Crystal and Molecular Structure of Octacarbonyl- μ-[1,2-bis(dimethyl-arsino)-3,3,4,4,-tetrafluorocyclobutene]-dimanganese (Mn-Mn)

By Lilian Y. Y. Chan and F. W. B. Einstein,* Department of Chemistry, Simon Fraser University, Burnaby 2, British Columbia, Canada

Crystals of the title compound are orthorhombic, space group Pna2 1_{1}, with $Z=4$ in a unit cell of dimensions: $a=17.479(3), b=10.273(3)$, and $c=12.713(3) \AA$, with one molecule in the asymmetric unit. The structure was determined from three-dimensional X-ray data collected by counter methods and refined by full-matrix leastsquares techniques to $R 3 \cdot 5 \%$ for 1439 observed reflexions. Each manganese atom is bonded to an arsenic atom, four carbonyl groups, and a manganese atom [Mn-Mn2.971(2), mean Mn-As 2•404(3) A]. The molecule is twisted about the $\mathrm{Mn}-\mathrm{Mn}$ bond such that the co-ordinated groups normal to the bond vector are staggered.

The title compound has been prepared ${ }^{1}$ by the reaction of 1,2 -bis(dimethylarsino)tetrafluorocyclobutene, $\left(\mathrm{Me}_{2} \mathrm{As}\right) \mathrm{C}: \mathrm{C}\left(\mathrm{AsMe}_{2}\right) \cdot \mathrm{CF}_{2} \cdot \mathrm{CF}_{2},\left(\mathrm{f}_{4}\right.$ fars $)$, with decacarbonyldimanganese. From ${ }^{19} \mathrm{~F}$ n.m.r. studies of the compound it was predicted to have a $\mathrm{Mn}-\mathrm{Mn}$ bond and that the f_{4} fars ligand would act as a bridge between the two manganese atoms. Reaction of this compound with iodine at room temperature produced $\left(\mathrm{f}_{4} \mathrm{fars}\right)\left[\mathrm{Mn}(\mathrm{CO})_{4} \mathrm{I}\right]_{2}{ }^{2}$ with rupture of the metal-metal bond. Here we report the result of a detailed structure determination of $\left(\mathrm{f}_{4} \mathrm{fars}\right)\left[\mathrm{Mn}(\mathrm{CO})_{4}\right]_{2}$ in which the effect of displacement of two carbonyl groups by the ligand is examined and the structure is compared with that found for $\mathrm{Mn}_{2} \mathrm{CO}_{10}$. Preliminary results have already been published. ${ }^{2}$

EXPERIMENTAL

A single, orange-coloured crystal of the compound was used in preliminary photographic investigation. Weissenberg ($0 k l, 1 k l$ zones) and precession ($h 0 l, h k 0$ zones) photographs indicated the systematic absences $0 k l k+l=2 n+$ 1 , and $h 0 l h=2 n+1$, which were consistent with the orthorhombic space groups Pna2 1_{1} and Pnam. A near cubeshaped crystal of edge $c a .0 .5 \mathrm{~mm}$ was very slowly ground to an approximate sphere (diameter 0.36 mm) and then mounted in a general orientation for data collection.
Crystal Data.- $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{As}_{2} \mathrm{~F}_{4} \mathrm{Mn}_{2} \mathrm{O}_{8}, \quad M=668$, Orthorhombic, $a=17 \cdot 479(3), \quad b=10 \cdot 273(3), \quad c=12 \cdot 713(3) \AA$, $U=2282.7 \AA^{3}, D_{\mathrm{m}}=1.969$ (Berman density balance, with alcohol as immersion liquid), $Z=4, D_{\mathrm{c}}=1 \cdot 945, F(000)=$ 1688. Mo- K_{α} radiation, $\lambda=0.7107 \AA ; \mu\left(\mathrm{Mo}-K_{\alpha}\right)=23.7$ cm^{-1}. Space group Pna 2_{1}.
Cell dimensions and intensity data were measured on a computer-controlled Picker four-circle diffractometer by use of the Vanderbilt system. Cell dimensions were determined by a least-squares method using 15 general re-

* The R factor ratio was $1.086(1,1439,0.01)$ as compared to the listed value of $1.007(1,480,0.01)$ according to Hamilton's criterion. ${ }^{3}$
${ }^{1}$ J. P. Crow, W. R. Cullen, and F. L. Hou, personal communication.
flexions whose positions were accurately measured with Mo- $K_{\alpha_{1}}$ radiation ($0.70926 \AA$) with a take-off angle of 0.7°. A unique set of reflexion data was collected by use of niobium-filtered Mo- K_{α} radiation and a take-off angle of 4.3° with a symmetric $\theta-2 \theta$ scan at $2^{\circ} \min ^{-1}$ of 1.5° width in 2θ (extended to cover the $\alpha_{1}-\alpha_{1}$ splitting). Data for an inner sphere of reflexions ($2 \theta<30^{\circ}$) were collected with background counts of 10 s at each scan limit; this period was increased to 20 s for the outer ranged data ($30^{\circ}<2 \theta<$ 45°). Three standard reflexions were measured every 4 h (or less) and showed a fluctuation of $\pm 2 \cdot 3 \%$ over the entire data collection. Of the 1580 intensities recorded, 1439 were $>2 \cdot 0 \sigma$ and were considered observed (σ was taken as $\sqrt{ } N$ where N is the scan count plus the normalized total of the background counts). Lorentz and polarization factors were applied to give structure-factor moduli.

