Crystal and Molecular Structure of cis-Diphenylbis-(2,2'-bipyridyl)chromium(III) lodide

By J. J. Daly, F. Sanz, R. P. A. Sneeden, and H. H. Zeiss,* Monsanto Research S.A., Eggbühlstrasse 36, CH-8050 Zürich, Switzerland

Abstract

Crystals of the title compound are monoclinic, space group $C 2 / c$, with cell dimensions $a=11 \cdot 034, b=16 \cdot 021$. $c=16 \cdot 183 \AA, \beta=103^{\circ} 31^{\prime}, Z=4$. The final R for 2227 counter data refined by a block-diagonal least-squares method is 0.054 . The organometallic cation, which has the cis-octahedral configuration, possesses a crystallographic two-fold symmetry axis. The chromium-carbon σ bond length $[2 \cdot 087(4) \AA$] is no different from the corresponding length in the cis-[(2-methoxyphenyl) $\left.{ }_{2} \mathrm{Cr}(\text { bipy })_{2}\right]+$ (bipy $=2,2^{\prime}$-bipyridyl) cation. The chromiumnitrogen bonds which are not related by the two-fold symmetry axis have different lengths; those trans to nitrogen [2.087(4)] being shorter than those trans to carbon [2.147(4) A].

The previous paper ${ }^{1}$ describes the structure of [0 $\left.\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{Cr}(\text { bipy })_{2}{ }^{7} \mathrm{I}^{-}$, (I; bipy $=2,2^{\prime}$-bipyridyl), an air- and water-stable σ bonded organo-chromium compound. The analysis showed that the $\mathrm{Cr}-\mathrm{C}$ bond length of $2 \cdot 101(12) \AA$ was considerably longer than the $\mathrm{Cr}-\mathrm{C}$ bond length of $2.014(10) \AA$ in the unstable $p-\mathrm{MeC}_{6} \mathrm{H}_{4}$ $\mathrm{CrCl}_{2}, 3 \mathrm{THF}$, ${ }^{2}$ (II; THF $=$ tetrahydrofuran), which suggested that this bond length is a function of the environment of the chromium atom. In an attempt to analyse the effects of the various ligands on this $\mathrm{Cr}-\mathrm{C}$ length we have now determined the structure of $\left[\mathrm{Ph}_{2} \mathrm{Cr}(\mathrm{bipy})_{2}\right]^{+} \mathrm{I}^{-}$, (III), also air- and water-stable, which

(I)

(II)

(III)
differs from (I) in that the MeO groups have been replaced by hydrogen atoms. The compound (III) was prepared by a modified version of the synthesis ${ }^{3}$ already described; it had previously been isolated ${ }^{4}$ from the thermal decomposition products of $\mathrm{Ph}_{3} \mathrm{Cr}$ (bipy)(THF).

[^0]
EXPERIMENTAL

Synthesis of $\left[\mathrm{Ph}_{2} \mathrm{Cr}(\text { bipy })_{2}\right] \mathrm{I}$.-A tetrahydrofuran solution of phenylmagnesium bromide ($20 \mathrm{ml}, 21.96 \mathrm{mmol}$) was added, under argon, to a stirred suspension of $\mathrm{CrCl}_{2}(1.35 \mathrm{~g}$, 10.98 mmol) in tetrahydrofuran containing 2,2'-bipyridyl $(3.42 \mathrm{~g}, 21.9 \mathrm{mmol})$ at $-70^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature and subsequently $(8 \mathrm{~h})$ concentrated and filtered under argon. The deep-blue solid obtained, was disolved in aqueous methanol containing KI (5 g), and the clear solution subjected to a stream of air. The orange-red solid obtained was then dried, and extracted with small portions of hot nitromethane which, when cooled, gave chunky orange-red crystals which were recrystallized from methanol. (Found: C, $58.9 ; \mathrm{H}, 4 \cdot 1$; $\mathrm{Cr}, 8 \cdot 0$; $\mathrm{I}, 20 \cdot 2$; $\mathrm{N}, 8.7$. Calc. for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{CrIN}_{4}$: $\mathrm{C}, 59 \cdot 4$; H, $4 \cdot 1$; Cr, $8 \cdot 1 ; \mathrm{I}, 19.7$; N, 8.7%; $\mu_{\text {eff }} 3.82$ B.M.; $\lambda_{\max }$ $(\mathrm{EtOH})(\log \varepsilon$ in parentheses $) 245(4 \cdot 60), 303(4 \cdot 77), \lambda_{\mathrm{sh}} 390 \mathrm{~nm}$. (2.94). The compound reacts with HgCl_{2}, in methanol, to give two equivalents of phenylmercuric chloride m.p. and mixed m.p. $253-255^{\circ} \mathrm{C}$.

