# Crystal Structure of trans-Chlorohydridobis(triethylphosphine)palladium

## By M. L. Schneider and H. M. M. Shearer,\* Department of Chemistry, Durham University, South Road, Durham

The title compound crystallises in a monoclinic cell, space group  $P2_1/c$ , with a = 9.06, b = 13.83, c = 14.48 Å,  $\beta = 92.9^\circ$ , Z = 4. The structure was solved by the heavy-atom method and refined by the method of least-squares to R 0.072 for 1807 observed reflections. The two phosphorus atoms, which are mutually *trans*, and the chlorine atom are situated at three of the corners of a distorted square, centred on the palladium, with the fourth site believed to be occupied by hydrogen. The Pd–Cl bond length (2.427 Å) is long compared with that (2.299 Å) observed in the PdCl<sub>4</sub><sup>2-</sup> ion, indicating the strong *trans*-influence of hydrogen, but is the same as the Pt–Cl distance (2.422 Å) in (Ph<sub>2</sub>EtP)<sub>2</sub>Pt(H)Cl.

THE compound trans-chlorohydridobis(triethylphosphine)palladium,  $(Et_3P)_2Pd(H)Cl$ , was the first hydridopalladium complex to be isolated and was prepared<sup>1</sup> by the reaction between trans-dichlorobis(triethylphosphine)palladium and trimethylgermane. The present study was undertaken to provide information about the trans-influence in this compound.

## EXPERIMENTAL

Crystals of the complex were obtained directly from the reaction mixture as thick plates, elongated along a and with <sup>1</sup> E. H. Brooks and F. Glockling, J. Chem. Soc. (A), 1967, 1030.

well developed  $\{010\}$  and  $\{001\}$  faces. They were mounted in thin-walled capillary tubes in an atmosphere of dry nitrogen since the compound decomposes readily in the air. On exposure to X-radiation, the crystals turned cherry red and a large crystal of dimensions  $1.0 \times 0.4 \times 0.3$  mm was accordingly used for data collection. Despite the change in appearance of the crystal, the extent of decomposition during data collection appeared to be small. This contrasts with the situation found <sup>2</sup> for the related compound,  $(Et_3P)_2Pt(H)Br$ , which is stable to air but decomposes rapidly on exposure to X-rays.

<sup>2</sup> P. G. Owston, J. M. Partridge, and J. M. Rowe, Acta Cryst., 1960, 13, 246.

Crystal Data.— $C_{12}H_{31}ClP_2Pd$ , M = 379.18, Monoclinic, a = 9.06(2), b = 13.83(2), c = 14.48(2) Å,  $\beta = 92.89(10)^{\circ}$ , U = 1812 Å<sup>3</sup>,  $D_{\rm m} = 1.37$ , Z = 4,  $D_{\rm c} = 1.39$ ,  $\mu = 13.04$ cm^-1 for Mo-K\_{\alpha} radiation,  $\lambda=0.7107$  Å. Space group  $P2_{1}/c.$ 

Unit-cell dimensions were obtained from precession photographs of the hk0 and h0l nets recorded with Zrfiltered Mo-radiation. The nets hk0-6 and h0-5l

#### TABLE 1

Final positional parameters (fractional), with standard deviations in parentheses

|       | X           | У            | 2            |
|-------|-------------|--------------|--------------|
| Pd    | 0.24360(11) | -0.06361(8)  | -0.14762(6)  |
| Cl    | 0.23838(64) | -0.21562(33) | -0.23148(28) |
| P(1)  | 0.22960(42) | 0.03268(31)  | -0.27811(23) |
| P(2)  | 0.25128(38) | -0.13327(26) | -0.00278(22) |
| C(1)  | 0.2942(24)  | 0.1602(14)   | -0.2702(12)  |
| C(2)  | 0.0410(21)  | 0.0519(19)   | -0.3264(15)  |
| C(3)  | 0.3269(25)  | -0.0146(18)  | -0.3779(12)  |
| C(4)  | 0.2334(25)  | 0.2237(14)   | -0.2033(16)  |
| C(5)  | -0.0447(23) | -0.0345(19)  | -0.3478(19)  |
| C(6)  | 0.4952(19)  | -0.0292(19)  | -0.3539(15)  |
| C(7)  | 0.1247(21)  | -0.2389(16)  | 0.0024(15)   |
| C(8)  | 0.1982(26)  | -0.0594(15)  | 0.0966(13)   |
| C(9)  | 0.4221(21)  | -0.1894(21)  | 0.0399(12)   |
| C(10) | -0.0267(17) | -0.2153(15)  | -0.0267(13)  |
| C(11) | 0.3001(26)  | 0.0314(16)   | 0.1096(13)   |
| C(12) | 0.4967(20)  | -0.2529(15)  | -0.0305(12)  |

