Tetrazoles and Tetrazole Complexes. Part I. Crystal Structure of cis-Bis[dimethyl(phenyl)phosphine]bis-(5-methyltetrazolato)palladium(II)

By Gerald B. Ansell, Chemistry Division, Code 605, Research Department, Michelson Laboratory, Naval Weapons Center China Lake, California 93555

Abstract

Crystals of the title compound are orthorhombic. $a=16 \cdot 265, b=10 \cdot 545, c=13 \cdot 939$, space-group $P 2_{1} 2_{1} 2_{1}$ with with $Z=4$. The structure was refined by full matrix least-squares methods to $R 0.042$ for 1461 statistically significant reflections measured on a diffractometer. A distorted cis-square planar configuration is found around the palladium atom. If phenyl groups are excluded, a pseudo-two-fold axis exists along the line bisecting the two sets of nitrogen and phosphorus ligands. Both tetrazole rings are N (1) bonded, planar and almost regular pentagons with mean bond lengths of 1.33 A . There are no unusually short intermolecular distances.

The X-ray structure analysis of cis-bis[dimethyl-(phenyl)phosphine]bis-(5-methyltetrazolato) palladium(II) (I) was carried out to confirm the assigned cisconfiguration ${ }^{1}$ and to determine whether the two tetrazole rings are bonded to the palladium through $\mathrm{N}(1)$ or $\mathrm{N}(2)$.

EXPERIMENTAL

Crystals of (I) were grown from nitrobenzene.
Crystal Data.- $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{8} \mathrm{P}_{2} \mathrm{Pd}, \quad M=548 \cdot 5$, Orthorhombic, $a=16.265(\pm 0.010), b=10.545(\pm 0.010), c=$ 13.939 (± 0.010), $U=2390.7 \AA^{3}, D_{m}$ (not enough sample available for measurement), $Z=4, D_{\mathrm{c}}=1 \cdot 52, F(000)=$ 1120. Space group $P 2_{1} 2_{1} 2_{1}$ from systematic absences: $h 00$ for $h=2 n+1,0 k 0$ for $k=2 n+1$, and $00 l$ for $l=2 n+1 . \quad \mathrm{Cu}-K_{\alpha}$ radiation, $\lambda=1.5418 \quad \AA, \lambda\left(K_{\alpha_{1}}\right)=$ $1.54050, \lambda\left(K_{\alpha 2}\right)=1.54434 \AA ; \mu\left(\mathrm{Cu}-K_{\alpha}\right)=79.5 \mathrm{~cm}^{-1}$. Cell data were measured on a General Electric single-crystal orienter.

Intensity data ($\mathrm{Cu}-K_{\alpha}$) were collected on a 0.01° incrementing Datex automated diffractometer equipped with a scintillation counter and a pulse-height selector. The crystal was almost rectangular $(0.009 \times 0.012 \mathrm{~cm}$ crosssection) and elongated along the direction it was mounted (parallel to the b axis). Data were collected by the use of $3 \cdot 66^{\circ} 20$ scans with the computed 2θ at the middle of the scan. Background counts of 20 s were taken before and after a scan. A standard intensity and the setting of the crystal were checked at frequent intervals. No serious deterioration of the crystal was evident. However, during refinement it was noted that 26 of the lower-order $0 k l$ intensities measured at low 20 large χ and a constant ϕ values had consistently large F values. These and the $0 k 0$ values which were only measured once were thus refined with different scaling factors from those for the remaining data. Intensities were corrected for the usual Lorentz and polarization factors. Absorption corrections were applied by using the method described by Coppens. ${ }^{2}$ Four planes were used to describe the cross-sectional area of the crystal and a 10×10 Gaussian grid was chosen. The four equivalent $h k l, h k l, h k l, \hbar h l F$ values were averaged. For the structure determination and subsequent refinement reflections were only included if $I(h k l) \geqslant 1 \cdot 5 \sigma(I) \quad[\sigma(I)=$ (total count + total background) $\left.{ }^{\frac{1}{2}}\right] .1558$ independent F values were measured.
${ }^{1}$ J. H. Nelson, D. L. Schmitt, R. A. Henry, D. W. Moore, and H. B. Jonassen, Inorg. Chem., 1970, 9, 2678.
${ }_{2}$ P. Coppens, L. Leiserowitz, and D. Rabinovich, A.cta Cryst., 1965, 8, 1035.
${ }_{3}$ J. Trotter, in 'World List of Crystallographic Computer Programs,' N.R.C., Ottawa, 2nd edn., 1966, p. 20.