Crystal Data.- $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{CrIN}_{4}, M=645 \cdot 5$, Monoclinic $a=$ $11.034(6), b=16.021(8), c=16 \cdot 183(8) \AA, \beta=103^{\circ} 31(5)^{\prime}$, $U=2781 \cdot 6 \AA^{3}, \quad D_{\mathrm{c}}=1542, Z=4, D_{\mathrm{m}}=1549$. Mo-K radiation, $\lambda=0.71069 \AA, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=15.9 \mathrm{~cm}^{-1}$. Space group, from extinctions and successful analysis, $C 2 / c$. Unit-cell dimensions were obtained by a least-squares process from precession photographs.

Intensities were collected round b on a Hilger and Watts linear diffractometer; 2227 reflections with $\theta \ngtr 22.5^{\circ}$ were measured and used in the refinement.

Structure Determination and Refinement.-A systematic weakness of reflections with l odd suggested that an application of direct methods would lead to an ambiguous solution so the structure was solved, in the space group $C 2 / c$, from the three-dimensional Patterson function. Refinement was carried out by a block-diagonal (3×3 and 1×1 or 6×6) process till there was no improvement in R and then a three-dimensional difference map was calculated which showed all the hydrogen atoms in their expected positions. Further refinement of the positional parameters led to final values of $R 0.054$ for 2227 planes and of $R^{\prime} 0.006$ $\left(R^{\prime}=\Sigma w \Delta^{2} / \Sigma w F_{0}{ }^{2}\right)$ for 2187 planes. Planes with $3\left|F_{c}\right|<\left|F_{o}\right|$ were omitted from the least-squares totals and from R^{\prime}. All calculations were carried out on an Elliott 803 B computer with programs written in this laboratory. ${ }^{5}$
${ }^{3}$ J. J. Daly, F. Sanz, R. P. A. Sneeden, and H. H. Zeiss, Chem. Comm., 1971, 243.
${ }^{4}$ H. Müller, Z. Chem., 1969, 9, 311.
${ }^{5}$ J. J. Daly, F. S. Stephens, and P. J. Wheatley, unpublished work.
results and discussion
The results of the analysis are summarised in Tables 1-4: Table 1 analyses R as a function of the layer index and of the magnitude of $\left|F_{0}\right|$, Table 2 gives the co-ordinates, Table 3 thermal parameters, and Table 4 bond lengths and angles.* Figure 1 is a drawing of the cation projected down $[b]$ and shows the labelling of the atoms.

The cation of (III) (Figure 1) is very similar to that ${ }^{1}$ of (I). It exhibits its maximum possible symmetry, a two-fold axis which bisects the $\mathrm{C}-\mathrm{Cr}-\mathrm{C}$ bond angle. This symmetry leaves only two of the chromium d orbitals (Figure 2) degenerate, $d_{x z}$ and $d_{y z}$, and equality of the $\mathrm{Cr}-\mathrm{N}(1)$ and $\mathrm{Cr}-\mathrm{N}(2)$ bond lengths is no longer required since the $d_{z^{2}}$ and $d_{x^{3}-y^{2}}$ orbitals are not degenerate. Thus a $\mathrm{Cr}-\mathrm{X}$ bond length will depend on its environment and may change if this environment is altered. Two

