Crystal Structure of Bis(NN-diethyldithiocarbamato)mercury(II)

By P. C. Healy and A. H. White,* Department of Physical and Inorganic Chemistry, University of Western Australia, Nedlands 6009, Western Australia

The crystal structure of the title compound, has been determined by single crystal X-ray diffraction by conventional heavy-atom methods. The structure was refined by block-diagonal least-squares procedures to a final R of 0.12 for 810 visually estimated reflections. Crystals are monoclinic, $P 2_{1} / a, a=11.861(8) b=15 \cdot 02(1), c=$ 4.751 (4) $A, \beta=106 \cdot 30(6)^{\circ}, Z=2$. The centrosymmetric mercury atoms have three pairs of sulphur contacts in a highly distorted array, one pair close $[\mathrm{Hg}-\mathrm{S} 2 \cdot 397(6) \AA$], and the others arising out of a sharing of the second sulphur between adjacent mercury atoms [$\mathrm{Hg}-\mathrm{S} 2 \cdot 990(7), \mathrm{Hg}-\mathrm{S}^{\prime} 3 \cdot 307$ (7) A] yielding a helical quasi-polymeric array. The asymmetric co-ordination of the ligand is reflected in associated distortion of the CS_{2} geometry [$\mathrm{C}-\mathrm{S}$. $\left.1.69(2) 1 \cdot 76(2) A, S-C-S 120(1)^{\circ}\right]$. The remainder of the ligand geometry is normal.

During structural studies on transition metal dithiochelate complexes, the mercury(ii) complex of $N N$ diethyldithiocarbamate was examined and its unit cell found to be non-isomorphous with those of the zinc and cadmium derivatives. ${ }^{1,2}$ Moreover, the small size of the cell coupled with a density determination showed that in the observed symmetry of $P 2_{1} / a$, occupancy of a special position of symmetry $\overline{1}$ by the mercury atom was implied; the co-ordination geometries of tetrahedral or octahedral with bidentate ligands are specifically excluded in these circumstances. To assist in delineation of the molecular geometry a structure determination

[^0]was undertaken. During the course of this work the structure of the related complex $\left[\mathrm{Hg}\left\{\left(\mathrm{Pr}^{\mathrm{i} O}\right)_{2} \mathrm{PS}_{2}\right\}_{2}\right]$ was reported; ${ }^{3}$ in this structure the mercury does not have site-symmetry $\overline{1}$, having five near-mercury-neighbours and is implicitly different in its geometry from the present compound.

EXPERIMENTAL

The complex was prepared by the addition of a stoicheiometric quantity of the sodium salt of the ligand in water to an aqueous solution of mercury(II) nitrate, and was recrystallized from chloroform. Crystals suitable for X-ray work were grown as large, irregular, interlocked, yellow leaves by the slow evaporation of a chloroform solution. A block-shaped section $0.10 \times 0.05 \times 0.13 \mathrm{~mm}$ was cut and used for the subsequent structure determination; preliminary photography showed it to be a single crystal.

[^1]Non-integrated X-ray data were collected at room temperature by use of the multiple-film equi-inclination Weissenberg method with the crystal section mounted about a and c respectively for the layers $0-4 k l, h k 0-2$. There was no evidence for deterioration in the crystal during data collection, either from reflection quality or later agreement analyses. Nickel-filtered copper radiation was used throughout $\left[\lambda\left(K_{\alpha_{1}}\right)=1.5406, \lambda\left(K_{\alpha_{2}}\right)=1.5444\right.$, $\lambda\left(K_{\bar{\alpha}}\right)=1.5418 \AA$). ${ }^{4}$

The unit cell was calibrated by use of a Syntex $P \overline{1}$ automatic diffractometer. Angular orientation parameters were refined for 15 reflections and the unit cell fitted by a least-squares routine, the reflection being allocated a weight $w=\sin \theta$.

