Crystal Structure of trans-Chlorohydridobis(triethylphosphine)palladium

By M. L. Schneider and H. M. M. Shearer," Department of Chemistry, Durham University, South Road, Durham

The title compound crystallises in a monoclinic cell, space group $P 2_{1} / c$, with $a=9.06, b=13.83, c=14.48 \AA$, $\beta=92 \cdot 9^{\circ}, Z=4$. The structure was solved by the heavy-atom method and refined by the method of least-squares to $R 0.072$ for 1807 observed reflections. The two phosphorus atoms, which are mutually trans, and the chlorine atom are situated at three of the corners of a distorted square, centred on the palladium, with the fourth site believed to be occupied by hydrogen. The $\mathrm{Pd}-\mathrm{Cl}$ bond length ($2.427 \AA$) is long compared with that ($2.299 \AA$) observed in the $\mathrm{PdCl}_{4}{ }^{2-}$ ion, indicating the strong trans-influence of hydrogen, but is the same as the $\mathrm{Pt}-\mathrm{Cl}$ distance ($2 \cdot 422 \mathrm{~A}$) in $\left(\mathrm{Ph}_{2} \mathrm{EtP}\right)_{2} \mathrm{Pt}(\mathrm{H}) \mathrm{Cl}$.

The compound trans-chlorohydridobis(triethylphosphine) palladium, $\left(\mathrm{Et}_{3} \mathrm{P}\right)_{2} \mathrm{Pd}(\mathrm{H}) \mathrm{Cl}$, was the first hydridopalladium complex to be isolated and was prepared ${ }^{1}$ by the reaction between trans-dichlorobis(triethylphosphine)palladium and trimethylgermane. The present study was undertaken to provide information about the trans-influence in this compound.

EXPERIMENTAL

Crystals of the complex were obtained directly from the reaction mixture as thick plates, elongated along a and with
${ }^{1}$ E. H. Brooks and F. Glockling, J. Chem. Soc. (A), 1967, 1030.
well developed $\{010\}$ and $\{001\}$ faces. They were mounted in thin-walled capillary tubes in an atmosphere of dry nitrogen since the compound decomposes readily in the air. On exposure to X-radiation, the crystals turned cherry red and a large crystal of dimensions $1.0 \times 0.4 \times 0.3 \mathrm{~mm}$ was accordingly used for data collection. Despite the change in appearance of the crystal, the extent of decomposition during data collection appeared to be small. This contrasts with the situation found ${ }^{2}$ for the related compound, $\left(\mathrm{Et}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}(\mathrm{H}) \mathrm{Br}$, which is stable to air but decomposes rapidly on exposure to X-rays.
${ }^{2}$ P. G. Owston, J. M. Partridge, and J. M. Rowe, Acta Cryst, 1960, 13, 246.

Crystal Data.- $\mathrm{C}_{12} \mathrm{H}_{31} \mathrm{ClP}_{2} \mathrm{Pd}, \quad M=379 \cdot 18$, Monoclinic, $a=9.06(2), b=13.83(2), c=14.48(2) \AA, \beta=92.89(10)^{\circ}$, $U=1812 \AA^{3}, \quad D_{\mathrm{m}}=1.37, Z=4, D_{\mathrm{c}}=1.39, \mu=13.04$ cm^{-1} for Mo $-K_{\alpha}$ radiation, $\lambda=0.7107 \AA$. Space group $P 2_{1} / c$.

Unit-cell dimensions were obtained from precession photographs of the $h k 0$ and $h 0 l$ nets recorded with $\mathrm{Zr}-$ filtered Mo-radiation. The nets $h k 0-6$ and $h 0-5 l$

Table 1
Final positional parameters (fractional), with standard deviations in parentheses

	x	y	z
Pd	$0 \cdot 24360$ (11)	-0.06361(8)	-0.14762(6)
Cl	$0 \cdot 23838(64)$	-0.21562(33)	-0.23148(28)
$\mathrm{P}(1)$	$0 \cdot 22960$ (42)	$0 \cdot 03268$ (31)	-0.27811(23)
$\mathrm{P}(2)$	$0 \cdot 25128(38)$	-0.13327(26)	-0.00278(22)
C(1)	$0 \cdot 2942$ (24)	$0 \cdot 1602(14)$	-0.2702(12)
$\mathrm{C}(2)$	$0 \cdot 0410$ (21)	$0.0519(19)$	-0.3264(15)
$\mathrm{C}(3)$	$0 \cdot 3269(25)$	-0.0146(18)	-0.3779(12)
C(4)	$0 \cdot 2334(25)$	$0 \cdot 2237(14)$	-0.2033(16)
C(5)	-0.0447(23)	$-0.0345(19)$	-0.3478(19)
C(6)	$0 \cdot 4952(19)$	-0.0292(19)	-0.3539(15)
C(7)	$0 \cdot 1247(21)$	-0.2389(16)	$0.0024(15)$
C(8)	$0 \cdot 1982(26)$	$-0.0594(15)$	$0.0966(13)$
$\mathrm{C}(9)$	$0 \cdot 4221$ (21)	-0.1894(21)	$0 \cdot 0399(12)$
C(10)	-0.0267(17)	$-0.2153(15)$	$-0.0267(13)$
$\mathrm{C}(11)$	$0 \cdot 3001$ (26)	$0.0314(16)$	$0 \cdot 1096(13)$
$\mathrm{C}(12)$	$0 \cdot 4967(20)$	-0.2529(15)	-0.0305(12)