Table 1
R as a function of the magnitude of $\left|F_{o}\right|$ and of the layer index k

Range of $\left\|F_{0}\right\|$	$\Sigma \mid F_{0}{ }^{\text {] }}$	$\Sigma\left\|F_{\mathrm{c}}\right\|$	$\Sigma\|\Delta\|$	N^{*}	R
0-9.18	1604.92	$1400 \cdot 20$	611.76	294	0.381
9.18-18.36	$5410 \cdot 68$	$5302 \cdot 70$	$697 \cdot 36$	398	$0 \cdot 129$
18.36-27.54	$7666 \cdot 29$	$7642 \cdot 12$	$523 \cdot 37$	334	0.068
27.54-36.72	$7842 \cdot 03$	7895.08	$402 \cdot 51$	245	0.051
36.72-45.90	8373.94	$8450 \cdot 71$	$414 \cdot 13$	204	$0 \cdot 049$
45.90-192.78	59377-22	$59452 \cdot 27$	1866.69	715	0.031
192.78-247.86	$4445 \cdot 97$	4177.13	268.84	21	0.060
247-86-459.00	5064-21	$4582 \cdot 82$	511.75	16	$0 \cdot 109$
k 退					
0	11473-32	$11056 \cdot 15$	$553 \cdot 55$	102	0.048
1	$6109 \cdot 04$	$5972 \cdot 76$	387.34	166	0.063
2	$12750 \cdot 84$	$12480 \cdot 03$	$610 \cdot 21$	185	0.048
3	$9014 \cdot 01$	9016.25	$438 \cdot 24$	162	0.049
4	9588.26	$9450 \cdot 39$	$430 \cdot 85$	172	0.045
5	$9877 \cdot 46$	$9790 \cdot 20$	372-44	156	0.038
6	$5159 \cdot 06$	$5260 \cdot 12$	339.64	177	0.066
7	8808.57	8841.44	298.73	164	0.034
8	2855.90	2879.56	$291 \cdot 34$	150	$0 \cdot 102$
9	6826.11	$7069 \cdot 91$	$365 \cdot 90$	164	$0 \cdot 054$
10	3711.13	$3842 \cdot 62$	$283 \cdot 93$	155	0.077
11	$4759 \cdot 08$	4906.73	$260 \cdot 65$	147	0.055
12	$3917 \cdot 76$	3662.72	287.74	116	0.073
13	1977-37	1896.49	214.34	109	$0 \cdot 108$
14	2917.35	2777.66	201.51	102	0.069
All planes	99745-26	98903.03	5336.41	2227	0.054

* Number of planes.
different $\mathrm{Cr}-\mathrm{N}$ bind lengths are, in fact, observed; that trans to nitrogen $(2.087 \AA)$ is shorter than that trans to carbon $(2 \cdot 147 \AA)$.

A comparison of the $\mathrm{Cr}-\mathrm{X}$ bond lengths in (I)-(III) ${ }^{1,2}$ (Table 5) shows that there is an inverse relationship between the $\mathrm{Cr}-\mathrm{X}$ length and the electronegativity of the atom trans to X , for example $\mathrm{Cr}-\mathrm{C}$ trans to oxygen is shorter than $\mathrm{Cr}-\mathrm{C}$ trans to nitrogen. This simple inverse relation does not apply to all octahedral $\mathrm{Cr}^{\mathrm{III}}$ compounds and exceptions are found in a $\mathrm{Cr}^{\mathrm{IIf}}(\mathrm{en})_{2}$ oxalate complex ${ }^{6}$ and in a $\mathrm{Cr}^{\text {III }}\left[(\right.$ salen $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ complex. ${ }^{7}$

* Final observed and calculated structure factors are in Supplementary Publication No. SUP 20510 (15 pp., 1 microfiche). For details see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20.
${ }^{6}$ J. W. Lethbridge, L. S. D. Glasser, and H. F. W. Taylor, J. Chem. Soc. (A), 1970, 1862.