Crystal Data. $-\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{HgN}_{2} \mathrm{~S}_{4}, \quad M=496.6$, Monoclinic, $a=11.861(8), b=15.02(1), c=4.751(4) \AA, \beta=106 \cdot 30(6)^{\circ}$, $U=812 \AA^{3}, D_{\mathrm{m}}=1.98(\pm 0.03)$ (flotation, cyclohexanebromoform), $Z=2, \quad D_{\mathrm{c}}=2.04, \quad F(000)=456$. Space
on all data. A structure-factor calculation on the basis of mercury atoms positioned at $(0,0,0),\left(\frac{1}{2}, \frac{1}{2}, 0\right)$ with an arbitrary isotropic thermal parameter $B \mathbf{3 . 0} \AA^{2}$ gave $R 0.54$. The sulphur atoms were located in a subsequent threedimensional Fourier synthesis giving an initial $R 0.38$; anisotropic thermal motion of the mercury was pronounced to the extent that the co-ordinating atoms were indistinct. Accordingly, the mercury atom was refined by use of a block-diagonal ($3 \times 3,6 \times 6$) least-squares routine and with anisotropic thermal motion of the form $\exp \left[-\left(\beta_{11} h^{2}+\right.\right.$ $\left.\left.\beta_{22} k^{2}+\beta_{33} l^{2}+\beta_{12} h k+\beta_{13} h l+\beta_{23} k l\right)\right]$, the sulphur atom positional and isotropic thermal parameters being included in the refinement (a local program SFLS 1, 2 by A.I.M. Rae was used). The function $w\left(\left|F_{0}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$ was minimized during the refinement, with unit weights on each reflection and after six cycles R was $0 \cdot 18$. A Fourier synthesis at this stage located all remaining non-hydrogen atoms. With anisotropic thermal parameters for the

Figure 1 View of adjacent unit-cell pair contents projected down b; the lower half of the cell only is shown for clarity. The atom numbering scheme is given
group $P 2_{1} / a$ (No. 14, $\left.C_{2 h}^{5}\right)^{5}$ from systematic absences. $\mu\left(\mathrm{Cu}-K_{\alpha}\right)=229 \mathrm{~cm}^{-1}$, transmission coefficient range 0.116 0.375 .

The intensities of 810 independent, observed reflections were visually estimated by use of a graded intensity strip calibrated with a microdensitometer; only these non-zero reflections were included in the structure determination. The raw data were corrected for absorption ${ }^{6}$ and Lorentz and polarization factors and then scaled by internal correlation, all reflections being assigned unit weights. ${ }^{7}$

Structure Determination.-The number of formula units in the unit cell $(Z=2)$ implies that the asymmetric unit is one half of the formula unit and occupancy of a special position of symmetry $\overline{\mathbf{l}}$ by the mercury atom. This assumption was vindicated by the computation of an unmodified three-dimensional Patterson synthesis computed

[^2]sulphur atoms, the atomic positional and thermal parameters for all atoms were refined to a final $R 0 \cdot 122$. During this refinement, a weighting scheme of the form $w=$ ($\left.a+\left|F_{0}\right|+b\left|F_{0}\right|^{2}+c\left|F_{0}\right|^{3}\right)^{-1}$ was applied to the data, a, b, and c being redetermined as refinement proceeded. Final parameter shifts were $<0 \cdot 2 \sigma$. A final difference Fourier was substantially flat, the largest peak (of the order of 0.5 carbon atom) being at the mercury site. Final weighting scheme constants were $a=0.90, b=0.28$, $c=0.003$.

Scattering factors employed for neutral mercury were taken from ref. 8, corrected for anomalous dispersion ($\Delta f^{\prime}, \Delta f^{\prime \prime}$ according to ref. 9), and for sulphur, nitrogen, and carbon from ref. 8. The final set of observed and calculated structure factors are given in Supplementary Publication No. SUP 20552 (3 pp., 1 microfiche).* Final atomic fractional cell and thermal parameters are given in Table 1, with least-squares estimated standard deviations which should be treated circumspectly in view of the blockdiagonal refinement procedure. The unit-cell contents are
${ }^{7}$ W. C. Hamilton, J. S. Rollett, and R. A. Sparks, Acta Cryst., 1965, 18, 129.
${ }^{8}$ Ref. 4, p. 210 ff.
${ }^{9}$ Ref. 4, p. 213 ff.
depicted in Figure 1 which also gives the atomic nomenclature system. Interatomic distances and angles computed ${ }^{10}$ are given in Table $2(a)$; a least-squares plane calculated through the ligand is given in Table 2(b).