Structure Determination.-Inspection of the threedimensional Patterson function yielded two arsenic and two manganese atomic positions in the space group $P_{n a 2_{1}}$. Two cycles of full-matrix least-squares with refinement of scale and atomic parameters gave $R 0 \cdot 20$. An electrondensity synthesis revealed all the remaining non-hydrogen atom positions and R was reduced to $0 \cdot 157$. Further least-squares refinement of co-ordinate and isotropic temperature factors for all atoms lowered R to 0.065 . An electron-density difference map showed anisotropic motion about the two arsenic atoms as the outstanding feature and refinement including these new variables led to $R 0.055$. A subsequent electron-density difference map revealed the positions of all twelve hydrogen atom of the methyl groups and also indicated anisotropic thermal motion about the manganese, fluorine, and oxygen atoms. Inclusion of the hydrogen atoms and refinement of all other co-ordinate and thermal motion parameters reduced R to 0.038 .

At this stage, the other enantiomorph (with z changed to $-z$) was considered. The R factor improved to 0.035 with an overall increase in consistency among the As-C bond lengths. The improvement was significant * showing that
${ }^{2}$ J. P. Crow, W. R. Cullen, F. L. Hou, L. Y. Y. Chan, and F. W. B. Einstein, Chem. Comm., 1971, 1229.
${ }^{3}$ W. C. Hamilton, 'Statistics in Physical Science,' Ronald Press, New York, 1964.

TAble 1
Positional and thermal parameters

Atom	x	y	z
$\mathrm{As}(1)$	0.3109(1)	0.3287(1)	$0 \cdot 7500$
$\mathrm{As}(2)$	$0 \cdot 4472$ (1)	$0 \cdot 1461$ (1)	$0 \cdot 9574(1)$
$\operatorname{Mn}(1)$	$0 \cdot 2568(1)$	$0 \cdot 1160(2)$	$0 \cdot 7753(2)$
$\operatorname{Mn}(2)$	$0 \cdot 3994$ (1)	-0.0182(1)	$0 \cdot 8417(2)$
F(1)	$0 \cdot 3720$ (5)	$0 \cdot 6069$ (7)	$0 \cdot 9118(8)$
F(2)	$0 \cdot 4590$ (5)	$0 \cdot 5767(7)$	$0 \cdot 7918(8)$
$\mathrm{F}(3)$	$0 \cdot 5493$ (5)	$0 \cdot 4584$ (8)	$0 \cdot 9338(9)$
$\mathrm{F}(4)$	$0 \cdot 4621$ (6)	$0 \cdot 4838$ (8)	1-0528(7)
$\mathrm{O}(1)$	$0 \cdot 1039(5)$	$0 \cdot 2143(11)$	$0 \cdot 7203(9)$
$\mathrm{O}(2)$	$0 \cdot 2403$ (6)	$0 \cdot 1783(10)$	1-0027(7)
$\mathrm{O}(3)$	$0 \cdot 1840$ (6)	-0.1402(10)	0.8086(11)
$\mathrm{O}(4)$	$0 \cdot 2957$ (6)	$0.0493(11)$	$0.5544(8)$
$\mathrm{O}(5)$	0.5367 (6)	-0.1729(10)	$0 \cdot 8869$ (9)
$\mathrm{O}(6)$	$0.3121(6)$	-0.1333(9)	1-0202(8)
$\mathrm{O}(7)$	$0 \cdot 3452(6)$	-0.2245(8)	$0 \cdot 6995$ (8)
$\mathrm{O}(8)$	$0 \cdot 4672(5)$	$0 \cdot 1188(8)$	$0 \cdot 6592$ (8)
C(1)	$0 \cdot 1649$ (7)	$0 \cdot 1792(13)$	0.7401 (12)
C(2)	$0 \cdot 2498(7)$	$0 \cdot 1521(11)$	$0.9153(9)$
C(3)	$0 \cdot 2140$ (7)	$-0.0405(13)$	$0.7977(11)$
C(4)	$0 \cdot 2825$ (7)	$0.0728(12)$	$0.6404(11)$
C(5)	$0 \cdot 4838(7)$	-0.1093(12)	0.8691 (10)
C(6)	$0 \cdot 3433$ (7)	$-0.0851(11)$	$0.9507(11)$
C(7)	$0 \cdot 3657(6)$	-0.1424(11)	$0.7555(10)$
C(8)	$0 \cdot 4379(6)$	$0 \cdot 0691(11)$	$0.7311(9)$
C(9)	$0 \cdot 2376(7)$	$0.4736(12)$	$0 \cdot 7704(9)$
C(10)	$0 \cdot 3600$ (8)	$0 \cdot 3812(14)$	$0 \cdot 6200(11)$
C(11)	$0.5577(7)$	$0 \cdot 1461(12)$	0.9710 (12)
C(12)	$0 \cdot 4151$ (8)	$0 \cdot 1570(13)$	1-1053(11)
C(13)	$0 \cdot 3881$ (6)	$0 \cdot 3859(10)$	0.8477(10)
C(14)	$0 \cdot 4334$ (6)	$0 \cdot 3249$ (12)	$0.9169(9)$
$\mathrm{C}(15)$	$0 \cdot 4216$ (7)	$0 \cdot 5180(14)$	0.8693(11)
C(16)	$0 \cdot 4736$ (8)	$0 \cdot 4501(14)$	$0.9500(13)$
$\mathrm{H}(11)$	0.275	0.515	0.750
$\mathrm{H}(12)$	0.221	$0 \cdot 436$	0.706
$\mathrm{H}(13)$	$0 \cdot 225$	$0 \cdot 450$	0.830
$\mathrm{H}(21)$	$0 \cdot 404$	$0 \cdot 342$	0.600
$\mathrm{H}(22)$	$0 \cdot 370$	$0 \cdot 485$	0.630
$\mathrm{H}(23)$	$0 \cdot 330$	$0 \cdot 345$	0.570
$\mathrm{H}(31)$	0.565	$0 \cdot 200$	1.019
$\mathrm{H}(32)$	0.565	$0 \cdot 047$	0.988
$\mathrm{H}(33)$	0.571	$0 \cdot 145$	0.570
$\mathrm{H}(41)$	$0 \cdot 361$	$0 \cdot 189$	1.084
$\mathrm{H}(42)$	0.422	0.076	$1 \cdot 113$
$\mathrm{H}(43)$	0.448	$0 \cdot 211$	$1 \cdot 138$