Structure Analysis.-The co-ordinates of the palladium atom were found by solution of the three-dimensional Patterson function. ${ }^{3}$ Positions of phosphorus and then all carbon and nitrogen atoms were found by applying the usual Fourier and least-squares ${ }^{4}$ techniques. Isotropic refinement gave $R \mathbf{0 . 0 8 5}$. A difference Fourier synthesis was then computed and used to place hydrogen at the benzene and methyl positions. These were adjusted somewhat to give better trigonal and tetrahedral positions around the respective carbons (Table 1). They

Table 1
Atomic co-ordinates of hydrogen atoms expressed as fractions of unit cell edges $\left(\times 10^{4}\right)$. Numbering denotes carbon atom to which the hydrogen is attached

	\boldsymbol{x}	y	z
$\mathrm{H}(1 a)$	-350	-3229	-1255
$\mathrm{H}(1 b)$	-175	-3825	-131
$\mathrm{H}(1 \mathrm{c})$	179	-4596	-1129
$\mathrm{H}(2 a)$	1402	-4276	-1804
$\mathrm{H}(2 b)$	1937	-2956	-1882
$\mathrm{H}(2 c)$	2148	-4043	-1027
H(4)	1690	-1280	910
H(5)	2260	-1910	2530
H(6)	2200	-4130	3040
H(7)	1650	-5780	1990
H(8)	1110	-5200	0450
$\mathrm{H}(9 a)$	-933	-287	-1712
$\mathrm{H}(9 b)$	-1578	299	-874
$\mathrm{H}(9 \mathrm{c})$	-1467	-1320	-983
$\mathrm{H}(10 a)$	-167	-2237	945
$\mathrm{H}(10 b)$	-742	-1017	1474
$\mathrm{H}(10 c)$	-1166	-2073	638
$\mathrm{H}(12)$	470	380	1560
$\mathrm{H}(13)$	570	2400	2370
H(14)	-250	4150	1800
H (15)	- 1140	4080	350
H (16)	-1250	1950	-450
$\mathrm{H}(18 a)$	1930	1228	159
$\mathrm{H}(18 b)$	1942	2799	377
$\mathrm{H}(18 \mathrm{c})$	2533	2186	-504
$\mathrm{H}(19 a)$	1297	411	-3091
$\mathrm{H}(19 b)$	1952	-277	-3872
$\mathrm{H}(19 c)$	1262	-1187	-3263

were assigned isotropic temperature factors of $6 \AA^{2}$ and were not refined during subsequent cycles of least-squares. Adjusting for scaling factor only reduced R to 0.084 . For the remaining cycles all non-hydrogen atoms were refined anisotropically. To reduce computing time on each cycle, palladium and the phosphorus atoms were refined with two separate batches of fourteen nitrogen
${ }^{4}$ Computer program: ORFLS, A Fortran Crystallographic Least-Squares Program by W. R. Busing, K. O. Martin, and H. A. Levy, modified by W. C. Hamilton to correct for anomalous dispersion, Report ORNL TM 305, Oak Ridge National Laboratory, Tennessee.
and carbon atoms. Refinement was considered complete when all changes were $<\sigma$ (a lower value than if all 279 positional and thermal parameters had been varied together) and R and R^{\prime} were 0.042 and 0.051 [refinement $(A)]$. Finally all positional parameters were refined together [refinement (B)]. After two cycles all changes were less than $0.1 \sigma^{4}$ and R and R^{\prime} remained at 0.042 and 0.051 respectively. During all cycles of least-squares refinement a weighting scheme was adopted such that $w=65 / F_{0}$ for $F_{\mathrm{o}} \geqslant 65$ and $w=1$ for $F_{\mathrm{o}}<65$. Only 247 reflections with $F_{\mathrm{o}}>65$ were affected by this scheme which maintained $w \Delta^{2}$ constant for ranges of increasing F_{0}.