Table 2
Final thermal parameters,* with standard deviations in parentheses

	β_{11}	β_{22}	β_{33}	β_{23}	β_{13}	β_{12}
Pd	166(1)	46(1)	35(1)	3(1)	20(1)	-6(2)
Cl	419(12)	$59(3)$	48(2)	$-23(5)$	$35(8)$	-18(9)
$\mathrm{P}(1)$	$174(5)$	57(2)	39(2)	10(4)	14(5)	3(6)
$\mathrm{P}(2)$	152(5)	46(2)	34(1)	5 (4)	27(4)	1 (5)
C(1)	383(42)	65(11)	76(11)	-26(23)	170(35)	$-32(37)$
$\mathrm{C}(2)$	$200(30)$	165(24)	98(14)	39(33)	$-37(32)$	$-27(43)$
C(3)	344(41)	116(18)	$64(10)$	27(27)	88(34)	18(45)
C(4)	367(46)	63(12)	110(15)	56(25)	$-34(42)$	11 (35)
C(5)	235 (35)	142(21)	148(21)	$9(40)$	$-91(43)$	-121(45)
C(6)	$164(25)$	170(22)	$100(13)$	$-1(34)$	49(29)	$107(39)$
C(7)	221 (30)	106(16)	116(15)	69(31)	$-17(35)$	-81(36)
C(8)	381(44)	91(15)	64(10)	-13(24)	103(34)	-63(41)
C(9)	239(32)	206(26)	70(10)	61(31)	66(29)	247(50)
C(10)	$166(25)$	107(15)	90(12)	-36(25)	29(27)	$-71(30)$
C(11)	403(46)	83(13)	67(10)	-48(26)	$-60(36)$	-54(42)
C(12)	231 (28)	98(14)	74(10)	-5(24)	62(27)	135(24)
* Anisotropic temperature factors are in the form:						
	-10^{-}	$11+$	$+l$	$+2 h k \beta$	$+2 h l \beta$	$2 k\left[\beta_{23}\right]$] $]$

were also recorded by the precession method. Intensities were estimated visually by comparison with a scale and were corrected for Lorentz and polarisation factors. The various layers were placed on the same scale by a leastsquare treatment ${ }^{3}$ of the common reflections.

Structure Determination and Refinement.-The position of the palladium atom was found from the Patterson function and those of the other non-hydrogen atoms by Fourier methods. The atomic parameters were refined by the method of least squares using the block-diagonal approximation. A difference-Fourier map calculated at

* For details, see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20 (items less than 10 pp . are sent as full size copies).
${ }^{3}$ J. E. Monahan, M. Shiffer, and J. P. Shiffer, Acta Cryst., 1967, 22, 322.
the end of the refinement showed one peak of height $1 \mathrm{e} \AA^{-3}$ at a position related to that of the palladium atom. The remaining peaks were small and none could be convincingly assigned to any of the hydrogen atoms. For the 1807 observed reflections, the final R was 0.072 .

In the final cycle of refinement, the parameter shifts were all $<\frac{1}{3} \sigma$ and the weighting was given by: $\sqrt{ } w=1 \cdot 0 /$ $\left(15 \cdot 07+\left|F_{0}\right|+0 \cdot 007\left|F_{\mathrm{o}}\right|^{2}\right)^{\frac{1}{2}}$. Unobserved reflections were given zero weight in the refinement. Scattering factors were those given in ref. 4 and the real part of the dispersion correction was applied in the case of palladium. Final positional parameters are shown in Table 1 and thermal parameters in Table 2. The observed and calculated structure factors are listed in Supplementary Publication No. SUP 20576 (7 pp.).*

RESULTS AND DISCUSSION

As expected, the palladium atom has a square planar environment (Figure). The phosphorus atoms are mutually trans and together with the chlorine atom are