Anisotropic thermal parameters $\left(U \times 10^{4} \AA^{2}\right)$

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
$\mathrm{As}(1)$	$386(6)$	$342(5)$	$349(7)$	$23(5)$	$-40(6)$	$68(6)$
$\mathrm{As}(2)$	$378(6)$	$347(5)$	$310(6)$	$26(5)$	$-50(6)$	$21(6)$
$\mathrm{Mn}(1)$	$374(8)$	$429(9)$	$407(10)$	$-4(7)$	$-21(8)$	$-15(8)$
$\mathrm{Mn}(2)$	$483(9)$	$325(8)$	$389(9)$	$34(8)$	$10(8)$	$8(9)$
	U					
	$\times 10^{3}\left(\mathrm{~A}^{2}\right)$					
$\mathrm{F}(1)$	$116(7)$	$40(4)$	$137(9)$	$17(5)$	$-28(6)$	$-28(5)$
$\mathrm{F}(2)$	$117(7)$	$55(5)$	$118(8)$	$-30(5)$	$-13(6)$	$23(5)$
$\mathrm{F}(3)$	$67(5)$	$70(5)$	$152(9)$	$-9(5)$	$-31(6)$	$-9(5)$
$\mathrm{F}(4)$	$142(9)$	$69(6)$	$81(6)$	$-2(6)$	$-43(6)$	$-30(5)$
$\mathrm{O}(1)$	$52(6)$	$117(9)$	$101(9)$	$21(6)$	$-15(6)$	$-7(7)$
$\mathrm{O}(2)$	$87(7)$	$102(8)$	$41(5)$	$15(6)$	$13(5)$	$-4(5)$
$\mathrm{O}(3)$	$94(8)$	$71(7)$	$144(12)$	$-36(6)$	$20(8)$	$-3(7)$
$\mathrm{O}(4)$	$95(7)$	$117(8)$	$45(5)$	$28(7)$	$00(5)$	$-30(6)$
$\mathrm{O}(5)$	$75(7)$	$84(7)$	$96(8)$	$48(6)$	$-28(6)$	$-10(6)$
$\mathrm{O}(6)$	$91(7)$	$71(6)$	$71(6)$	$4(6)$	$29(6)$	$14(6)$
$\mathrm{O}(7)$	$113(8)$	$47(5)$	$63(6)$	$-7(5)$	$-16(6)$	$-8(5)$
$\mathrm{O}(8)$	$80(6)$	$62(6)$	$59(5)$	$-12(5)$	$17(5)$	$3(5)$

* Anisotropic temperature parameters. \dagger Standard errors for the isotropic thermal parameters of the C atoms are $0.3 \AA^{2}$. \ddagger Temperature factors for the hydrogen are $7 \cdot 25 \AA^{2}$.