The final atomic co-ordinates and their estimated standard deviations are given in Table 2, anisotropic

Table 2

Final atomic fractional co-ordinates (\AA) with their estimated standard deviations in patentheses (all $\times 1 \mathbf{1 0}^{4}$)

Atom	x	y	z
Pd	901(8)	-713(7)	-863(8)
$\mathrm{P}(1)$	982 (32)	-2831(26)	-611(28)
$\mathrm{P}(\mathbf{2})$	-331(29)	-453(29)	-142(31)
$\mathrm{N}(1)$	846(96)	1211(77)	-1192(89)
$\mathrm{N}(2)$	300 (108)	1679(101)	-1831(102)
$\mathrm{N}(3)$	425(133)	2923(99)	-1876(132)
$\mathrm{N}(4)$	1032(121)	3245(104)	-1277(131)
$\mathrm{N}(5)$	2050(83)	-760(91)	-1508(86)
$\mathrm{N}(6)$	2744(94)	-954(93)	-1002(112)
$\mathrm{N}(7)$	3350(103)	-938(117)	-1605(131)
$\mathrm{N}(8)$	3070(94)	-762(123)	-2519(122)
$\mathrm{C}(1)$	$62(132)$	-3753(122)	-776(151)
C(2)	1675(162)	-3614(132)	-1438(145)
C(3)	1373(112)	-3250(108)	565(125)
C(4)	1689(124)	-2308(118)	1154(116)
C(5)	1999(147)	-2647(150)	2060(138)
C(6)	1986(128)	-3879(125)	2363(137)
$\mathrm{C}(7)$	1656(148)	-4801(135)	1764(141)
C(8)	1372(120)	-4508(106)	900 (140)
$\mathrm{C}(9)$	-1150(110)	-475(164)	-994(157)
$\mathrm{C}(10)$	-648(161)	-1531(113)	785(170)
$\mathrm{C}(11)$	-349(111)	1062(100)	460(108)
$\mathrm{C}(12)$	158(129)	1197(125)	1268(122)
$\mathrm{C}(13)$	168(147)	2312(182)	$1735(152)$
C(14)	-305(140)	3360(143)	1444(163)
$\mathrm{C}(15)$	-773(128)	3241(123)	656(157)
$\mathrm{C}(16)$	-800(118)	2083(111)	144(117)
C(17)	1291(115)	2190(105)	-855(147)
$\mathrm{C}(18)$	1927(142)	2122(150)	-132(169)
$\mathrm{C}(19)$	1665(152)	-451(181)	-3193(143)
C(20)	2262(112)	-656(130)	-2425(124)

temperature factors and their standard deviations in Table 3. These were used to calculate orientations and magnitudes of the principal axes of the thermal ellipsoids shown in Figure 1.5 Information about the most important planes is in Table 4. Bond lengths and angles with their estimated standard deviations are given in Figure 2. Observed and calculated structure factors are listed in Supplementary Publication No. SUP 20572 (6 pp ., 1 microfiche). \dagger The scattering factors for palladium, carbon, nitrogen, and hydrogen were taken from ref. 6; that for Pd was not corrected for anomalous dispersion. Of the 97 reflections regarded as small and statistically unreliable all gave a

For details, see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20 (items less than 10 pp . are sent as full size copies).
${ }^{5}$ C. K. Johnson, ORTEP, Report ORNL 3794, Oak Ridge National Laboratory, Tennessee, 1965.

- ' International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1968.

Table 3
Final anisotropic * thermal parameters ($\times 10^{4}$) with their estimated standard deviations in parentheses