Table 1
Final atomic positional co-ordinates and thermal parameters of the asymmetric unit with block-diagonal least-squares estimated standard deviations in parentheses

Atom	x	y	z	B / \AA^{2}
Hg	0	0	0	$*$
$\mathrm{~S}(1)$	$0 \cdot 1979(5)$	$0 \cdot 0270(4)$	$0 \cdot 9911(13)$	$*$
$\mathrm{~S}(2)$	$0 \cdot 0200(5)$	$0 \cdot 1366(5)$	$0 \cdot 5583(15)$	$*$
N	$0 \cdot 247(2)$	$0 \cdot 162(1)$	$0 \cdot 679(4)$	$4 \cdot 3(4)$
$\mathrm{C}(1)$	$0 \cdot 162(2)$	$0 \cdot 114(1)$	$0 \cdot 734(4)$	$\mathbf{3 \cdot 2 (3)}$
$\mathrm{C}(2)$	$0 \cdot 237(2)$	$0 \cdot 230(2)$	$0 \cdot 462(5)$	$4 \cdot 4(5)$
$\mathrm{C}(3)$	$0 \cdot 379(2)$	$0 \cdot 145(2)$	$0 \cdot 860(5)$	$4 \cdot 9(5)$
$\mathrm{C}(4)$	$0 \cdot 222(3)$	$0 \cdot 320(2)$	$0 \cdot 595(6)$	$6 \cdot 9(7)$
$\mathrm{C}(5)$	$0 \cdot 435(3)$	$0 \cdot 081(3)$	$0 \cdot 713(8)$	$7 \cdot 5(7)$
	* Anisotropic thermal parameters $\left(\times 10^{4}\right)$			

Atom	β_{11}	β_{12}	β_{13}	β_{22}	β_{23}	β_{33}		
Hg	$54(1)$	$-21(1)$	$185(7)$	$52(1)$	$62(4)$	$730(9)$		
$\mathrm{S}(1)$	$\mathbf{4 2 (4)}$	$-4(5)$	$44(20) \dagger$	$59(2)$	$60(10) \dagger$	$480(20) \dagger$		
$\mathrm{S}(2)$	$50(4)$	$18(5)$	$200(20) \dagger$	$52(3)$	$40(10) \dagger$	$870(40) \dagger$		
			\dagger Rounded.					

Table 2

(a) Interatomic distances (\AA) and angles (${ }^{\circ}$), with block diagonal least-squares estimated standard deviations in parentheses (i) 'Bonded' parameters within the asymmetric unit, $\mathrm{Hg}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)$

$\mathrm{Hg}-\mathrm{S}(1)$	$2 \cdot 397(6)$	$\mathrm{C}(1)-\mathrm{N}$	$1 \cdot 32(3)$
$\mathrm{Hg}-\mathrm{S}(2)$	$2.990(7)$	$\mathrm{N}-\mathrm{C}(2)$	$1 \cdot 43(5)$
$\mathrm{S}(1)-\mathrm{C}(1)$	$1 \cdot 76(2)$	$\mathrm{N}-\mathrm{C}(3)$	$1 \cdot 57(3)$
$\mathrm{S}(2)-\mathrm{C}(1)$	$1 \cdot 69(2)$	$\mathrm{C}(2)-\mathrm{C}(4)$	$1.53(4)$
$\mathrm{S}(1) \cdots-\mathrm{S}(2)$	$2 \cdot 99(1)$	$\mathrm{C}(3)-\mathrm{C}(5)$	$1 \cdot 46(5)$
$\mathrm{S}(1)-\mathrm{Hg}-\mathrm{S}(2)$	$66 \cdot 4(2)$	$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{S}(2)$	$120(1)$
$\mathrm{Hg}(1)-\mathrm{C}(1)$	$95 \cdot 1(7)$	$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{N}$	$119(1)$
$\mathrm{Hg}-\mathrm{S}(2)-\mathrm{C}(1)$	$77.5(7)$	$\mathrm{S}(2)-\mathrm{C}(1)-\mathrm{N}$	$121(1)$
$\mathrm{N}-\mathrm{C}(2)-\mathrm{C}(4)$	$109(2)$	$\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(2)$	$127(2)$
$\mathrm{N}-\mathrm{C}(3)-\mathrm{C}(5)$	$111(2)$	$\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(3)$	$121(2)$
		$\mathrm{C}(2)-\mathrm{N}-\mathrm{C}(4)$	$112(2)$