[^0]this was the correct isomer. The weighting scheme used during the final stages of refinement was $w=1 / \sigma^{2}$ where $\sigma=\sqrt{ } 1.93$ for $27.3<F_{0} \leqslant 86 \cdot 3, \quad \sigma=(1.93)^{\frac{1}{2}} 27 \cdot 3 / F_{0}$ for $27.3 \geqslant F_{0}$, and $\sigma=\left(1.93 F_{0} / 86.3\right)^{\frac{1}{2}}$ for $86.3<F_{0}$. A final electron-density difference map showed no variations $> \pm 0.39 \mathrm{e}^{-3}\left(\sigma 0.20 \mathrm{e}^{-3}\right)$, the largest peak being 1.38 and $1.56 \AA$ away from $\mathrm{O}(8)$ and $\mathrm{H}(32)$, and largest trough 0.990 and $0.724 \AA$ from the $F(4)$ and $C(16)$ atoms.

In the calculation of structure factors, atomic scattering factors for hydrogen were taken from ref. 4, and for all other atoms from ref. 5. For As and Mn the Thomas-

TAble 2
Interatomic distances and angles
(a) Bonded distances (\AA)

$\mathrm{Mn}(1)-\mathrm{Mn}(2)$	2.971	$\mathrm{C}(13)-\mathrm{C}(14)$	$1 \cdot 34$
$\mathrm{Mn}(\mathrm{l})-\mathrm{As}(1)$	2.405*	$\mathrm{C}(13)-\mathrm{C}(15)$	1.50
$\mathrm{Mn}(2)-\mathrm{As}(2)$	2.392*	$\mathrm{C}(14)-\mathrm{C}(6)$	1.53
$\mathrm{Mn}(1)-\mathrm{C}(1)$	$1 \cdot 79$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1 \cdot 54$
$\mathrm{Mn}(1)-\mathrm{C}(2)$	1.79	$\mathrm{C}(15)-\mathrm{F}(1)$	1.37
$\mathrm{Mn}(1)-\mathrm{C}(3)$	1.83	$\mathrm{C}(15)-\mathrm{F}(2)$	$1 \cdot 33$
$\mathrm{Mn}(1)-\mathrm{C}(4)$	1.80	$\mathrm{C}(16)-\mathrm{F}(3)$	$1 \cdot 34$
$\mathrm{Mn}(2)-\mathrm{C}(5)$	1.79	$\mathrm{C}(16)-\mathrm{F}(4)$	$1 \cdot 37$
$\mathrm{Mn}(2)-\mathrm{C}(6)$	1.78	$\mathrm{C}(1)-\mathrm{O}(1)$	$1 \cdot 15$
$\mathrm{Mn}(2)-\mathrm{C}(7)$	1.83	$\mathrm{C}(2)-\mathrm{O}(2)$	$1 \cdot 15$
$\mathrm{Mn}(2)-\mathrm{C}(8)$	1.80	$\mathrm{C}(3)-\mathrm{O}(3)$	$1 \cdot 16$
$\mathrm{As}(1)-\mathrm{C}(9)$	1.98	$\mathrm{C}(4)-\mathrm{O}(4)$	$1 \cdot 14$
$\mathrm{As}(1)-\mathrm{C}(10)$	1.94	$\mathrm{C}(5)-\mathrm{O}(5)$	$1 \cdot 16$
$\mathrm{As}(1)-\mathrm{C}(13)$	1.93	$\mathrm{C}(6)-\mathrm{O}(6)$	$1 \cdot 15$
As(2)-C(11)	1.94	$\mathrm{C}(7)-\mathrm{O}(7)$	$1 \cdot 16$
$\mathrm{As}(2)-\mathrm{C}(12)$	1.96	$\mathrm{C}(8)-\mathrm{O}(8)$	$1 \cdot 16$
$\mathrm{As}(2)-\mathrm{C}(14)$	1.93	$0 \cdot 82 \leqslant \mathrm{C}-\mathrm{H} \leqslant 1.09$	

Standard errors in bond lengths are: $0.002 \mathrm{Mn}-\mathrm{Mn}, \mathrm{Mn}-\mathrm{As}$; $0.02 \AA \mathrm{Mn}-\mathrm{C}, \mathrm{As}-\mathrm{C}, \mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{F}$, and $\mathrm{C}-\mathrm{O}$.

