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' Weak-f ield ' Ligand-f ieid Calculation for Tetragonally Distorted d2 and 
ds Systems 

By A. Mooney and W. E. Smith," Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow 

The d2 and d8 crystal-field calculation of Ballhausen and Liehr has been extended to include tetragonal distortion. 
Trees correction, and all off-diagonal spin-orbit coupling and crystal-field matrix elements. Parameters used are 
evaluated and a minimum set selected. Those features of the calculation capable of experimental verification and 
use are emphasised. The calculation is used to predict as accurately as possible the spectra of tetragonally dis- 
torted nickel(r1) systems. 

G1 1XL 

VISIBLE and near i.r. spectra of transition-metal com- 
plexes contain considerable information of use to the 
chemist with regard to structure and electronic proper- 
ties, and yet surprisingly little is really understood about 
the nature of the spectra. The best assessment of the 
relative-energy positions is still given by ligand-field 
theory, and the small separation between levels and the 
difficulties of a good open-shell molecular orbital calcula- 
tion suggest that, for the time being at  least, this will 
remain the case. At the present time, understanding of 
the theory and its limitations is far from satisfactory, and 
the calculation for d2 and d8 systems reported in this 
paper is intended to help in this respect. 

Smith et aZ.l and Weakliem2 have attempted to 
analyse spectra of tetrahedral nickel(I1) ions, using the 
strong-field approach. There is considerable disparity 
between these results and the method of approach has 
been criticised by F e r g ~ s o n . ~  The best weak-field 
analysis to date is that of Liehr and Bal lha~sen,~ but 
their calculation does not include any low-symmetry 
field perturbation and so precludes an assessment of the 
many non-cubic complexes. Ferguson demonstrated 

1 G. P. Smith, C. H. Liu, and T. R. Griffiths, J .  Arnev. Chevn. 

2 H. A. Weakliem, J .  Chem. Phys., 1962, 36, 2117. 
J. Ferguson, Progr. Inorg. Chern., 1970, 12, 159. 

SOC., 1964, 86, 4796. 

the accuracy of the cubic calculation by assigning 
Ni2+ spectra in KMgF,, and Couch and Smith5 
obtained good fits to Ni2+ spectra in Cs,MgCl, using a 
calculation involving the low-symme t ry field per turba- 
tion. Konig6 has collected much of the accurate 
spectroscopic data available for 3d transition-metal ions, 
but he has not used a complete calculation to analyse 
these data. 

Full exploitation of the symmetry properties of mole- 
cules has contributed to much of the success of ligancl- 
field theory. These properties can be used to best 
advantage in cubic systems where only one radial para- 
meter (Dq) is necessary. However, on lowering the 
symmetry of the system, the number of radial para- 
meters increases as the advantage of symmetry is re- 
duced. Thus, there is the risk of ' over-parametrising ' 
if we attempt to apply ligand-field theory to molecules 
of very low symmetry. For an analysis of electronic 
spectra of the many non-cubic complexes, it appears 
to us that maximum advantage is gained by applying 
a tetragonal or trigonal perturbation to the cubic system. 

Two particularly noticeable features of the calculation 
A. D. Liehr and C. J .  Ballhausen, Ann.  Phys. (New York) ,  

T. W. Couch and G. P. Smith, J .  Chevn. Phys., 1970, 53, 

E. Konig, Structure and Bonding, 1071, 9, 175. 

1959, 6, 174. 

1336. 

http://dx.doi.org/10.1039/DT9730000287


288 J.C.S. Dalton 
which could be verified experimentally are the splittings 
under low-symmetry fields of the tetrahedral 3T1(F) ---t 
3Tz(F) transition, and the overall width of, and splittings 
within, the lG manifold. The former of these has been 
demonstrated by Goodgame.' Transitions to excited 
states arising from the 1G free-ion term have been largely 
neglected. 

In this paper we make an appraisal of the ligand-field 
method, as applied to tetrahedral nickel@) systems, 
using a fairly complete calculation, neglecting only small 
perturbations such as spin-spin interaction. We point 
out the various transitions of the spectra which are 
sensitive to  particular perturbations, and have assessed 
the effect of each of the parameters to arrive at a mini- 
mum set for which an accurate fit would be expected. 
The conclusions we draw, with the exception of remarks 
concerning the Trees correction ,8 which strictly refers 
to Ni2+, are general for tetragonally distorted d2 and d8 
systems. It is impossible to present sufficient data 
graphically to represent every possible case, so that we 
publish in the Appendix a list of the necessary matrix 
elements required to perform the calculation on other 
systems. 