#### TABLE 2

Final thermal parameters,\* with standard deviations in parentheses

|       | β11     | $\beta_{22}$   | $\beta_{33}$  | $\beta_{23}$ | $\beta_{13}$ | $\beta_{12}$ |
|-------|---------|----------------|---------------|--------------|--------------|--------------|
| Pd    | 166(1)  | 46(1)          | 35(1)         | 3(1)         | 20(1)        | -6(2)        |
| C1    | 419(12) | <b>59(3)</b>   | <b>48(2)</b>  | -23(5)       | 35(8)        | -18(9)       |
| P(1)  | 174(5)  | 57(2)          | 39(2)         | 10(4)        | 14(5)        | 3(6)         |
| P(2)  | 152(5)  | 46(2)          | <b>34(1)</b>  | 5(4)         | 27(4)        | 1(5)         |
| C(1)  | 383(42) | 65(11)         | 76(11)        | -26(23)      | 170(35)      | -32(37)      |
| C(2)  | 200(30) | 165(24)        | 98(14)        | 39(33)       | -37(32)      | -27(43)      |
| C(3)  | 344(41) | 116(18)        | 64(10)        | 27(27)       | 88(34)       | 18(45)       |
| C(4)  | 367(46) | 63(12)         | 110(15)       | 56(25)       | -34(42)      | 11(35)       |
| C(5)  | 235(35) | 142(21)        | 148(21)       | 9(40)        | -91(43)      | -121(45)     |
| C(6)  | 164(25) | 170(22)        | 100(13)       | -1(34)       | 49(29)       | 107(39)      |
| C(7)  | 221(30) | 106(16)        | 116(15)       | 69(31)       | -17(35)      | -81(36)      |
| C(8)  | 381(44) | 91(15)         | 64(10)        | -13(24)      | 103(34)      | -63(41)      |
| C(9)  | 239(32) | 206(26)        | 70(10)        | 61(31)       | 66(29)       | 247(50)      |
| C(10) | 166(25) | 107(15)        | 90(12)        | -36(25)      | 29(27)       | -71(30)      |
| C(11) | 403(46) | 83(13)         | 67(10)        | -48(26)      | -60(36)      | -54(42)      |
| C(12) | 231(28) | <b>98(14</b> ) | <b>74(10)</b> | -5(24)       | 62(27)       | 135(24)      |
|       |         |                |               | . ,          |              |              |

\* Anisotropic temperature factors are in the form:

 $\exp\left[-10^{-4}(h^2\beta_{11} + h^2\beta_{22} + l^2\beta_{33} + 2hk\beta_{12} + 2hl\beta_{13} + 2hl\beta_{23}]\right)\right]$ 

were also recorded by the precession method. Intensities were estimated visually by comparison with a scale and were corrected for Lorentz and polarisation factors. The various layers were placed on the same scale by a leastsquare treatment<sup>3</sup> of the common reflections.

Structure Determination and Refinement.---The position of the palladium atom was found from the Patterson function and those of the other non-hydrogen atoms by Fourier methods. The atomic parameters were refined by the method of least squares using the block-diagonal approximation. A difference-Fourier map calculated at

\* For details, see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20 (items less than 10 pp. are sent as full size copies).

<sup>3</sup> J. E. Monahan, M. Shiffer, and J. P. Shiffer, Acta Cryst., 1967, 22, 322.

the end of the refinement showed one peak of height 1 eÅ<sup>-3</sup> at a position related to that of the palladium atom. The remaining peaks were small and none could be convincingly assigned to any of the hydrogen atoms. For the 1807 observed reflections, the final R was 0.072.

In the final cycle of refinement, the parameter shifts were all  $<\frac{1}{3}\sigma$  and the weighting was given by:  $\sqrt{w} = 1.0/$ Unobserved  $(15.07 + |F_{\rm o}| + 0.007 |F_{\rm o}|^2)^{\frac{1}{2}}$ reflections were given zero weight in the refinement. Scattering factors were those given in ref. 4 and the real part of the dispersion correction was applied in the case of palladium. Final positional parameters are shown in Table 1 and thermal parameters in Table 2. The observed and calculated structure factors are listed in Supplementary Publication No. SUP 20576 (7 pp.).\*

### RESULTS AND DISCUSSION

As expected, the palladium atom has a square planar environment (Figure). The phosphorus atoms are mutually trans and together with the chlorine atom are