* Corrected for thermal riding motion of the As on the Mn atoms. The uncorrected values are $2 \cdot 403$ and $2 \cdot 389 \AA$.
(b) Bond angles (${ }^{\circ}$)

$\mathrm{As}(1)-\mathrm{Mn}(1)-\mathrm{Mn}(2)$	$97 \cdot 44$	$\mathrm{As}(2)-\mathrm{Mn}(2)-\mathrm{Mn}(1)$	98.05
$\mathrm{As}(1)-\mathrm{Mn}(1)-\mathrm{C}(1)$	$89 \cdot 4$	$\mathrm{As}(2)-\mathrm{Mn}(2)-\mathrm{C}(5)$	$87 \cdot 8$
$\mathrm{As}(1)-\mathrm{Mn}(1)-\mathrm{C}(2)$	$88 \cdot 4$	$\mathrm{As}(2)-\mathrm{Mn}(2)-\mathrm{C}(6)$	$89 \cdot 2$
$\mathrm{As}(1)-\mathrm{Mn}(1)-\mathrm{C}(3)$	$177 \cdot 9$	$\mathrm{As}(2)-\mathrm{Mn}(2)-\mathrm{C}(7)$	$178 \cdot 9$
$\mathrm{As}(1)-\mathrm{Mn}(\mathrm{l})-\mathrm{C}(4)$	$90 \cdot 0$	$\mathrm{As}(2)-\mathrm{Mn}(2)-\mathrm{C}(8)$	89.9
$\mathrm{Mn}(2)-\mathrm{Mn}(1)-\mathrm{C}(1)$	171.6	$\operatorname{Mn}(1)-\mathrm{Mn}(2)-\mathrm{C}(5)$	$173 \cdot 8$
$\mathrm{Mn}(2)-\mathrm{Mn}(1)-\mathrm{C}(2)$	$84 \cdot 5$	$\mathrm{Mn}(1)-\mathrm{Mn}(2)-\mathrm{C}(6)$	86.5
$\mathrm{Mn}(2)-\mathrm{Mn}(1)-\mathrm{C}(3)$	$84 \cdot 7$	$\mathrm{Mn}(1)-\mathrm{Mn}(2)-\mathrm{C}(7)$	$83 \cdot 1$
$\mathrm{Mn}(2)-\mathrm{Mn}(1)-\mathrm{C}(4)$	$88 \cdot 3$	$\mathrm{Mn}(1)-\mathrm{Mn}(2)-\mathrm{C}(8)$	81.9
$\mathrm{C}(1)-\mathrm{Mn}(1)-\mathrm{C}(2)$	$96 \cdot 3$	$\mathrm{C}(5)-\mathrm{Mn}(2)-\mathrm{C}(6)$	95.6
$\mathrm{C}(1)-\mathrm{Mn}(1)-\mathrm{C}(3)$	89.5	$\mathrm{C}(5)-\mathrm{Mn}(2)-\mathrm{C}(7)$	$91 \cdot 0$
$\mathrm{C}(1)-\mathrm{Mn}(1)-\mathrm{C}(4)$	$94 \cdot 2$	$\mathrm{C}(5)-\mathrm{Mn}(2)-\mathrm{C}(8)$	$96 \cdot 1$
$\mathrm{C}(2)-\mathrm{Mn}(1)-\mathrm{C}(3)$	$90 \cdot 0$	$\mathrm{C}(6)-\mathrm{Mn}(2)-\mathrm{C}(7)$	$91 \cdot 1$
$\mathrm{C}(2)-\mathrm{Mn}(1)-\mathrm{C}(4)$	169.3	$\mathrm{C}(6)-\mathrm{Mn}(2)-\mathrm{C}(8)$	168.2
$\mathrm{C}(3)-\mathrm{Mn}(1)-\mathrm{C}(4)$	91.9	$\mathrm{C}(7)-\mathrm{Mn}(2)-\mathrm{C}(8)$	$90 \cdot 0$
$\operatorname{Mn}(1)-\operatorname{As}(1)-\mathrm{C}(9)$	114.3	$\operatorname{Mn}(2)-\mathrm{As}(2)-\mathrm{C}(11)$	113.7
$\mathrm{Mn}(1)-\mathrm{As}(1)-\mathrm{C}(10)$	122.8	$\mathrm{Mn}(2)-\mathrm{As}(2)-\mathrm{C}(12)$	101.5
$\mathrm{Mn}(1)-\mathrm{As}(1)-\mathrm{C}(13)$	117.8	$\mathrm{Mn}(2)-\mathrm{As}(2)-\mathrm{C}(14)$	$117 \cdot 8$
$\mathrm{C}(9)-\mathrm{As}(1)-\mathrm{C}(10)$	100.8	$\mathrm{C}(11)-\mathrm{As}(2)-\mathrm{C}(12)$	101.5
$\mathrm{C}(9)-\mathrm{As}(1)-\mathrm{C}(13)$	98.0	$\mathrm{C}(11)-\mathrm{As}(2)-\mathrm{C}(14)$	98.6
$\mathrm{C}(10)-\mathrm{As}(1)-\mathrm{C}(13)$	$98 \cdot 9$	$\mathrm{C}(12)-\mathrm{As}(2)-\mathrm{C}(14)$	99.6
$\mathrm{C}(13)-\mathrm{C}(15)-\mathrm{C}(16)$	$86 \cdot 1$	$\mathrm{C}(14)-\mathrm{C}(16)-\mathrm{C}(16)$	85.8
$\mathrm{F}(1)-\mathrm{C}(15)-\mathrm{F}(2)$	107.6	$\mathrm{F}(3)-\mathrm{C}(16)-\mathrm{F}(4)$	105.9
$\mathrm{F}(1)-\mathrm{C}(15)-\mathrm{C}(13)$	$115 \cdot 3$	$\mathrm{F}(3)-\mathrm{C}(16)-\mathrm{C}(14)$	$117 \cdot 8$
$\mathrm{F}(1)-\mathrm{C}(15)-\mathrm{C}(16)$	114.4	$\mathrm{F}(3)-\mathrm{C}(16)-\mathrm{C}(15)$	116.9
$\mathrm{F}(2)-\mathrm{C}(15)-\mathrm{C}(13)$	117.8	$\mathrm{F}(4)-\mathrm{C}(16)-\mathrm{C}(14)$	114.2
$\mathrm{F}(2)-\mathrm{C}(15)-\mathrm{C}(16)$	114.2	$\mathrm{F}(4)-\mathrm{C}(16)-\mathrm{C}(15)$	$115 \cdot 9$