The Proposed Model.-We have concentrated on the 
d* situation in which Ni2+ is a t  the centre of a tetra- 
hedron of ligands which can be elongated along the 
S, axis to lower the symmetry to DZd. The Hamiltonian 
used is that in equation (l), where Ho refers to the 

Hamiltonian operator for hydrogen-like wave functions 
of the free ion. The first term in the expression is the 
interelectron repulsion term and we use the usual Racah 
parameters B and C. The second term is the spin-orbit 
coupling term and the matrix elements were of the form 
(2). The selection rules AL = 0 & 1, A S  = 0 -+ 1, 

2 

i =  1 
(mlms m p ' ]  2 Eli . sil~nlms mpms') 

1 Eli% = r[JzlszI + i(l+1s-1 + LIS+1)1 + 
(2) 

a 

i =  1 
where 

"%2 + W+2S-2 + ~-2s+2)l 

A J = 0, and AM = 0 were used to establish which matrix 
elements were required. A different parameter C is in 
theory required for each term and for each set of elements 
between pairs of terms. Vtetrahedral and Vtetragonal are 
the crystal-field terms. 

Wave functions for the ds configuration (equivalent to 
two positive holes) were of the form ILMI;SM~) ,  from 
which nonnalised two-electron eigenfunctions I mimsml~m8') 

were obtained using the lowering operators L- and S-. 
The matrix elements (3) were obtained by the method 

(mlmdf%'ms'~ vtetmhedral + vtetragonal ]~~lma%'m8'> (3) 

D. M. L. Goodgame and M. Goodgame, Inorg. Chern., 1965, 
4. 139. 

8 R. E. Trees, Phys. Rev., 1951, 82, 683. 

described by BallhausenB in terms of the radial para- 
meters Dq, Ds, and DT. The last two parameters are 
defined by equation (4), where Y is the distance from the 

electron to the nucleus and a and b are distances from 
the ligands to the nucleus. The diagonal perturbation 
ZIZz (Trees correction a) was introduced to take some 
account of the orbit-orbit interaction. All off -diagonal 
elements within and between terms were calculated for 
each of the perturbations and the complete matrix 
diagonalised using a Jacobi routine. 

Finally, we tested the calculation, excluding the low- 
symmetry field perturbation, by fitting spectra of Ni2+ 
in KMgF, already fitted accurately by Ferguson.3 We 
obtained excellent agreement with his calculation. 

RESULTS 

We assess first the application of the calculation to free- 

measured by Shenstone.10 Theoretical and observed values 
are tabulated in Table 1, from which i t  can be seen that a 

ion spectra (Vtetrahedral + Vtetragonal set equal to zero) 

TABLE 1 
Free-ion levels of nickel(I1) 

Free-ion 
term 
3 F 4  

3F3 
3F2 
lD2 
3p, 
3p, 
3p0 
l G 4  

Observed 
energylcm-l 

0 
1361 
2270 

14032 
16662 
16978 
17231 
23109 

Calculated energylcm-l 
a 

0 
1352 
2265 

14031 
16723 
16983 
17241 
21663 

b 
0 

1351 
2264 

14032 
16717 
16976 
17236 
23342 

a B = 1042, C = 4060, = -668, u = 0 cm-1. ti B = 
1101.6, C = 4183, E = -668, u = 90 cm-l. 

good fit to experiment is obtained for all the levels except 
1G, using the parameters B, C, and <. The lG level is 
always badly predicted by theory, presumably due to con- 
figuration interaction.2 If transitions from the centre of 
gravity of the ground term (3F) to that of the excited terms 
are considered, then we should be able to get an exact fit 
to experiment by introducing another parameter o! (Trees 
correction). However, this procedure is not straight- 
forward since the relative separations of the free-ion terms 
affects the off -diagonal spin-orbit matrix elements between 
them, and causes the spin-orbit components of each term to 
vary in a complex manner. By introducing a value of 
cc = 90 cm-1, the best fit was obtained for all the free-ion 
levels. The greatest error was still in the lG level which is 
predicted 233 cm-1 above the experimental value (cf. 1466 
cm-l below the experimental value using cc = 0). Since we 
have found that levels arising from the lG free-ion term may 
be particularly useful as an indication of the degree of 
distortion in nickel(I1) complexes, and we cannot sensibly 
discuss effects of changes in the ligand-field parameters 
when one of their major uses is to  compensate for a dis- 

9 c. J. Ballhausen, ' Introduction t o  Ligand Field Theory,' 

l o  A. G. Shenstone, J .  Opt. SOC. Arnev., 1954, 44, 749. 
McGraw-Hill, New York, 1962, p. 99. 
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crepancy in the free-ion term, we have included the Trees 
correction in the rest of our calculation. 