Table 2
Atomic co-ordinates in \AA with standard deviations in parentheses

	X	Y	Z
I	0	$8.0059(5)$	$4 \cdot 0460(00)$
Cr	0	1.0423(8)	4.0460 (00)
$\mathrm{N}(1)$	-0.693(4)	-0.554(4)	5.152(3)
$\mathrm{N}(2)$	$1.625(3)$	0.848 (3)	$5 \cdot 776(3)$
$\mathrm{C}(1)$	$-1.845(5)$	$-1.253(5)$	4.733(5)
$\mathrm{C}(2)$	-2.186(5)	$-2.328(6)$	5-477(6)
$\mathrm{C}(3)$	$-1.276(6)$	-2.680 (6)	6.701(6)
C(4)	-0.079(5)	-1.965 (5)	7-146(5)
C(5)	0-197(4)	-0.902(4)	6.358(4)
C(6)	$1 \cdot 467$ (5)	-0.079 (3)	6.720(4)
C(7)	$2 \cdot 469$ (5)	-0.260(5)	7-935(5)
$\mathrm{C}(8)$	$3 \cdot 652(5)$	$0 \cdot 499$ (6)	8.192(5)
$\mathrm{C}(9)$	$3 \cdot 813(5)$	$1.423(6)$	7.224(5)
C(10)	2.784(5)	1.572(5)	6.048(4)
C(11)	-0.899(4)	2-469(4)	5-083(4)
C(12)	-2.230(4)	2.277(5)	5-310(4)
C(13)	$-2.865(5)$	$3 \cdot 239(5)$	5.972(5)
C(14)	-2.214(7)	$4 \cdot 405(5)$	6.408(6)
C(15)	-0.916(7)	$4 \cdot 638(5)$	6.223(5)
$\mathrm{C}(16)$	-0.269(5)	3.673(5)	5.576(5)
H(1)	$-2.54(7)$	$-1.03(6)$	3.82(7)
H(2)	$-3.13(7)$	-2.73 (6)	5.00(7)
H(3)	$-1.45(8)$	-3.39(7)	7-24(7)
H(4)	$0.54(7)$	-2.21 (7)	8.05(6)
$\mathrm{H}(7)$	$2 \cdot 40$ (6)	$-0.98(6)$	8.60(6)
H(8)	$4 \cdot 33(8)$	0.37(7)	9.06(7)
$\mathrm{H}(9)$	$4 \cdot 64(7)$	1.91(6)	7-33(7)
$\mathrm{H}(10)$	$2.83(6)$	$2 \cdot 25(6)$	$5 \cdot 35(6)$
$\mathrm{H}(12)$	-2.79 (6)	1.46(6)	5.06(6)
$\mathrm{H}(13)$	$-3.86(6)$	3.05(7)	6.01 (7)
$\mathrm{H}(14)$	$-2.67(7)$	5.06(7)	$6.67(7)$
$\mathrm{H}(15)$	$-0.46(8)$	$5 \cdot 41$ (7)	6.42(7)
$\mathrm{H}(16)$	0.54(7)	3.87(6)	$5 \cdot 39(6)$

Table 3
Final anisotropic temperature factors $\left(10^{4} \times U_{i j}\right)$ for I and $\mathrm{Cr},\left(10^{3} \times U_{i j}\right)$ for N and C ,* and isotropic temperature factors ($10^{3} \times U_{\text {iso }}$) for hydrogen