Standard errors in angles are:
$\mathrm{As}-\mathrm{Mn}-\mathrm{Mn} 0.06$; $\mathrm{As}-\mathrm{Mn}-\mathrm{C}, \mathrm{Mn}-\mathrm{As}-\mathrm{C}$, and $\mathrm{Mn}-\mathrm{Mn}-\mathrm{C} 0.4$; $\mathrm{C}-\mathrm{As}-\mathrm{C} \quad 0.6 ; \quad \mathrm{C}-\mathrm{C}-\mathrm{C} \quad 1 \cdot 0 ; \quad \mathrm{F}-\mathrm{C}-\mathrm{C}<1 \cdot 3 ; \quad \mathrm{F}-\mathrm{C}-\mathrm{F} \leq 1 \cdot 2 ;$ $\mathrm{Mn}-\mathrm{C}-\mathrm{O} \leqslant \mathrm{l} \cdot 4$.

$\operatorname{Mn}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	$176 \cdot 2$	$\mathrm{Mn}(2)-\mathrm{C}(6)-\mathrm{O}(6)$	$175 \cdot 2$
$\operatorname{Mn}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	$175 \cdot 3$	$\mathrm{Mn}(2)-\mathrm{C}(7)-\mathrm{O}(7)$	$178 \cdot 6$
$\mathrm{Mn}(1)-\mathrm{C}(3)-\mathrm{O}(3)$	$176 \cdot 9$	$\mathrm{Mn}(2)-\mathrm{C}(8)-\mathrm{O}(8)$	$174 \cdot 8$
$\mathrm{Mn}(1)-\mathrm{C}(4)-\mathrm{O}(4)$	$176 \cdot 8$	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(16)$	$93 \cdot 3$
$\mathrm{Mn}(2)-\mathrm{C}(5)-\mathrm{O}(5)$	$177 \cdot 2$	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(15)$	$94 \cdot 2$

Table 2 (Continued)
(c) Selected intramolecular non-bond contacts (\AA)

$\mathrm{As}(1) \cdots \mathrm{As}(2)$	$4 \cdot 018$	$\mathrm{C}(1) \cdots \mathrm{C}(2)$
$\mathrm{As}(1) \cdots \mathrm{Mn}(2)$	$4 \cdot 057$	$\mathrm{C}(1) \cdots \mathrm{C}(1)$
$\mathrm{As}(1) \cdots \mathrm{C}(1)$	$2 \cdot 98$	$\mathrm{C}(1) \cdots \mathrm{C}(4)$
$\mathrm{As}(1) \cdots \mathrm{C}(2)$	$2 \cdot 98$	$\mathrm{C}(5) \cdots \mathrm{C}(6)$
$\mathrm{As}(1) \cdots \mathrm{C}(4)$	$3 \cdot 02$	$\mathrm{C}(5) \cdots \mathrm{C}(7)$
$\mathrm{As}(2) \cdots \mathrm{Mn}(1)$	$4 \cdot 065$	$\mathrm{C}(5) \cdots \mathrm{C}(8)$
$\mathrm{As}(2) \cdots \mathrm{C}(5)$	$2 \cdot 93$	
$\mathrm{As}(2) \cdots \mathrm{C}(6)$	$2 \cdot 99$	$\mathrm{C}(2) \cdots \mathrm{C}(6)$
$\mathrm{As}(2) \cdots \mathrm{C}(8)$	3.00	$\mathrm{C}(3) \cdots \mathrm{C}(6)$
$\mathrm{F}(1) \cdots \mathrm{F}(2)$	$2 \cdot 18$	$\mathrm{C}(3) \cdots \mathrm{C}(7)$
$\mathrm{F}(1) \cdots \mathrm{F}(3)$	$2 \cdot 70$	$\mathrm{C}(4) \cdots \mathrm{C}(7)$
$\mathrm{F}(1) \cdots \mathrm{F}(4)$	$3 \cdot 18$	
$\mathrm{~F}(2) \cdots \mathrm{C}(3)$	$2 \cdot 69$	
$\mathrm{~F}(2) \cdots \mathrm{F}(4)$	3.39	
$\mathrm{~F}(3) \cdots \mathrm{F}(4)$	$2 \cdot 16$	