Molecular structure, showing the numbering of the atoms

situated at three corners of a distorted square. The hydrogen atom is presumed to occupy the fourth site, trans to chlorine. There is a small but significant departure from coplanarity in respect of the central atoms. The equation of the weighted least-squares mean plane through the palladium, chlorine, and phosphorus atom is -0.9999X - 0.0084Y - 0.0075Z + $2 \cdot 2868 = 0$  where X, Y, Z are in Å and refer to the orthogonal axes  $a, b, c^*$ . The deviations from this plane are: Pd = -0.0044(10), Cl 0.0085(58), P(1) 0.030(4), and P(2) 0.024(3) Å. In addition (Table 3), the two P-Pd-Cl angles  $(95.2 \text{ and } 95.3^{\circ})$  are increased over the ideal value of 90°. Similar features were found 5 in the related platinum compound, (Ph<sub>2</sub>EtP)<sub>2</sub>Pt(H)Cl, whereas in  $(Et_3P)_2$ PtCl<sub>2</sub> the platinum and its co-ordinated atoms were strictly coplanar.6

The phosphine groups are in a staggered arrangement with respect to one another and their dimensions are similar to those found in related compounds. However, the Pd-P-C angles are greater than the tetrahedral

<sup>4 &#</sup>x27;International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962.

 <sup>&</sup>lt;sup>6</sup> R. Eisenberg and J. A. Ibers, *Inorg. Chem.*, 1965, 4, 773.
 <sup>6</sup> G. G. Messmer and E. L. Amma, *Inorg. Chem.*, 1965, 5, 1775.

|    | (a) Bond lengths  | (Å) and their s   | tandard deviations     |                  |
|----|-------------------|-------------------|------------------------|------------------|
|    | Pd-Cl             | 2.427(5)          | C(1) - C(4)            | 1.44(3)          |
|    |                   | .,                | C(2) - C(5)            | 1.45(4)          |
|    | Pd-P(1)           | 2.310(4)          | C(3) - C(6)            | 1.56(3)          |
|    | Pd-P(2)           | 2.306(3)          | C(7) - C(10)           | 1.45(3)          |
|    | Mean Pd-P         | 2.308             | C(8) - C(11)           | 1.56(3)          |
|    |                   |                   | C(9) - C(12)           | 1.53(3)          |
|    | P(1) - C(1)       | 1.86(2)           | Mean CC                | 1.50             |
|    | P(1) - C(2)       | 1.83(2)           |                        |                  |
|    | P(1) - C(3)       | 1.85(2)           |                        |                  |
|    | P(2) - C(7)       | 1.86(2)           |                        |                  |
|    | P(2) - C(8)       | 1.85(2)           |                        |                  |
|    | P(2) - C(9)       | 1.81(2)           |                        |                  |
|    | Mean P-C          | 1.84              |                        |                  |
|    | (b) Bond angles ( | deg.) and their   | standard deviations    |                  |
| Cŀ | -Pd-P(1)          | $95 \cdot 24(15)$ | C(1)-P(1)-C(2)         | 99.8(9)          |
| Cŀ | -Pd-P(2)          | $95 \cdot 28(15)$ | C(1) - P(1) - C(3)     | $102 \cdot 9(9)$ |
|    | Mean Cl–Pd–P      | 95.26             | C(2) - P(1) - C(3)     | 103.0(10)        |
|    |                   |                   | $C(\pi) = D(g) = C(g)$ | 109.6/0          |