The interelectron repulsion integrals give rise to the 
Slater-Condon parameters F ,  and F,, which are simply 
related to the Racah parameters B and C.9 Parameters B 
and C are generally regarded as more convenient and we 
have used them in this case. Ferguson3 has pointed out 
that the F ,  and F4 integrals each have a different radial 
dependence, and F,  should be more sensitive to changes in 
the nature of the ligand. It should therefore be possible to 
establish trends, in the values of 3, and F,  and the F ,  : F,  
ratio with changes in the ligands, which are more consistent 
than those using the parameters B and C .  However, we 
were unsuccessful because insufficient spectral levels have 
been accurately assigned which are not subject to displace- 
ment by the Jahn-Teller effect. Specifically, an orbital 
singlet spin-forbidden level, e.g. the B#D) level, must be 
found in a number of complexes before trends can be 
evaluated. 

The problem with the spin-orbit coupling perturbation 
is the large number of parameters required for what is in 
fact a small perturbation. The usual practice is to set all C 
values equal to that chosen for the ground state. We 
investigated this. The 3F levels should be most sensitive 
to effects involving matrix elements between terms, and 
values of these parameters from the free-ion value to that of 
zero were used. The major effect in changing from one 
extreme to the other was a rise in the energy levels of the 
3F by GU. 50 cm-1. In  no case was any reasonably large 
effect noted, so that all values between terms were set 
equal to the value chosen for 3F term. A similar result was 
obtained within terms so that we in fact used only 
parameter. 
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FIGURE 1 Variation of 3F levels with the parameters Dd and 
Dr. B = 740, C = 3680, Dq = 350, and t: = 560 cm-l 

The approximate value of Dq is well known but we found 
that it was lowered by application of the low-symmetry 
field perturbation. The parameters Ds and DF are not 
independent; they both depend on the ratio a : b, but the 

nature of the relation is complex so that we treat them here 
as independent. The value of Dp should be larger than 
that of DS for small distortions. 

The effect on the 3F levels of increasing Ds and Dp is 
shown in Figure 1. The levels are insensitive to 

FIGURE 2 Variation of lG. 3P, and lD levels with 
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the 
parameters DS and DI.. Other parameters as in Figure 1 

very sensitive to Dp. In the Figure tetrahedral spin-orbit 
assignments are shown in the centre and distorted assign- 
ments at the sides. The 3T1 -+ 3T, transition is split by 
the low-symmetry field to a considerable extent, in agree- 
ment with experimental observations by Goodgame 7 and 
Weakliem that this band is very broad. The ground state 
drops more quickly than the excited states with increasing 
distortion, so that the energies of the 3F (and 3.P) peaks 
observed in the spectrum will be considerably higher than 
is usual in tetrahedral systems if a tetragonal distortion is 
present. 

Figure 2 shows DS and DT parameter variations in states 
arising from the other free-ion terms, neglecting the high- 
lying lS term. The parameter DS causes the largest split 
in the band manifold of the 3P levels. The actual separa- 
tion is still too small to explain the bands observed in the 
usual 3P spectra of tetrahedral nickel(1x) ions. They are 
probably of vibrational-electronic origin, a statement borne 
out by the large drop in intensity of the high-energy part 
of the spectrum between room temperature and 4 K. 