	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Pd	$30(0)$	33(1)	45(0)	0 (0)	2(0)	2(1)
$\mathrm{P}(1)$	36(1)	33(2)	52(2)	$-1(2)$	-2(1)	0 (2)
$\mathrm{P}(2)$	30 (1)	$60(3)$	$52(2)$	-4(2)	7(1)	0 (2)
N(1)	36(4)	33 (8)	57(6)	5(5)	0 (5)	8 (6)
N(2)	51 (6)	83(11)	51 (6)	10(7)	$9(5)$	14(8)
$\mathrm{N}(3)$	72(7)	45(10)	$99(9)$	5 (7)	0(7)	25(9)
N(4)	$59(6)$	71(11)	102(9)	$4(8)$	20(7)	$5(8)$
N(5)	35(4)	$34(8)$	50 (6)	-1(6)	$-4(4)$	-4(7)
$\mathrm{N}(6)$	35(5)	77(12)	83(8)	5 (6)	-8(6)	$-1(9)$
N(7)	34(5)	101(15)	107(11)	$-3(7)$	3(7)	$4(10)$
N(8)	35(5)	115(13)	85(8)	8(8)	10(6)	-5(11)
C(1)	50(6)	73(13)	79(10)	$-8(7)$	-21(8)	$2(10)$
C(2)	$75(9)$	67(14)	72(10)	4(9)	20 (8)	$-18(10)$
$\mathrm{C}(3)$	46(5)	83(12)	100(10)	-1(7)	9 (6)	$-10(9)$
C(4)	47(6)	69(13)	49(8)	-1(8)	$-13(6)$	$-23(9)$
C(5)	58(8)	121(18)	60(9)	-2(10)	$-10(7)$	15(11)
C(6)	45(6)	88(15)	63(9)	10(8)	-6 (6)	$4(10)$
C(7)	59(8)	91 (15)	65(9)	4(9)	$-15(7)$	46(11)
C(8)	46(5)	50(13)	71 (8)	-6(7)	$-3(7)$	16(10)
$\mathrm{C}(9)$	27(5)	177(22)	89(11)	$-2(8)$	-8(6)	$-19(15)$
$\mathrm{C}(10)$	91(10)	40(12)	97(11)	-2(8)	45(10)	13(11)
C(11)	$35(5)$	43(11)	44(7)	$-5(6)$	5 (5)	-7(7)
$\mathrm{C}(12)$	44(6)	88(14)	48(7)	0 (8)	$-5(6)$	$-2(8)$
C(13)	45(7)	196(25)	71(10)	-3(11)	-6(7)	-35(14)
C (14)	41(7)	103(17)	98(13)	3 (10)	4(8)	-23(13)
$\mathrm{C}(15)$	42(7)	76(14)	102(12)	$12(9)$	$-2(8)$	-17(11)
C(16)	33(5)	70(13)	60(8)	7(8)	4 (6)	$-7(9)$
C(17)	39(5)	44(11)	76(9)	0 (6)	$2(7)$	17(11)
$\mathrm{C}(18)$	49(7)	114(18)	99(12)	6(9)	-4(8)	$-34(13)$
$\mathrm{C}(19)$	54(7)	191(24)	61 (9)	$-10(11)$	1(7)	12(13)
$\mathrm{C}(20)$	36(6)	80(13)	65(9)	2(9)	6(6)	$5(11)$
* In the form: $\exp -\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+2\left(\beta_{12} h k+\right.\right.$ $\left.\beta_{13} h l+\beta_{23} k l\right)$. Estimated standard deviations were computed during full-matrix positional and thermal refinement of two separate groups containing $\mathrm{Pd}, \mathrm{P}(1), \mathrm{P}(2)$, fourteen carbon and nitrogen atoms and overall scaling factors.						

Table 4

Plane 1	Mean planes					
	Atoms	Pd	$\mathrm{P}(1)$	$\mathrm{P}(2)$	N(1)	$\mathrm{N}(5)$
	Deviation $/ \AA \times 10^{\mathbf{3}}$	10	-44	53	-4	45
	Equation of plane	$\begin{aligned} & 0.444 x \\ & 0.555= \end{aligned}$	$\begin{aligned} & +0 \cdot 1 \\ & =0 \end{aligned}$	$9 y+$	$\cdot 876 z$	
2	Atoms	N(1)	$\mathrm{N}(2)$	N(3)	$\mathrm{N}(4)$	C(17)
	Deviation/A $\times 10^{3}$	-2	2	-1	0	1
	Equation of plane	$\begin{aligned} &-0.665 x+0.136 y+0.734 z+ \\ & 1.960=0 \end{aligned}$				
3	Atoms	$\begin{array}{lccc} \mathrm{N}(5) & \mathrm{N}(6) & \mathrm{N}(7) & \mathrm{N}(8) \\ \mathrm{C} & \mathrm{C}(20) \\ 0.095 x & -7 & 6 & -2 \\ 0.989 y+ & -2 \cdot 116 z+ \\ 0.724=0 \end{array}$				
	Deviation $/ \mathrm{A} \times 10^{3}$ Equation of plane					
4	Atoms $\quad \mathrm{C}(3)$	C(4)	C(5)	C(6)	C(7)	C(8)
	Deviation $\AA \times 10^{3}$ 0	5	-2	-4	9	-7
	Equation of $-0.906 x+0.145 y+0.398 z+2 \cdot 208=0$ plane					
5	Atoms $\mathrm{C}(11)$) $\mathrm{C}(12)$	C(13)	C(14)	C(15)	C(16)
	$\begin{array}{cc} \text { Deviation/ } & -14 \\ \AA \times 10^{3} & \end{array}$	48	5	-11	4	9
	Equation of $0.760 x$ plane	$0.760 x+0.304 y-0.575 z+0.446=0$				
Inte	rplanar angles 1,2;	1,3; 1,	4; 1,	; 2,3	2,4;	2,5;
	68.1	70.79	596	281.	$23 \cdot 9$	$152 \cdot 4$
	3,4;	3,5; 4				