	U_{11}	U_{22}	U_{33}	$2 U_{12}$	$2 U_{23}$	$2 U_{13}$
I	382(3)	788(5)	502(3)	$0(0)$	0 (0)	7(5)
Cr	260(5)	$292(6)$	212(5)	0 (0)	0 (0)	49(7)
N(1)	40(2)	29(2)	38(2)	3(4)	$3(3)$	19(3)
$\mathrm{N}(2)$	32(2)	38(3)	29(2)	$-1(3)$	$-2(3)$	3(3)
$\mathrm{C}(1)$	42(3)	40(4)	53(3)	-26(4)	2(4)	21(5)
$\mathrm{C}(2)$	48(4)	58(4)	60(3)	-18(5)	18(5)	17(6)
$\mathrm{C}(3)$	$61(4)$	$57(4)$	64(4)	$-11(6)$	$35(5)$	42(6)
$\mathrm{C}(4)$	$51(3)$	46(4)	48(3)	4(5)	19(5)	33(5)
C(5)	38(2)	28(3)	$35(3)$	$6(3)$	0 (3)	22(4)
C(6)	41(3)	$29(3)$	26(3)	$4(3)$	$1(3)$	21(4)
C(7)	46(3)	46(3)	39(3)	17(4)	$9(4)$	-3(5)
$\mathrm{C}(8)$	$53(3)$	60(4)	$37(3)$	7 (6)	2(5)	$-16(5)$
$\mathrm{C}(9)$	42(3)	70(4)	45(3)	$-12(5)$	-4(5)	-14(5)
$\mathrm{C}(10)$	$46(3)$	43 (3)	36(3)	-10 (4)	0 (4)	5(4)
C(11)	38(2)	$34(3)$	25(2)	$-4(5)$	0 (4)	22(3)
C (12)	44(3)	45(3)	37(3)	8(4)	6(4)	$27(4)$
C(13)	52(3)	51 (4)	45(3)	30(5)	$5(4)$	39(5)
C (14)	95(5)	37(4)	53(4)	$44(6)$	8(5)	61(7)
$\mathrm{C}(15)$	101(5)	39(4)	38(3)	-2(6)	16(4)	$33(6)$
C(16)	$56(3)$	42(3)	42(3)	--24(5)	$-9(4)$	15(5)
$U_{\text {iso }}$				$U_{\text {iso }}$		
	$\mathrm{H}(1)$	45			$\mathrm{H}(9)$	
	H(2)	55			$\mathrm{H}(10) \quad 4$	
	$\mathrm{H}(3)$	61			$\mathrm{H}(12) \quad 4$	
	H(4)	49			$\mathrm{H}(13) \quad 4$	
	H(7)	44			$\mathrm{H}(14)$	
	H(8)	50			$\mathrm{H}(15) \quad 5$	
					$\mathrm{H}(16)$	

* In the form $\exp -2 \pi^{2}\left(h^{2} a^{* 2} U_{11}+k^{2} b^{* 2} U_{22}+l^{2} c^{* 2} U_{33}+\right.$ $\left.2 h k a^{*} b^{*} U_{12}+2 k l b^{*} c^{*} U_{23}+2 h l a^{*} c^{*} U_{13}\right)$.

[^1]Table 4
Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with standard deviations. Mean values only are given when a hydrogen atom is involved