(ii) ' Non-bonded ' distances ($<3.5 \AA$) and angles (selected) $\begin{array}{lllll}\mathrm{HgI} \cdots \mathrm{S}(2) & 3 \cdot 307(7) & \mathrm{S}(1) \cdots \mathrm{S}(2) & 2 \cdot 99(1)\end{array}$ $\mathrm{S}(2) \cdots \mathrm{Hg} \cdots \mathrm{S}(2)^{\mathrm{I}} \quad 97 \cdot 8(2)$
The Roman numeral I denotes the transformation: $(x, y, 1+z)$ (see Figure 2).
(b) Equation of the least-squares plane through the ligand expressed in orthogonal co-ordinates: $X=a x+c z \cos \beta$, $Y=b y, Z=c z \sin \beta$. Deviations (\AA) of atoms from the plane are given
Plane: $\mathrm{S}(1), \mathrm{S}(2), \mathrm{N}(1), \mathrm{C}(1)-(3)$
Equation: $-0.268 X+0.659 Y+0.703 Z=3.230$
Deviations: $\mathrm{Hg} 0.33, \mathrm{~S}(1),-0.06, \mathrm{~S}(2) 0.06, \mathrm{C}(1) 0.00, \mathrm{~N}(1)$ $0.00, \mathrm{C}(2)-0.07, \mathrm{C}(3) 0.07, \mathrm{C}(4) 1 \cdot 35, \mathrm{C}(5)-1 \cdot 27$

Computation was carried out on a DEC PDP 10 at the University of Western Australia.

[^3]
discussion

The basis of the structure is the sequence of linear arrays of mercury atoms, spaced by the distance $c=$ $4.75 \AA$, at the positions $(0,0, n),\left(\frac{1}{2}, \frac{1}{2}, n\right), n$ integral. Each mercury atom is surrounded by an array of four sulphur atoms, necessarily coplanar with it, from a pair of centrosymmetrically related dithiocarbamate ligands. A dominant tendency for utilization of linear $s p$ hybrid bonding in this complex is evidenced by the fact that one pair of sulphur atoms, $S(1)$, is at a markedly shorter distance $[2 \cdot 397(6) \AA]$ than the other, $S(2)[2 \cdot 990(7) \AA]$. The ligand is not coplanar with the mercury atom [Table $2(b)] . \quad S(2)$ is bridged to the neighbouring mercury atom at $(0,0,1)$ at a distance close to the van der Waals' distance [3•307(7) \AA; van der Waals' $\mathrm{Hg} \cdot \mathrm{C}$ contact, $>3.35 \AA \AA]^{3}$ Each mercury atom is thus surrounded by a highly distorted array of three pairs of sulphur atoms at $2 \cdot 397,2 \cdot 990$, and $3 \cdot 307 \AA$. The overall result is displayed in Figures 1 and 2; Figure 2 also

Figure 2 View of $\left[\mathrm{HgS}_{2}\right]_{n}$ helical pseudo-polymeric array along the crystallographic c axis
shows the overall result over several units cells, the mercury and sulphur atoms comprising a helical chain. Although the 'bonds' in this chain of length $3 \cdot 307 \AA$ must be very weak, the appearance of a rather similar chain in the structure of the $O O^{\prime}$-di-isopropyl phosphorodithioate ${ }^{3}$ invites comparison and suggests that intermolecular mercury-sulphur van der Waals' interactions dominate the crystal packing in these complexes. In the phosphorodithioate, however, the mercury atom is non-centrosymmetric and has only five near neighbours at $2 \cdot 39,2.39,2.75,2.89$, and $3.41 \AA$. The functions of the ligands in the latter complex are different. In one ligand, which has a solely chelating function, the mercury-sulphur distances are similar to those found in the present structure, being 2.39 and $2.89 \AA$; the other ligand has a bridging function between successive mercury sites, one sulphur bonding to a mercury at $2 \cdot 39 \AA$, and having a long contact at $3 \cdot 40 \AA$, the other bonding to a previous mercury atom at $2.75 \AA$. As in this structure, the bonding of the mercury is dominated by $s p$ hybrids, leading to a pair of approximately opposed bonds, to sulphur atoms each $2.39 \AA$ (S-Hg-S 149.7°).