small F_{c} by use of positional and thermal co-ordinates from refinement (B).

Figure 1 The molecules viewed down the c axis then rotated 20° around the x and 7° around the b axes (x axis horizontal, b axis vertical). Thermal ellipsoids are shown with $\mathbf{3 5} \%$ probability
opening of the $\mathrm{P}(1)-\mathrm{Pd}-\mathrm{P}(2)$ angle to 95.9° from the theoretical value of 90° and a corresponding closure of angle $\mathrm{N}(1)-\mathrm{Pd}-\mathrm{N}(5)$ to $88 \cdot 1^{\circ}$. $\mathrm{Pd}, \mathrm{P}(1), \mathrm{P}(2), \mathrm{N}(\mathrm{I})$, and $\mathrm{N}(5)$ deviate by $<0.06 \AA$ from plane (1). $\mathrm{Pd}-\mathrm{P}$ values of 2.265 and $2.259 \AA$ are in close agreement with the $(2 \cdot 260 \AA)$ value for dichlorobis[dimethyl(phenyl)phosphine]palladium(II) ${ }^{7}$ (II). The $\mathrm{P}-\mathrm{Pd}-\mathrm{P}$ geometry in these compounds is also similar. The two $\mathrm{P}-\mathrm{N}$ bonds are 2.082 and $2.075 \AA$ and within 1σ. The $\mathrm{Pd}-\mathrm{P}$ value is less than the sum of the covalent radii $(1 \cdot 28+1 \cdot 10 \AA)^{8}$ whilst the $\mathrm{P}-\mathrm{N}$ value is greater than this sum $(1.28+0.70=1.98 \AA)$. This is expected and is due to a strong trans-effect where the strongly trans-directing phosphorus ligand causes transbonded tetrazole nitrogens to be weakly bonded and therefore somewhat longer than the sum of their covalent radii. Similar effects have been noted in (II). In (II) there is steric interaction between the two phenyl groups which are related by a two-fold axis. A similar two-fold axis is absent in this compound and there is no evidence for overcrowding and the attendant similar interaction. The $\mathrm{P}(1)-\mathrm{C}(3)-\mathrm{C}(6)$ and $\mathrm{P}(2)-\mathrm{C}(11)-\mathrm{C}(14)$ angles are 179.4 and $177 \cdot 0^{\circ}$ showing little distortion from the theoretical value of 180° and compare with the corresponding angle of $174 \cdot 6^{\circ}$ in (II). The opening