(a) Chromium octahedron		(c) Bipyridyl group	
$\mathrm{Cr}-\mathrm{N}(1)$	2.147(4)	$\mathrm{N}(1)-\mathrm{C}(1)$	1-328(6)
$\mathrm{Cr}-\mathrm{N}(2)$	2.087(4)	$\mathrm{N}(1)-\mathrm{C}(5)$	$1.367(5)$
		$\stackrel{N}{N(2)-C(6)}$	$1.358(5)$
		$\mathrm{N}(2)-\mathrm{C}(10)$	1.340(5)
$\mathrm{Cr}-\mathrm{C}(11)$	2.087(4)	Mean $\mathrm{N} \cdots \mathrm{C}$	1.348
$\mathrm{N}(1)-\mathrm{Cr}-\mathrm{N}(2)$	77.68(13)		
$\mathrm{N}(1)-\mathrm{Cr}-\mathrm{N}\left(1^{\prime}\right)$	83.93(13)	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.394(7)$
$\mathrm{N}(1)-\mathrm{Cr}-\mathrm{N}\left(2^{\prime}\right)$	94.29(13)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.389(8)
$\mathrm{N}(1)-\mathrm{Cr}-\mathrm{C}(11)$	91.38(14)	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.376(8)$
$\mathrm{N}(2)-\mathrm{Cr}-\mathrm{C}(11)$	89.67(14)	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.389(6)$
$\mathrm{N}(2)-\mathrm{Cr}-\mathrm{C}\left(11^{\prime}\right)$	97.64(14)	$\mathrm{C}(6)-\mathrm{C}(7)$	$1 \cdot 395(7)$
$\mathrm{C}(11)-\mathrm{Cr}-\mathrm{C}\left(11^{\prime}\right)$	93.72(15)	$\mathrm{C}^{\mathrm{C}} 7 \mathrm{7}^{(8)-\mathrm{C}(8)}$	$1.378(7)$ $1.374(8)$ 1
		$\mathrm{C}^{\mathrm{C}}(8)-\mathrm{C}(9)$	1.374(8)
$\xrightarrow[\mathrm{N}(2)-\mathrm{Cr}-\mathrm{N}\left(2^{\prime}\right)]{\mathrm{N}(1)-\mathrm{Cr}-\mathrm{C}\left(11^{\prime}\right)}$	173.07(14)	$\mathrm{C}(9)-\mathrm{C}(10)$	1.378(7)
	169.32(13)	Mean C ${ }^{\circ} \mathrm{C}$	1.384
(b) Phenyl group			
$\mathrm{C}(11)-\mathrm{C}(12)$	1.415 (6)	${ }_{\text {Mean }} \mathrm{C}$	1.00
$\mathrm{C}(12)-\mathrm{C}(13)$	1-401(7)		
$\mathrm{C}(13)-\mathrm{C}(14)$	1.357(8)	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$122.68(44)$
$\mathrm{C}(14)-\mathrm{C}(15)$	1.373(8)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	118.27 (49)
$\mathrm{C}(15)-\mathrm{C}(16)$	1-402(7)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$119.68(51)$
$\mathrm{C}(16)-\mathrm{C}(11)$	1-394(6)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$119.15(46)$
Mean C \cdots	1.390	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)$	121.38(38)
		$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(2)$	118.84(37)
		$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	121.14(40)
C-H	0.93	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	120.09(45)
		$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	118.44(48)
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(12)$	115-16(38)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	119.13(48)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	121-97(41)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(2)$	123.54(42)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$120 \cdot 38(47)$	$\mathrm{C}(10)-\mathrm{N}(2)-\mathrm{C}(6)$	$117.65(36)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	120.02(53)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	123.94(39)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$119.88(52)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	122.65(40)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(11)$	122-57(46)	$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	114.67(35)
Mean $\mathrm{C} \cdots \mathrm{C} \cdots \mathrm{C} 120.0$		$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	$116 \cdot 19(36)$
		$\mathrm{Cr}-\mathrm{N}(1)-\mathrm{C}(5)$	114.93(26)
		$\mathrm{Cr}-\mathrm{N}(2)-\mathrm{C}(6)$	$116.38(27)$
$\begin{aligned} & \mathrm{Cr}-\mathrm{C}(11)-\mathrm{C}(12) \\ & \mathrm{Cr}-\mathrm{C}(11)-\mathrm{C}(16) \end{aligned}$	$121 \cdot 16(29)$ $123.68(31)$	$\mathrm{Cr}-\mathrm{N}(1)-\mathrm{C}(1)$	126-12(30)
$\mathrm{Cr}-\mathrm{C}(11)-\mathrm{C}(16)$	123.68(31)	$\mathrm{Cr}-\mathrm{N}(2)-\mathrm{C}(10)$	125.94(28)
Mean C \cdots - -H	119	Mean C-C-H, $\mathrm{N}-\mathrm{C}$	- 119

The $\mathrm{Cr}-\mathrm{C}$ bond length of $2.087(4)$ in (III) is not significantly different from that observed in (I) (Table 5) and so we conclude that it is unaffected by substitution in the aromatic ring. It seems premature at this stage to assign a bond order to this bond on the basis of its length but we may note that it is not a long one since it is no different from the shorter $\mathrm{Cr}-\mathrm{N}$ bond length of $2.087(3) \AA$. For comparison $\mathrm{Cr}^{0}-\mathrm{C}$ (carbene) bond lengths, which are also sensitive to environment, vary from $2 \cdot 00-2 \cdot 16 \AA^{8}$ while $\mathrm{Cr}^{\mathrm{II}}-\mathrm{C}(\mathrm{Me})$ bond lengths, in non-octahedral complexes, of $2 \cdot 20$ and $2 \cdot 24 \AA$ have been reported. ${ }^{9}$