Molecular structure, showing the numbering of the atoms
situated at three corners of a distorted square. The hydrogen atom is presumed to occupy the fourth site, trans to chlorine. There is a small but significant departure from coplanarity in respect of the central atoms. The equation of the weighted least-squares mean plane through the palladium, chlorine, and phosphorus atom is $-0.9999 X-0.0084 Y-0.0075 Z+$ $2 \cdot 2868=0$ where X, Y, Z are in \AA and refer to the orthogonal axes a, b, c^{*}. The deviations from this plane are: $\mathrm{Pd}-0.0044(10), \mathrm{Cl} 0.0085(58), \mathrm{P}(1) 0.030(4)$, and $\mathrm{P}(2)$ $0.024(3) \AA$. In addition (Table 3), the two $\mathrm{P}-\mathrm{Pd}-\mathrm{Cl}$ angles (95.2 and 95.3°) are increased over the ideal value of 90°. Similar features were found ${ }^{5}$ in the related platinum compound, $\left(\mathrm{Ph}_{2} \mathrm{EtP}\right)_{2} \mathrm{Pt}(\mathrm{H}) \mathrm{Cl}$, whereas in $\left(\mathrm{Et}_{3} \mathrm{P}\right)_{2} \mathrm{PtCl}_{2}$ the platinum and its co-ordinated atoms were strictly coplanar. ${ }^{6}$

The phosphine groups are in a staggered arrangement with respect to one another and their dimensions are similar to those found in related compounds. However, the $\mathrm{Pd}-\mathrm{P}-\mathrm{C}$ angles are greater than the tetrahedral

[^0]Table 3

(b) Bond angles (deg.) and their standard deviations

(b) Bond angles (deg.) and their standard deviations			
Cl-Pd-P (1)	$95 \cdot 24(15)$	$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(2)$	$99 \cdot 8(9)$
$\mathrm{Cl}-\mathrm{Pd}-\mathrm{P}(2)$	$95 \cdot 28(15)$	$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(3)$	$102 \cdot 9(9)$
$\mathrm{Mean} \mathrm{Cl}-\mathrm{Pd}-\mathrm{P}$	$95 \cdot 26$	$\mathrm{C}(2)-\mathrm{P}(1)-\mathrm{C}(3)$	$103 \cdot 0(10)$
		$\mathrm{C}(7)-\mathrm{P}(2)-\mathrm{C}(8)$	$102 \cdot 6(9)$
$\mathrm{P}(1)-\mathrm{Pd}-\mathrm{P}(2)$	$169 \cdot 35(14)$	$\mathrm{C}(7)-\mathrm{P}(2)-\mathrm{C}(9)$	$99 \cdot 6(10)$
		$\mathrm{C}(8)-\mathrm{P}(2)-\mathrm{C}(9)$	$102 \cdot 9(10)$
$\mathrm{Pd}-\mathrm{P}(1)-\mathrm{C}(1)$	$119 \cdot 5(6)$	$\mathrm{Mean} \mathrm{C}-\mathrm{P}-\mathrm{C}$	$101 \cdot 8$
$\mathrm{Pd}-\mathrm{P}(1)-\mathrm{C}(2)$	$114 \cdot 0(7)$		
$\mathrm{Pd}-\mathrm{P}(1)-\mathrm{C}(3)$	$115 \cdot 2(7)$	$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{C}(4)$	$119 \cdot 4(15)$
$\mathrm{Pd}-\mathrm{P}(2)-\mathrm{C}(7)$	$112 \cdot 0(7)$	$\mathrm{P}(1)-\mathrm{C}(2)-\mathrm{C}(5)$	$116 \cdot 1(17)$
$\mathrm{Pd}-\mathrm{P}(2)-\mathrm{C}(8)$	$118 \cdot 7(7)$	$\mathrm{P}(1)-\mathrm{C}(3)-\mathrm{C}(6)$	$111 \cdot 8(15)$
$\mathrm{Pd}-\mathrm{P}(2)-\mathrm{C}(9)$	$118 \cdot 4(7)$	$\mathrm{P}(2)-\mathrm{C}(7)-\mathrm{C}(10)$	$112 \cdot 7(14)$
$\mathrm{Mean} \mathrm{Pd}-\mathrm{P}-\mathrm{C}$	$116 \cdot 3$	$\mathrm{P}(2)-\mathrm{C}(8)-\mathrm{C}(11)$	$111 \cdot 2(14)$
		$\mathrm{P}(2)-\mathrm{C}(9)-\mathrm{C}(12)$	$114 \cdot 7(15)$
		$\mathrm{Mean} \mathrm{P}-\mathrm{C}-\mathrm{C}$	$114 \cdot 3$

(c) Some intramolecular non-bonding contacts (\AA)

