}-\mathrm{N}$ ring bonds involving nitrogen atoms bonded to cobalt, $1.594-1.634$, mean $1.618(6) \AA$, are longer than
those involving nitrogen atoms not bonded to cobalt, $1.557-1.579$, mean $1.570(6) \AA$, the mean values differing by 6σ. The $\mathrm{N}-\mathrm{P}-\mathrm{N}$ angles are all smaller than in the parent phosphazene, ${ }^{4}$ the reduction being most marked at $\mathrm{P}(1)$ and $\mathrm{P}(4)$, mean $100 \cdot 9^{\circ}$, as are the $\mathrm{P}-\mathrm{N}-\mathrm{P}$ angles

Figure 1 Structure viewed along b. Only atoms in the lower part of the cell are shown; $\mathrm{Cl}(1)$ is directly below $\mathrm{Co}(1)$

Figure 2 Metal atom co-ordinations in $\mathrm{N}_{6} \mathrm{P}_{6}\left(\mathrm{NMe}_{2}\right)_{12} \mathrm{MCl}+$ ions, $\mathrm{M}=\mathrm{Cu}$ and Co

Figure 3 Mean dimensions of the phosphazene ring (\AA and ${ }^{\circ}$)
mean $135 \cdot 0^{\circ}$. The exocyclic $\mathrm{P}-\mathrm{N}$ bonds are all shorter than single bonds, with those at $P(1)$ and $P(4)$, mean $\mathbf{1} \cdot 637(5)$, slightly shorter than those at the other phosphorus atoms, mean $1 \cdot 652(2) ~ \AA$. All these details are explicable in terms of π-bonding theories, as for the copper complex. ${ }^{1}$

[^0]The dimethylamino-groups are all not far from planar, the sums of the valency angles at the nitrogen atoms varying from $353-360^{\circ}$, except for 349° at $\mathrm{N}(11)$. The $\mathrm{N}^{-} \mathrm{C}$ bond lengths are in the range $1 \cdot 465-1.548$, mean 1-499 A.

In the centrosymmetrical $\mathrm{Co}_{2} \mathrm{Cl}_{6}{ }^{2-}$ anion (Figure 4) two chlorine bridges complete tetrahedral co-ordination

Figure 4 The $\mathrm{Co}_{2} \mathrm{Cl}_{6}{ }^{2-}$ anion; angles not shown are $\mathrm{Cl}(2)-\mathrm{Co}-$ $\mathrm{Cl}\left(3^{\prime}\right) 114 \cdot 5(3)$ and $\mathrm{Cl}(3)-\mathrm{Co}-\mathrm{Cl}(4) 113 \cdot 1(2)^{\circ} ; \mathrm{Co}(2) \cdots \mathrm{Co}\left(2^{\prime}\right)$ is $3 \cdot 277(6) \AA$
about the cobalt atoms. The thermal parameters of the chlorine atoms are large, corresponding to a maximum root-mean-square displacement of ca. $0 \cdot 5 \AA$.

No interpretation in terms of disorder seems reasonable, and it is likely that this is a real thermal effect, the anion being rather loosely held in the structure, as is the $\mathrm{CuCl}_{2}{ }^{-}$ion in the copper complex. ${ }^{1}$ The $\mathrm{Co}-\mathrm{Cl}$ (bridging) distances, mean $2.336 \AA$, are longer than the $\mathrm{Co}^{-} \mathrm{Cl}($ terminal) lengths, mean $2 \cdot 233 \AA$. The Cl (bridging) ${ }^{-} \mathrm{Co}-\mathrm{Cl}$ (bridging) angle is 90.9°, with the other angles at the cobalt atom in the range $107 \cdot 1$ 115.7°. The chloroform solvent molecule is also undergoing quite large thermal vibrations, and the bond lengths and angles show fairly wide variations, mean $\mathrm{C}-\mathrm{Cl} 1 \cdot 69(5) \AA$ (with no librational correction) and mean $\mathrm{Cl}-\mathrm{C}-\mathrm{Cl} 112(3)^{\circ}$.

The packing in the structure is quite similar to that in the copper complex, ${ }^{1}$ but in the cobalt compound alternate anions along b are replaced by two chloroform solvent molecules, resulting in a doubled b axis. Intermolecular distances correspond to van der Waals forces, as for the copper compound; the shortest contact between two chloroform molecules is $\mathrm{Cl} \cdots \mathrm{Cl} 3.52 \AA$.

We thank Professor N. L. Paddock and Dr. J. N. Wingfield for crystais and discussion, the National Research Council of Canada for financial support, and the University of British Columbia Computing Centre for assistance.
[2/1156 Received, 22nd May, 1972]

[^0]: ${ }^{4}$ A. J. Wagner and A. Vos, Acta Cryst., 1971, B24, 1423.