The shorter $\mathrm{Cr}-\mathrm{N}$ bond length of $2 \cdot 087(3) \AA$ is close to $\mathrm{Cr}-\mathrm{N}$ lengths found in $\mathrm{Cr}^{\mathrm{III}}(\mathrm{en})_{3}\left[2 \cdot 081(5){ }^{10}\right.$ and $2 \cdot 075(3)$ $\left.\AA{ }^{11}\right]$, and to that observed ${ }^{12}$ in $\mathrm{Cr}^{0}(\text { bipy })_{3}[2 \cdot 08(3) \AA]$. The other $\mathrm{Cr}^{-} \mathrm{N}$ bond length, $2 \cdot 147(3) \AA$, is a little longer
${ }^{8}$ P. E. Baikie, E. O. Fischer, and O. S. Mills, Chem. Comm., 1967, 1199; O. S. Mills and A. D. Redhouse, J. Chem. Soc. (A), 1968, 642 ; J. A. Connor and O. S. Mills, ibid., 1969. 334; G. Huttner, S. Schelle, and O. S. Mills, Angew. Chem., 1969, 81, 536.
${ }^{9}$ J. Krausse, G. Marx, and G. Schödl, J. Organometallic Chem., 1970, 21, 159; J. Krausse and G. Schödl, ibid., 1971, 27, 59.
than normally observed values but less than that found ${ }^{13}$ in $\mathrm{Cr}^{0}(\mathrm{CO})_{3}($ dien $), 2 \cdot 185(4) \AA$.

The angular deviations of the bond angles at the chromium atom from the ideal octahedral values are considerable. Thus the root-mean-square deviation

Figure 1 The cation of (III) projected down [b], showing the atom labelling

Figure 2 Labelling of molecular axes for d orbitals

Table 5

$\mathrm{Cr}-\mathrm{X}$ bond lengths in (I)-(III), assuming that the small deviations from symmetry $2\left(C_{2}\right)$ in (I) and (II) may be ignored

Compound	$\mathrm{Cr}-\mathrm{C}($ trans to Y$)$	$\mathrm{Cr}-\mathrm{Y}($ trans to C$)$	$\mathrm{Cr}-\mathrm{Y}($ trans to Y$)$
(I), $\mathrm{Y}=\mathrm{N}$	$2 \cdot 101(12)$	$2 \cdot 156(10)$	$2 \cdot 071(10)$
(II), $\mathrm{Y}=\mathrm{O}$	$2 \cdot 014(10)$	$2 \cdot 214(10)$	$2 \cdot 045(8)$
(III), $\mathrm{Y}=\mathrm{N}$	$2 \cdot 087(4)$	$2 \cdot 147(3)$	$2 \cdot 087(3)$

from 90° of the 12 bond angles close to 90° at the chromium atom is 6.37°; the minimum deviation is 0.33° and the maximum $12 \cdot 32^{\circ}$.

The torsion angles $\left({ }^{\circ}\right)$ round the bonds of the chelate five-membered ring are: $-2 \cdot 2(2) \quad \mathrm{N}(1)-\mathrm{C}(5), \quad 4 \cdot 1(2)$ $\mathrm{C}(5)-\mathrm{C}(6), \quad-4 \cdot 0(2) \quad \mathrm{C}(6)-\mathrm{N}(2), \quad 2 \cdot 1(3) \quad \mathrm{N}(2)-\mathrm{Cr}, \quad$ and $0 \cdot 2(2)^{\circ} \mathrm{Cr}-\mathrm{N}(1)$. In this ring therefore only the four atoms $\mathrm{N}(2), \mathrm{Cr}, \mathrm{N}(1)$, and $\mathrm{C}(5)$ are coplanar while $\mathrm{C}(6)$ is displaced from this plane.