$\mathrm{Cl} \cdots \mathrm{P}(1)$	$3 \cdot 500$	$\mathrm{Cl} \cdots \mathrm{C}(6)$	3.95
$\mathrm{Cl} \cdots \mathrm{P}(2)$	3-498	$\mathrm{Cl} \cdots \mathrm{C}(7)$	$3 \cdot 60$
$\mathrm{Cl} \cdots \mathrm{C}(3)$	$3 \cdot 61$	$\mathrm{Cl} \cdots \mathrm{C}(10)$	$3 \cdot 91$
$\mathrm{Cl} \cdots \mathrm{C}(5)$	3.91	$\mathrm{Cl} \cdots \mathrm{C}(12)$	$3 \cdot 68$
(d) Intermolecular non-bonding contacts $(\AA)<4 \AA$			
$\mathrm{Cl} \cdots \mathrm{C}\left(7^{\text {III }}\right)$	3.99	$\mathrm{C}(6) \cdots \mathrm{C}\left(11^{\text {I }}\right.$	3.91
$\mathrm{Cl} \cdots \mathrm{C}\left(8^{\text {III }}\right)$	$3 \cdot 99$	$\mathrm{C}(6) \cdot \cdots \mathrm{C}\left(12^{\text {III }}\right)$	$3 \cdot 95$
$\mathrm{C}(4) \cdots \mathrm{C}\left(9^{\text {I }}\right.$)	$3 \cdot 85$	$\mathrm{C}(10) \cdots \mathrm{C}\left(2^{\text {II }}\right.$)	$3 \cdot 86$
$\mathrm{C}(4) \cdots \mathrm{C}\left(10^{\mathrm{r}}\right)$	$3 \cdot 90$	$\mathrm{C}(10) \cdots \mathrm{C}\left(11^{1}\right)$	$3 \cdot 71$
$\mathrm{C}(4) \cdots \mathrm{C}\left(5^{\text {II }}\right.$)	$3 \cdot 84$	$\mathrm{C}(11) \cdots \mathrm{C}\left(12^{1}\right)$	$3 \cdot 78$

Superscripts in Roman numerals refer to the following equivalent positions relative to the reference molecule at x, y, z :

$$
\begin{array}{ll}
\text { I }-x,-y,-z & \text { III } x, \frac{1}{2}-y, \frac{1}{2}+z
\end{array}
$$

value and the $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angles less. The $\mathrm{Pd}-\mathrm{P}$ distances ($2 \cdot 310$ and $2 \cdot 306 \AA$) are the same but smaller than the sum ${ }^{7}$ of the covalent radii, in agreement with there being some degree of multiple bonding between the metal and phosphorus atoms.
The $\mathrm{Pd}-\mathrm{Cl}$ bond length $(2 \cdot 427 \AA)$ is considerably greater than that found $(2 \cdot 299 \AA)$ in the $\mathrm{PdCl}_{4}{ }^{2-}$ ion ${ }^{8}$ or given by the sum $(2 \cdot 30 \AA)$ of the covalent radii ${ }^{7}$ and this increase can be attributed to the strong transinfluence of the hydrogen atom. A very similar distance $(2 \cdot 422 \AA)$ was found for the $\mathrm{Pt}-\mathrm{Cl}$ bond in $\left(\mathrm{Ph}_{2} \mathrm{EtP}\right)_{2^{-}}$ PtHCl and the direct comparison can be made since the covalent radii of platinum and palladium are the same.

The trans-influence of ligands in square planar and octahedral transition-metal complexes has been discussed in terms of the σ-donor ability of the ligand ${ }^{9,10}$ but it has also been considered, at least in part, in terms of its π-acceptor properties. ${ }^{10}$ In the present case, the hydrogen and metal atoms are linked by σ bonds and the extent of π bonding between chlorine and the metal, if this is present, is believed to be small. A strong trans-influence is to be expected, and the transinfluence of hydrogen acting through palladium is found to be as strong as that through platinum.

We thank Professor F. Glocking for supplying crystals of the compound and Dr. F. R. Ahmed and his associates ${ }^{11}$ for the use of their computer programs.
[2/1732 Received, 24th July, 1972]
7 L. Pauling, ' The Nature of the Chemical Bond,' 3rd edn., Cornell University Press, Ithaca, New York, 1960.
${ }^{8}$ J. D. Bell, D. Hall, and T. N. Waters, Acta Cryst., 1966, 21, 440.
${ }^{\boldsymbol{\theta}}$ L. M. Venanzi, Chem. in Britain, 1968, 4, 162.
10 R. Mason and A. D. C. Towl, J. Chem. Soc. (A), 1970, 1601.
${ }^{11}$ F. R. Ahmed, S. R. Hall, M. E. Pippy, and C. P. Huber, NRC Crystallographic programs for the I.B.M. 360 system, World List of Crystallographic Computer Programs, 2nd edn., Appendix p. 52.

[^0]: 4 'International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962.
 ${ }^{5}$ R. Eisenberg and J. A. Ibers, Inorg. Chem., 1965, 4, 773.
 ${ }^{6}$ G. G. Messmer and E. L. Amma, Inorg. Chem., 1965, 5, 1775.