(d) Intermolecular non-hydrogen contacts $(<3.3 \AA)$

$\mathrm{F}(3) \cdots \mathrm{C}\left(10^{\mathrm{I}}\right)$	$3 \cdot 29$	$\mathrm{O}(2) \cdots \mathrm{O}\left(7^{\text {III }}\right.$	3.08
$\mathrm{O}(1) \cdots \mathrm{O}\left(\mathrm{II}^{\mathrm{II}}\right)$	3.04	$\mathrm{O}(6) \cdots \mathrm{C}\left(0^{\mathrm{III}}\right)$	3.27

Roman numerals as superscripts refer to the following equivalent positions relative to the reference molecule at x, y, z :
$\begin{array}{ll}\text { I } 1-x, 1-y, \frac{1}{2}+z & \text { III } \frac{1}{2}-x, \frac{1}{2}+y, z-\frac{1}{2} \\ \text { II } x-\frac{1}{2}, \frac{1}{2}-y, z\end{array}$
Fermi-Dirac model with full allowance for anomalous scattering was used. The programs used are listed in ref. 6.
by the least-squares procedures, and are given in parentheses and include both correlation effects and celldimension errors, where appropriate. Table 3 summarizes

Table 3

Mean planes. Equations of planes are in the form $l x+$ $m y+n z+p=0$ and co-ordinates are referred to axes of the unit cell in \AA

	l	m	n	p	χ^{2}
Plane (1): C(13)-(16)	0.6849	-0.1465	-0.7137	-3.6240	0.27
Plane (2): As(1), As(2), C(1), C(3)	0.1840	-0.2326	-0.9550	-8.8911	0.66
Plane (3): As(1), As(2), C(13), C(14)	0.6988	-0.1074	-0.7072	-3.3079	0.02
Plane (4): As(1), As(2), C(13)-(16)	0.6923	-0.1215	-0.7113	-3.4301	11.04

the equations for relevant mean planes. Figure 1 shows a diagram of the molecular structure with the atom numbering system used, and Figure 2 shows the crystal packing. Final observed and calculated structure factors are listed

Figure 1 Molecular structure; the thermal ellipsoids (except those for the arsenic and manganese atoms which were given isotropic values) are drawn to scale and contain 8% of the electron density

Table 1 gives the final atomic parameters. Table 2 lists interatomic distances and angles. Errors were estimated

* For details see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20 (items less than 10 pp . are sent as full size copies).
in Supplementary Publication No. SUP 20537 (4 pp., 1 microfiche).*
${ }^{6}$ L. Y. Y. Chan and F. W. B. Einstein, Canad. J. Chem., 1971, 46, 487.

RESULTS AND DISCUSSION

The f_{4} fars $\mathrm{Mn}_{2}(\mathrm{CO})_{8}$ molecule consists of two manganese atoms each in a distorted octahedral environment comprised of four carbonyl groups, an arsenic atom, and a $\mathrm{Mn}-\mathrm{Mn}$ bond. The molecule has an approximate noncrystallographic two-fold axis of symmetry, which passes through the mid-points of the $\mathrm{Mn}-\mathrm{Mn}$ and As \cdots As vectors. The structure is therefore similar to that found ${ }^{7}$ for $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$ with an arsenic atom replacing a carbonyl group on each manganese atom. The octahedra are almost perfectly staggered even though the ligand bridges the $\mathrm{Mn}-\mathrm{Mn}$

Figure 2 Crystal structure viewed down the c axis
bond. The $\mathrm{Mn}-\mathrm{Mn}$ bond in this case, however, is substantially longer $[2 \cdot 971(2)$ compared to $2 \cdot 923(3) \AA$ in $\left.\mathrm{Mn}_{2}(\mathrm{CO})_{10}\right]$, although in both cases the $\mathrm{Mn}-\mathrm{Mn}$ bonds are longer than twice the covalent radius for Mn (1.39 $1.43 \AA){ }^{8} \quad$ The long $\mathrm{Mn}-\mathrm{Mn}$ bond in $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$ had been attributed to the negative charge localized on the metal atoms through co-ordination with the CO ligands ${ }^{7}$ and to an increase in the p and d character in the orbital directed along the metal-metal σ bond. ${ }^{9}$ The situation in the f_{4} fars derivative is similar but, in addition, the

[^1]arsenic atom is probably a better σ donor and a less efficient π acceptor to the Mn atom compared with a carbonyl group. Consequently, the increased repulsion between the Mn atoms owing to this increased effective negative charge may lead to the longer $\mathrm{Mn}-\mathrm{Mn}$ bond.