The bond lengths and angles in the bipyridyl group are
${ }^{10}$ K. N. Raymond and J. A. Ibers, Inorg. Chem., 1968, 7, 2333.
${ }_{11}$ K. N. Raymond, P. W. R. Corfield, and J. A. Ibers, Inorg. Chem., 1968, 7, 1362.

12 G. Albrecht, Z. Chem., 1963, 3, 182.
${ }^{13}$ F. A. Cotton and D. C. Richardson, Inorg. Chem., 1966, 5, 1851.
close to the values measured in $2,2^{\prime}$-bipyridyl ${ }^{14}$ itself which, however, adopts the anti-conformation in the solid state. Both pyridine rings are planar (maximum deviation for the heavy atoms $0.006 \AA$) but the two planes make an angle of $5 \cdot 10^{\circ}$ with one another. The chromium atom lies $0.12 \AA$ from the plane of the ring containing $\mathrm{N}(1)$ and $0.06 \AA$ from that of the ring containing $\mathrm{N}(2)$.

The carbon atoms of the phenyl group are also coplanar, maximum deviation $0.007 \AA$, and the chromium atom is displaced by $0.07 \AA$ from this plane. The $\mathrm{C}-{ }^{-} \mathrm{C}$ bond lengths in this ring have a mean value of $1.390 \AA$ but the lengths to the para-carbon atom, mean $1.365 \AA$, are rather less than the other four, mean $1 \cdot 403 \AA$. At least a part of this difference may arise from neglect of thermal motion effects. The ring angle of $115 \cdot 2^{\circ}$ at $\mathrm{C}(11)$, the carbon atom bonded to chromium, is considerably less
${ }^{14}$ L. L. Merritt and E. D. Schroeder, Acta Cryst., 1955, 9, 801.
15 For a review see M. Churchill, Perspectives in Structural Chem., 1970, 3, 91.
than the normal benzenoid value of 120° and this contraction is also observed in many other metal-aryl compounds. ${ }^{15}$

Since the two phenyl groups are related by a two-fold symmetry axis it can be calculated ${ }^{\mathbf{1 6}}$ that the $\mathrm{C}(16)^{-}$ $\mathrm{C}(11)-\mathrm{Cr}-\mathrm{C}\left(11^{\prime}\right)$ torsion angle must exceed $31 \cdot 5^{\circ}$ if $H(16) \cdots H\left(16^{\prime}\right)$ is to exceed $2 \cdot 4 \AA$. As the torsion angle exceeds this value, the $\mathrm{H}(12) \cdots \mathrm{H}\left(10^{\prime}\right)$ contact decreases rapidly; the observed angle is $37 \cdot 1^{\circ}$ with $\mathrm{H}(16) \cdots \mathrm{H}\left(16^{\prime}\right) 2 \cdot 7 \AA$ and $\mathrm{H}(12) \cdots \mathrm{H}\left(10^{\prime}\right) 2 \cdot 4 \AA$.

The shortest contacts involving the iodide ion are to hydrogen, $3.05 \AA$, and to carbon, $3.79 \AA$. The van der Waals' contacts show no unusual features.

We thank Drs. S. and G. Olivé for measurement of $\mu_{\text {eff }}$ for compound (III).
[2/561 Received, 9th March, 1972]
${ }^{16}$ J. J. Daly, F. Sanz, R. P. A. Sneeden, and H. H. Zeiss, J.C.S. Perkin II, 1972, 1614.

[^0]: ${ }^{1}$ J. J. Daly and F. Sanz, J.C.S. Dalton, 1972, 2584.
 ${ }^{2}$ J. J. Daly and R. P. A. Sneeden, J. Chem. Soc. (A), 1967,

[^1]: ${ }^{7}$ P. Coggon, A. T. McPhail, F. E. Mabbs, A. Richards, and A. S. Thornley, J. Chem. Soc. (A), 1970, 3296 .