Frgure 2 (a) Bond lengths and (b) bond angles in the molecule with estimated errors. The standard deviation of the bond lengths and angles were calculated from the formula given by G. A. Jeffrey and D. W. Cruickshank, Quart. Rev., 1953, 7, 335. Those for bond angles in the phenyl group are $1.1-1.3$ and $1.0-1.4$, and in the tetrazole group, $0.9-1.2$ and $0.8-1.2 \circ$ The following angles are not shown: $C(9)-P(2)-C(10) 104 \cdot 8(7), C(9)-P(2)-P d 111 \cdot 4(5), C(1)-P(1)-C(2) 100 \cdot 9(7)$, and $C(3)-P(1)-P d$ $113 \cdot 6(4)^{\circ}$
discussion and description of the structure
The palladium atom has an approximately cis-squareplanar environment. There is, however, a significant
${ }^{7}$ L. L. Martin and R. A. Jacobson, Inorg. Chem., 1971, 10, 1975.
of the $\mathrm{P}(\mathbf{1})-\mathrm{Pd}-\mathrm{P}(2)$ angle by $5 \cdot 9^{\circ}$ from the theoretical value may be attributed to the bulky trans-bonded phosphorus ligands arranging themselves to minimize
${ }^{8}$ L. Pauling, 'The Nature of the Chemical Bond,' Cornell University Press, Ithaca, New York, 1960.
such interaction. If the phenyl groups are excluded from the molecule, however, there is a pseudo-two-fold axis in the direction of the line bisecting $\mathrm{P}(1) \cdots \mathrm{P}(2)$ and $\mathrm{N}(1) \cdots \mathrm{N}(5)$. The carbon atoms in the two phenyl rings show no significant deviations from the least-squares planes $(4,5)$ through them (the largest being $0.014 \AA$). The angles within the ring are all within 3σ of the normal value of 120°. Bond distances agree fairly well with the expected value of $1 \cdot 396 \AA$, except for $\mathrm{C}(8)-\mathrm{C}(7), \mathrm{C}(12)-\mathrm{C}(13)$, and $\mathrm{C}(14)-\mathrm{C}(15)$ which are slightly short.

All P-C distances are in excellent agreement with each other, ranging from 1.785 to $1.813 \AA$, and with those in (II) ($1.82 \AA$) and the two isomers of di-iodobis[dimethyl(phenyl)phosphine]palladium(II) (III) ${ }^{9}(1.79-$ 1.84 and $1.79-1.88 \AA$).

Both tetrazole rings are co-ordinated through $\mathrm{N}(1)$ and are planar. They are related by the pseudo-twofold axis described above. No ring atom deviates from the mean planes $(2,3)$ by $>0.007 \AA$. Of the various possible tetrazole configurations around the palladium to be discussed by Nelson et al. ${ }^{1}$ the one found here was considered by them to be the most likely. The planes make angles of $68 \cdot 1$ and 70.7° with the mean plane through $\mathrm{Pd}, \mathrm{P}(\mathbf{1}), \mathrm{P}(2), \mathrm{N}(\mathbf{1})$, and $\mathrm{N}(5)$. Bond lengths appear to be almost identical and equal, mean 1.338 and $1 \cdot 333 \AA$ in both rings. There is no significant difference between $\mathrm{C}-\mathrm{N}$ and $\mathrm{N}-\mathrm{N}$ values. Only $\mathrm{N}(6)-\mathrm{N}(7)(1 \cdot 296 \AA)$ and $\mathrm{N}(7)-\mathrm{N}(8)$ ($1 \cdot 366 \AA$) deviate slightly here and even these are within 3σ of the mean for the ring. These values are indicative of partial double-bonding between all atoms and of the ring being aromatic. These may be compared with other values for tetrazoles. ${ }^{10-16}$ Although quite similar, it is likely that values are sensitive to substituents on the ring, however.

There is a marked difference between these values and ring co-ordinated through $\mathrm{N}(2)$ in bis $[2$-(5 -perfluoromethyltetrazolato) $]-\mu$ - 1,2 -bis(diphenylphosphino)-ethane-bis[1,2-bis(diphenylphosphino)ethane]dicop$\operatorname{per}(I){ }^{17}$ where the combination of $N(2)$ bonding to copper and the substitution of perfluoromethyl at the 5 -position results in an unsymmetrical bond pattern in the tetrazole ring with distances ranging from $1 \cdot 119$ to $1 \cdot 482 \AA$. The $\mathrm{C}-\mathrm{C}$ (methyl) distances of $1 \cdot 446$ and $1 \cdot 461 \AA$ are considerably less than the value for a paraffinic single bond ($1.54 \AA$). This is no doubt due to the presence of adjacent partial double-bonding on the tetrazole ring. Ring angles are close to that expected for a