The two sets of carbon atoms, $\mathrm{C}(2)$-(4) and $\mathrm{C}(6)$-(8), are bent towards each other as seen from the angles (all are less than 90°) they make with the $\mathrm{Mn}-\mathrm{Mn}$ bond vector. As in $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$, the geometry results from the repulsive forces between these carbon atoms and the terminal carbon atoms $C(1)$ and $C(5)$ respectively, as suggested by their non-bonded contacts. The arsenic atoms, however, are bent outwards from the $\mathrm{Mn}-\mathrm{Mn}$ bond; the mean $\mathrm{Mn}-\mathrm{Mn}$-As angle being 97.7° and with a mean $\mathrm{Mn}-\mathrm{As}$ bond length of $2 \cdot 404 \AA$, a bite of $4 \cdot 017(3) \AA$ across the arsenic-arsenic atoms is maintained. This bite of the f_{4} fars ligand has been found to depend largely on the mode of ligation, for instance, it is $\mathbf{3 \cdot 2 3 3} \AA$ in ($\mathrm{f}_{4} \mathrm{fars}$) $\mathrm{Fe}_{2}(\mathrm{CO})_{6}{ }^{10}$ where the $\mathrm{f}_{4} \mathrm{fars}$ is a chelate, $4 \cdot 108 \AA$ in $\left(\mathrm{f}_{4} f \mathrm{fars}\right)_{2} \mathrm{Ru}_{3}(\mathrm{CO})_{8}{ }^{11}$ where each f_{4} fars ligand bridges two Ru atoms which are also linked by a metalmetal bond as in the present compound, and $4 \cdot 31 \AA$ in $\left(\mathrm{f}_{4} \mathrm{fars}\right) \mathrm{Mn}_{2}(\mathrm{CO})_{8} \mathrm{I}_{2}{ }^{2}$ where a metal-metal bond is not present and the f_{4} fars ligand provides the only linkage between the two $\mathrm{Mn}(\mathrm{CO})_{4} \mathrm{I}$ units.

The arsenic atoms and the cyclobutene ring are planar. All As-C bonds are essentially equivalent (within the limits of our errors). For the cyclobutene ring, the $\mathrm{C}(13)-\mathrm{C}(14)$ bond is $1 \cdot 34(2) \AA$, close to the expected value. ${ }^{12}$ The remaining $\mathrm{C}-\mathrm{C}$ bonds are significantly longer $[1.51-1.55(2) \AA$] and correspond to C-C singlebond values. The $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles in the ring differ from 90° in the direction imposed by the double bond. The $\mathrm{C}-\mathrm{F}$ bonds (mean $1.35 \AA$) compare well with those found in other compounds containing the f_{4} fars ligand.

The $\mathrm{Mn}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ bonds range from $1.77-1.86$ and $1 \cdot 14-1 \cdot 17 \AA$ respectively. Variations in these distances are not significant. All the $\mathrm{Mn}-\mathrm{C}-\mathrm{O}$ angles are linear.

The thermal motion of each of the oxygen atoms is mainly perpendicular to the appropriate corresponding bond vectors. The major thermal motion of the fluorine atoms is oblique to the $\mathrm{C}-\mathrm{F}$ bond vectors. While the major direction of motion of the arsenic atoms is approximately perpendicular to the $\mathrm{As}-\mathrm{Mn}$ bonds, that of the Mn atoms almost bisects the $\mathrm{As}^{-} \mathrm{Mn}^{-\mathrm{Mn}}$ angles. No correction for anisotropic motion was made to any bonds involving light atoms.

We thank Drs. Ahmed, Penfold, and G. Lenhert for supplying us with computer programs, Dr. Cullen for a sample of the compound, and the N.R.C.C. for financial support for this work and for a scholarship (to L. Y. Y. C.).
[2/1162 Received, May 22nd, 1972]
${ }^{10}$ F. W. B. Einstein and J. Trotter, J. Chcm. Soc. (A), 1967, 824.

11 P. J. Roberts and J. Trotter, J. Chem. Soc. (A), 1970, 3246.
${ }^{12}$ L. Pauling, 'The Nature of the Chemical Bond,' 3rd edn., Cornell University Press, Ithaca, New York, 1960.

[^0]: ${ }^{4}$ R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.
 ${ }^{5}$ ' International Tables for X-Ray Crystallography,' vol. 3, Kynoch Press, Birmingham, 1965, 3.3.

[^1]: ${ }^{7}$ L. F. Dahl and R. E. Rundle, Acta Cryst., 1963, 16, 419.
 ${ }^{8}$ F. A. Cotton and C. C. Richardson, Inorg. Chem., 1966, 5, 1851.
 ${ }^{9}$ M. J. Bennett and R. Mason, Nature, 1965, 205, 760.