The and IG levels both show appreciable distortion 
effects. For example, the width of the lG band manifold 
increases with increasing DT, and the relative positions of 
the lowest energy E and B,  levels vary markedly. The 
1G bands lie in the visible region of the spectra and their 
sensitivity to distortion makes them a good probe of 
structure in nickel(11) complexes. There are few data 
available relating to these levels and we are investigating 
the spectra of the complexes (Et,N),NiCl, and (Et,N),- 
NiBr, which contain tetragonally distorted nickel@) ions. 
Since the vibrational fine structure and temperature depend- 
ence of the bands requires a complex interpretation, this 
investigation will be published separately, but we have 
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fitted the calculation to the main features of the spectra 
using the parameters Dq, DF, B, C, a, and C. The spectra 
have sharp band edges at  4.2 K and we have chosen to fit 
these as representative of the approximate no-phonon 
positions of the bands. The agreement is shown in Table 2. 
Values obtained for the parameters B, C, a, and 2: are in 
reasonable agreement with those of previous work. The 
parameters Dq and DT have not been sufficiently used in 
fitting tetragonally distorted spectra to make a real com- 
parison with previous experiments possible. In Table 2, 

TABLE 2 
Energies of d-d transitions of the ion nickel(I1) in the 

complexes (Et,N),NiCl, and (Et,N),NiBr, 
(Et,N) ,NjBr, (E t,N) ,NiCI, 
Energy/cm-' Energylcm-l 

Experi- Symmetry Experi- 
mental Calc." designation mental Calc.6 

6410 6401 W 3 F )  6944 7442 
115OOc 11678 

Bz('o) 12150 C 11958 
10400 c 10533 
10850c 10710 E(l.D) 

13912 14076 
18198 18328 
19608 19610 

20218 
21291 

12877 12827 EYP) 
16540 16543 E('G) 

Bz(lG) 20408 
17483 17457 

E('G) 21978 
17966 18121 
20550 18992 B,(IG) 
0 B = 698, C = 2960, Dq = 187, DT == -180, = -520, 

a = 55 cm-l. B = 753, C = 3360, Dq = 200, DT = -240, 
t: = -560, a = 65 cm-1. 0 No-phonon lines estimated t o  
an accuracy of &70 cm-1. 

the highest B ,  level arising from the 1G free-ion term is in 
error, particularly in one complex, but, since the only 
observation of this level has been in the complexes (Et,N),- 
NiCl, and (Et4N),NiBr4, further work would be required 
before this discrepancy could definitely be ascribed to a 
failure in the calculation. 

CONCLUSIONS 
The weakest feature of the calculation is the necessity 

to use four parameters B, C, a, and t: to fit the free-ion 
terms of Ni2+, but without all of them the ligand-field 
parameters will be distorted to take account of the 
resulting discrepancies. 

For fairly small distortions, only two ligand-field 
parameters are of importance, Dq and Dp, since the value 
of Ds for small distortions is less than that of DT and the 
levels are insensitive to DS in any case. The value of 
Dq depends on the degree of tetragonal distortion so 
that its use, in any but strictly cubic systems, to indicate 
ligand-field strength could be misleading. Two major 
features of the effect of the low-symmetry field perturba- 
tion could be used to study distortion experimentally, 
vix. the marked splitting of the 3T1 ---t 3T2(3F) transi- 
tion and the width of the manifold of 1G levels.' 
APPENDIX 

The secular determinant is symmetrical across the 
leading diagonal so that the following condition for 
matrix elements A ( i , j )  holds : 

A (i,j) = A (j,i) 
The matrix elements are as follows: 

A(1,l)  = A(9,9) = 2Dq + 12B + 2C + 4Ds - 
2DT + 20a 

A(1,5) = A(5,9) = 10Dq/701 
A(1,lO) = A (9,30) = 2: 
A (1,33) = A (9,33) = 20Dq114; 
A (1,45) = A (9,45) = 2OkDq 

A(2,2) = A(8,8) = -3Dq -+ 12B + 2C + Ds + 
A(2,6) = A(4,8) = lODq/28, 

3011 + 20% 

A(2,13) = A(8,27) = A(11,13) = A(12,14) = 

A (2,34) = A (8,32) = 10(6/28)zDq 
A(26,28) = A(27,29) = 36</2 

A(3,3) = A(7,7) = - l lDq/7  + 12B + 2C - 

A(3,7) = 15Dq/7 
8Ds/7 + 1 1 D ~ / 7  + 2 0 ~  

A(3,12) = A(7,28) = (l/28)4< 
A(3,14) = A(7,26) = (3/7):C 
A(3,16) = A(4,17) = A(6,23) = A(7,24) = (15/28):< 
A(3,31) = A(7,35) = 30. 34Dq/7 + 4 .  3$03/7 - 