| Mean CI-ru-r                | 90.20            | C(2) = 1(1) - C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 103.0(10)         |
|-----------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| $D(1) = D_{1} = D(0)$       | 160.95/14)       | C(7) = P(2) = C(8)<br>C(7) = P(2) = C(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 102.0(9)          |
| P(1)- $Pu$ - $P(2)$         | 109.30(14)       | C(2) - F(2) - C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.0(10)         |
| D = D(1) - C(1)             | 110 5(0)         | C(8) = F(2) = C(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 102.9(10)         |
| Pd - P(1) - C(1)            | 119.9(0)         | Mean C-P-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 101.8             |
| Pd-P(1)-C(2)                | 114.0(7)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |
| Pd - P(1) - C(3)            | $115 \cdot 2(7)$ | P(1)-C(1)-C(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.4(15)         |
| Pd-P(2)-C(7)                | 112.0(7)         | P(1)-C(2)-C(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $116 \cdot 1(17)$ |
| Pd-P(2)-C(8)                | 118.7(7)         | P(1) - C(3) - C(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 111.8(15)         |
| Pd-P(2)-C(9)                | 118.4(7)         | P(2) - C(7) - C(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 112.7(14)         |
| Mean Pd-P-C                 | 116.3            | P(2) - C(8) - C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111.2(14)         |
|                             |                  | P(2) - C(9) - C(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 114.7(15)         |
|                             |                  | $\frac{1}{2} = \frac{1}{2} = \frac{1}$ | 114.9             |
|                             |                  | mean 1°C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 114.9             |
| (c) Some intram             | olecular non-h   | oonding contacts (Å)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |
| $Cl \cdots P(1)$            | 3.500            | $C1 \cdot \cdot \cdot C(6)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.95              |
| $C1 \cdot \cdot \cdot P(2)$ | 3.498            | $C1 \cdot \cdot \cdot C(7)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.60              |
| $C1 \cdots C(3)$            | 3.61             | $C1 \cdots C(10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.91              |
| $C_1 \cdots C_{(5)}$        | 3.01             | $C_1 \cdots C_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.68              |
| 01 0(0)                     | 0.01             | 01 0(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00              |
| (d) Intermolecu             | lar non-bondi    | ng contacts (Å) $<$ 4 Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |
| $Cl \cdots C(7^{III})$      | 3.99             | $C(6) \cdots C(11^{I})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.91              |
| $C_1 \cdots C_{(8^{III})}$  | 3.99             | $C(6) \cdots C(12^{11})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.95              |
| 0,0 )                       | 0.00             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00              |

|                                    | 3.98 | $C(0) \cdots C(12^{m})$              | 3.39 |
|------------------------------------|------|--------------------------------------|------|
| $C(4) \cdot \cdot \cdot C(9^{i})$  | 3.85 | $\dot{C}(10) \cdots \dot{C}(2^{II})$ | 3.86 |
| $C(4) \cdot \cdot \cdot C(10^{3})$ | 3.90 | $C(10) \cdots C(11^{1})$             | 3.71 |
| $C(4) \cdots C(5^{II})$            | 3.84 | $C(11) \cdots C(12^{i})$             | 3.78 |

Superscripts in Roman numerals refer to the following equivalent positions relative to the reference molecule at  $x_i$ , y, z:

| I - x, -y, -z                             | III x, $\frac{1}{2} - y$ , $\frac{1}{2} + z$ |
|-------------------------------------------|----------------------------------------------|
| II $-x, \frac{1}{2} + y, \frac{1}{2} - z$ |                                              |

value and the C-P-C angles less. The Pd-P distances (2.310 and 2.306 Å) are the same but smaller than the sum 7 of the covalent radii, in agreement with there being some degree of multiple bonding between the metal and phosphorus atoms.

The Pd-Cl bond length (2.427 Å) is considerably greater than that found (2.299 Å) in the  $PdCl_4^{2-}$  ion <sup>8</sup> or given by the sum (2.30 Å) of the covalent radii 7 and this increase can be attributed to the strong transinfluence of the hydrogen atom. A very similar distance (2.422 Å) was found for the Pt-Cl bond in  $(Ph_2EtP)_2$ -PtHCl and the direct comparison can be made since the covalent radii of platinum and palladium are the same.

The trans-influence of ligands in square planar and octahedral transition-metal complexes has been discussed in terms of the  $\sigma$ -donor ability of the ligand <sup>9,10</sup> but it has also been considered, at least in part, in terms of its  $\pi$ -acceptor properties.<sup>10</sup> In the present case, the hydrogen and metal atoms are linked by  $\sigma$  bonds and the extent of  $\pi$  bonding between chlorine and the metal, if this is present, is believed to be small. A strong trans-influence is to be expected, and the transinfluence of hydrogen acting through palladium is found to be as strong as that through platinum.

We thank Professor F. Glocking for supplying crystals of the compound and Dr. F. R. Ahmed and his associates <sup>11</sup> for the use of their computer programs.

## [2/1732 Received, 24th July, 1972]

<sup>7</sup> L. Pauling, 'The Nature of the Chemical Bond,' 3rd edn., Cornell University Press, Ithaca, New York, 1960. <sup>8</sup> J. D. Bell, D. Hall, and T. N. Waters, *Acta Cryst.*, 1966, **21**,

440.

<sup>9</sup> L. M. Venanzi, *Chem. in Britain*, 1968, **4**, 162.
<sup>10</sup> R. Mason and A. D. C. Towl, *J. Chem. Soc.* (A), 1970, 1601.
<sup>11</sup> F. R. Ahmed, S. R. Hall, M. E. Pippy, and C. P. Huber, NRC Crystallographic programs for the I.B.M. 360 system, World States and Stat World List of Crystallographic Computer Programs, 2nd edn., Appendix p. 52.

© Copyright 1973 by The Chemical Society