[^0]regular pentagon 108°. Neither tetrazole ring is attached symmetrically to the Pd atom. In both cases the methyl groups $[C(18)$ and $C(19)]$ have opened the respective C (tetrazole ring) $-\mathrm{N}-\mathrm{Pd}$ angles from the idealized value $\left(126^{\circ}\right)$ to $130 \cdot 4$ and $130 \cdot 5^{\circ}$, with corresponding closure of the $\mathrm{N}-\mathrm{N}-\mathrm{Pd}$ angles from 126 to $122 \cdot 0$ and $122 \cdot 1^{\circ}$. There is some evidence for hydrogen interaction with the octahedral sites of palladium. At the approximate position of one site the $\mathrm{Pd} \cdots \mathrm{HC}(4)$ distance is $2.85 \AA$ with $\quad \mathrm{HC}(4) \cdots \mathrm{Pd}-\mathrm{P}(1), \quad \mathrm{HC}(4) \cdots \mathrm{Pd}-\mathrm{P}(2)$, $\mathrm{HC}(4) \cdots \mathrm{Pd}^{-\mathrm{N}}(1), \mathrm{HC}(4) \cdots \operatorname{Pd}-\mathrm{N}(5)$ angles of $68 \cdot 4$, $92 \cdot 2,114 \cdot 5$, and 88.0°. At approximately the other side $\mathrm{H}(18 a) \cdots \mathrm{Pd}$ is $3.00 \AA . \quad \mathrm{H}(18 a) \cdots \mathrm{Pd}-\mathrm{P}(1)$, $\mathrm{H}(18 a) \cdots \mathrm{Pd}-\mathrm{P}(2), \mathrm{H}(18 a) \cdots \mathrm{Pd}-\mathrm{N}(1), \mathrm{H}(18 a) \cdots \mathrm{Pd}^{-}$ $N(2)$ angles are $124 \cdot 5,101 \cdot 6,62 \cdot 2$, and $57 \cdot 6^{\circ}$. It must be emphasized that hydrogen positions were not refined and $\mathrm{H}(18 a)$ may be in more error than $\mathrm{HC}(4)$ since it is attached to a methyl carbon. Similar

Figure 3 A stereoscopic view of the structure as seen by looking in the directions described in the caption to Figure 1
$\mathrm{Pd} \cdots \mathrm{H}$ interactions have been discussed for (II). ${ }^{9}$ If such an interaction exists, however, the $\mathrm{P}(1)-\mathrm{C}(3)-$ $\mathrm{C}(4)$ and $\mathrm{P}(1)-\mathrm{C}(3)-\mathrm{C}(8), \mathrm{P}(1)-\mathrm{C}(3)-\mathrm{C}(6)$ angles $(119 \cdot 4$, $122 \cdot 0$, and $179 \cdot 4^{\circ}$) show little of the expected distortion ${ }^{9,18}$ from the theoretical values (120, 120, and 180°).

The thermal motion of the palladium is not very anisotropic. However, the slight maximum direction is as expected and within 12° of the normal to Plane (1). The phosphorus atoms are quite isotropic and consistent with their symmetric environment. All intermolecular distances are large enough to suggest there are van der Waals separations between the molecules. The packing of the molecules is shown in Figure 3. ${ }^{5}$

I thank Professor John Nelson and Dr. R. H. Henry for the sample and valuable advice, also the authors of all computer programs used.
[2/1556 Received, 3rd July, 1972]

[^1]
[^0]: ${ }_{10}$ N. A. Bailey and R. Mason, J. Chem. Soc. (A), 1968, 2594.
 ${ }^{10}$ Y. Kushi and Q. Fernando, J. Amer. Chem. Soc., 92, 1970.
 ${ }^{11}$ G. J. Palenik, Acta Cryst., 1963, 16, 590.
 ${ }^{12}$ G. B. Ansell, Chem. Comm., 1970, 684.
 ${ }^{13}$ G. B. Ansell, in the press.

[^1]: ${ }^{14}$ J. H. Bryden, Acta Cryst., 1956. 9, 874.
 ${ }_{15}$ K. Britts and I. L. Karle, Acta Cryst., 1967, 22, 308.
 16 J. H. Bryden, Acta Cryst., 1958, 11, 31.
 17 A. P. Gaughan, K. S. Bownan, and Z. Dori, Inorg. Chem., 1972, 11, 601.
 ${ }_{18}$ S. J. La Placa and J. A. Ibers, Inovg. Chem., 1965, 4, 778.