A(3,35) = A(7,31) = 10. 3iDq/7 
30 .34Dp/7 

A(4,4) = A(6,6) = 9Dq/7 + 12B + 2C - 
17D,y/7 - 9Dr/7  + 2 0 ~  

A(4,15) = A(6,25) = (3/28)% 
A(4,19) = A(6,21) = 5</14$ 
A(4,32) = A (6,34) = -5 . 6SDq/7 + 4 . 64Ds/7 + 

5 .  63DT/7 

1 8 D ~ / 7  $- 20% 
A(5,5)  = 18Dq/7 + 12B + 2C - 20D,y/7 - 

A(5,18) = A(5,22) = (3/14):C 
A(5,33) = -1OODq/7 . 51 + 4808/9804 + 2000~ /9801  
A(5,45) = 1400~/350.' - 14ODp/3501 

A(10,lO) = A(30,30) = -3Dq + 3</2 + Ds + 3 0 ~  + 
12% 

A(17,29) = A(18,30) = -164Dq 

A(29,37) = A(30,38) = -1OlDq 

A(10,22) = A(11,23) = A(12,24) = A(16,28) = 

A(10,42) = A(11,43) = A(12,44) = A(28,36) = 

A(11, l l )  = A(29,29) = -3Dq -+ DS + 3Dy + 12a 
A(12,12) = A(28,28) == -3Dq - 3</2 $- Ds = 301, + 

12X 
A(12,31) = A(28,35) == -(12/7)$< 

A(13,25) = A(14,26) == A(15,27) = -5Dq 
A(14,14) == A(26,26) = 7Dq - 7Dp + 12c~ 
A(14,16) = A(15,17) = A(23,25) = A(24,26) = 5</20: 
A(14,31) = A(26,35) = (4/7)3c 
,4(15,15) = A(25,25) 
A(15,32) = A(25,34) = -(8/7):< 
A(16,16) = A(24,24) = -Dq + 2:/2 - 3D,9/5 + 1 2 ~  
A(16,31) = A(24,35) = -(4/35)3< 
A(16,36) = A(17,37) = A(18,38) = A(22,42) = A(23,43) 

= A(24,44) = -6iDq + 4. 63Ds/S + 6SDT 

A(13,13) = A(27,27) = 7Dq + Z: - 7Dp + 12a 

7Dq - < - 7011 + 12a 

A(17,17) = A(23,23) == -Dq - 3Ds/5 + DT + 1 2 ~  
A(17,19) = A(18,20) = A(20,22) = A(21,23) = (3/2):< 
A (17,32) = A (23,34) = (32/35)8< 
A(18,18) = A(22,22) = -Dq - </2 - 3Ds/5 + DT -/- 

12% 

A(19,19) = A(21,21) = -6Dq - 4DsjlO + 6011 + 12% 
A(18,33) = A(22,33) = -(24/35):< 

A(19.32) = A(21.34) = -(12.35):C 
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A(19,39) = A(20,40) = A(21J41) == 4Dq + 12D,3/5 - 

A(20,20) = -6Dq - 408/10 + 6Dr + 1 2 ~  

A(31,31) = A(35,35) = 4Dq/7 + 5B + 2C - 6Ds/7 - 

,4(31,35) = 20Dq/7 
A(31,36) = A(35,44) = (2l/lO):C 

4DT 

A (20,33) = (36/35)*< 

4 0 ~ / 7  + 6~ 

A(32,32) = A(34,34) = -16Dq/7 + 5B + 2C + 
6Ds/14 + 32D~/14 -t 6% 

A(32,37) = A(34,43) = A(32,39) = A(34,41) = 

A(33,33) = 24Dq/7 + 5B $- 2C + 12Ds/14 - 

A(33,38) = A(33,42) = (49/140)1c 

(147/ 140) 4 < 
48Dr/14 + 6~ 

A (33,40) = (196/140)% 
A(33,45) = 28D,y/70* 
A(36,36) = A(44,44) = 15B + c/2 - 7Ds/5 + 2 ~ t  
A(37,37) == A(43,43) = 15B - 7D,y/5 + 2a 
A(37,39) = A(38,40) = A(40,42) = A(41,43) = </2 
A (38,38) = A(42,42) = -</2 + 15B - 7Ds/5 + 2~ 
A(38,45) = A(42,45) = -24c 
A (39,39) = A (40,40) = A (41,41) = 15B + 14Ds/5 + ~ C X  

A(40,45) = 24C 
A(45,45) = 22B -+ 7C - 4Ds/5 - 12DT/5 
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