The present structure * is in contrast to those of the various bis(dithiocarbamato)-derivatives of zinc and
${ }^{10}$ M. E. Pippy and F. R. Ahmed, Div. Pure and Appl. Phys., NRC, Ottawa, Canada, Program No. NRC 12 (BONDSCAN).
cadmium, ${ }^{\mathbf{1 , 2}}$ which are more akin to the structure of $\left[\mathrm{Hg}\left\{\left(\mathrm{Pr}^{\mathrm{i} O}\right)_{2} \mathrm{PS}_{2}\right\}_{2}\right]_{\infty}$ in which one ligand acts as a chelate and the other as a strong bridge. ${ }^{3}$

The ligand CS_{2} geometry is akin to that found in related structures, e.g. $\left[\mathrm{As}\left(\mathrm{CS}_{2} \cdot \mathrm{NEt}_{2}\right)_{3}\right],{ }^{11}$ where the metal-sulphur bonds are of disparate length, and the carbon-sulphur distance has an inverse relation to the metal-sulphur. \{A similar phenomenon is also found in $\left[\mathrm{Hg}\left\{\left(\mathrm{Pr}^{\mathrm{i}} \mathrm{O}\right)_{2} \mathrm{PS}_{2}\right\}_{2}\right]_{\infty} ;{ }^{3} \quad \mathrm{Hg}-\mathrm{S}(1), \mathrm{C}(1)-\mathrm{S}(1), \quad 2 \cdot 397$, $1.76 ; \mathrm{Hg}-\mathrm{S}(2), \mathrm{C}(1)-\mathrm{S}(2), 2.990,1 \cdot 69 \AA\}$. The $\mathrm{S}-\mathrm{C}-\mathrm{S}$ angle $\left[120(1)^{\circ}\right]$ is close to that found in the free ion,,12 and presumably reflects the absence of any constraint due to chelation.

The remainder of the ligand geometry is usual ${ }^{13}$
${ }^{11}$ M. Colapiètro, A. Domenicano, L. Scaramuzza, and A. Vaciago, Chem. Comm., 1968, 302.
${ }^{12}$ M. Colapietro, A. Domenicano, and A. Vaciago, Chem. Comm., 1968, 572.
within the limits of the rather large experimental errors on the outer atoms which are a consequence of the

dominance of the scattering by the mercury atom. The disposition of the terminal carbon atoms is usual, as is the carbon-nitrogen distance $[\mathrm{C}(1)-\mathrm{N} \quad 1 \cdot 32(3) \AA]$ which reflects the π conjugation throughout the ligand.
[2/1520 Received, 29th July, 1972]

[^4]
[^0]: ${ }^{1}$ H. P. Klug, Acta Cryst., 1966, 21, 536; M. Bonamico, G. Mazzone, A. Vaciago, and L. Zambonelli, Acta Cryst., 1965, 19, 898.

 2 A. Domenicano, L. Torelli, A. Vaciago, and L. Zambonelli, J. Chem. Soc. (A), 1968, 1351.

[^1]: ${ }^{3}$ S. L. Lawton, Inorg. Chem., 1971, 10, 329.

[^2]: * For details see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970 , Issue No. 20 (items less than 10 pp . are sent as full size copies).

 4 ' International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962, p. 59.

 5 Ref. 4, vol. I, p. 99.
 ${ }^{6}$ N. W. Alcock in 'Crystallographic Computing,' Munksgaard, Copenhagen, 1971, p. 271; Program ABSCOR.

[^3]: * Note added in proof: The isolation of three forms of this complex from acetone has recently been reported (H. Iwasaki, Abs. 9th Internat. Congr. Cryst., Kyoto, 1972, vol. VI-32, p. S85). One form corresponds to that discussed in the present paper and structural details are in good agreement; a second form exhibits a similar structure to that of the zinc and cadmium analogues. ${ }^{1,2}$

[^4]: ${ }^{13}$ R. Eisenberg, Progr. Inorg. Chem., 1970, 12, 295, and references therein.

