The Vibrational Spectra of Hexamethylcyclotrisiloxane and Hexamethylcyclotrisilazane

By D. M. Adams * and W. S. Fernando, Department of Chemistry, University of Leicester, Leicester LE1 7RH

A detailed Raman study of the title compounds, together with new far-i.r. data, has permitted a more complete assignment than previously available.

PARTIAL i.r. and Raman data for hexamethylcyclotrisiloxane and -silazane, $(Me_2SiO)_3$ (I) and $(Me_2SiNH)_3$ (II), have been reported by several authors ¹ but the only detailed Raman study is that of Kriegsmann.² I.r. data for the siloxane (I) down to 400 cm⁻¹ were obtained by Lazarev; ³ since completion of our work i.r. spectra (down to 250 cm⁻¹) of oriented films of the siloxane (I) have been reported.⁴ As we were in possession of more complete Raman and far-i.r. spectra it seemed appropriate to re-examine the assignments, and

¹ For details see I. Haiduč, 'Inorganic Rings,' Part I, Wiley, London, 1970.

³ A. N. Lazarev, Optics and Spectroscopy, 1962, 18, 445.

to test them for consistency with those recently made for hexachlorocyclotriphosphazen (III). 5

Selection Rules.—In the solid state the (SiO)₃ skeleton (I) is planar;⁶ we assume that this is also true for solutions and that D_{3h} rules apply throughout. It crystallises with the symmetry of space group R3m- (C_{3v}^5) with a unimolecular rhombohedral cell.⁶ Consequently there can be no correlation splitting, no optical branch translatory modes, and only three rotatory modes $(A_2 \text{ and } E \text{ in } C_{3v})$ of which only the E mode is optically

 ⁴ S. Dobos, G. Fogarasi, and E. Castellucci, Spectrochim. Acta, 1972, 28, A, 877.
⁵ D. M. Adams and W. S. Fernando, J.C.S. Dalton, 1972, 2503.

⁶ D. M. Adams and W. S. Fernando, J.C.S. Daiton, 1972, 2503.
⁶ G. Peyronel, Atti. Acad. naz. Lincei Rend., 1953, 15, 402;
1954, 16, 78, 231.

² H. Kriegsmann, Z. anorg. Chem., 1959, **298**, 223.

active (i.r. +Raman allowed). Since both site and unitcell groups are C_{2v} the following correlation scheme applies.

It follows that D_{3h} Raman-active modes can become i.r.-active in the solid (and similarly for i.r. modes) but in a molecular crystal we would not expect this to occur with significant development of intensity.

The structure of the silazane (II) is not entirely settled although non-planarity is indicated by both electrondiffraction and n.m.r.¹ Nevertheless the vibrational spectra are well accounted for on the basis of a planar structure of D_{3h} symmetry, as concluded by Kriegsmann.² Possible puckered ring structures are all of lower symmetry and should reveal themselves most clearly in the form of an increased number of polarised lines. We do not find any additional polarised lines, although this does not rule out non-planarity.

For both compounds (I) and (II), methyl being treated as a monatomic group, the vibrational modes are spanned by the representation (1) where R = Ramanactive

$$\Gamma = 4a_1'(\mathbf{R}) + 2a_2' + 6e' (i.r. + \mathbf{R}) + a_1'' + 3a_2'' (i.r.) + 4e''(\mathbf{R})$$
(1)

A complicating feature of the assignments is the need to decide which bands are due to methyl vibrations. v(C-H), $\delta CH_3(s)$, and $\delta CH_3(a)$ come at well characterised frequencies and were readily identified for both compounds. The difficulty arises with the rocking and torsional modes which come within the region of the ring skeletal modes. The most probable model for discussion of the methyl motions is one in which an isolated Me₂Si group of C_{2v} symmetry is considered; if the interactions are large the D_{3h} rules apply. On either model only one torsion and three rocking modes are i.r.-active, but there are differences between the two models for the Raman spectrum.

EXPERIMENTAL

Commercial samples were used. The trimeric silazane was found to contain ca. 20% of the tetramer: they were separated on a spinning-band column, yielding samples that contained a few percent. impurity as indicated by mass spectroscopy. The spectra of the purified trimer showed no sign of the strongest bands of the tetramer.

Raman spectra were obtained with Coderg PH0 and

PH1 instruments with both 632.8 and 488.0 nm excitation and a Cryocirc cold cell. I.r. spectra were obtained with a Perkin-Elmer 225 spectrometer and a Beckman-RIIC FS-620 interferometer.

RESULTS AND DISCUSSION

Results are collected in Tables 1 and 2; the Raman spectrum of the siloxane (I) is illustrated in the Figure.

Raman spectrum of (Me₂SiO)₃ at liquid-nitrogen temperature. Spectral slit width 2 cm⁻¹, 488.0 excitation, 300 mW at sample

The data are in good agreement with Kriegsmann's, except that we have rather more Raman detail plus far-i.r. frequencies and that we find no trace of the weak i.r. band at 455 cm^{-1} for the siloxane (I) in carbon disulphide solution.

Hexamethylcyclotrisiloxane.—Apart from the expected $\nu(C-H)s$ at 2909 and $\delta(CH_3)s$ at 1261 cm⁻¹ there are polarised bands at 723, 584, and 453 cm⁻¹. There is little doubt that internal co-ordinates are substantially mixed and that all three are symmetrical deformations of the entire skeleton. It is likely that Si-C stretching is the dominant contribution in the 723 cm⁻¹ band. Since ν_4 cannot be higher than 350 cm⁻¹, and is quite possibly lower, it is either very weak or has a depolarisation ratio close to 6:7. Exceedingly weak i.r. counter parts have recently been reported for the 453 and 584 cm⁻¹ Raman bands.⁴

 $a_2^{\prime\prime}$ Modes. Bands unique to the i.r. spectrum occur at 162, 232, 391, and 812 cm⁻¹. The positions of these bands correspond with reasonable expectation; they are accordingly labelled v_5 (391), v_6 (812), and v_7 (232). The weak 162 cm⁻¹ feature could be the b_2 torsional mode. The symmetry of the 391 and 812 cm⁻¹ bands has recently been confirmed from oriented-film i.r. measurements.⁴

e' and e'' Modes. Convincing i.r.-Raman coincidences (e' species) are found at 307, 608, 687, 876, and 1020 cm⁻¹, leaving 189, 199, 209, 319, 644, and 794 cm⁻¹ as e'' modes. The e' symmetry of these bands has very recently been confirmed by an oriented-crystal film i.r. study.⁴ The weak point in this argument is that a vanishingly weak i.r. or Raman counterpart could lead to mislabelling of a band; and one of the lower frequencies apparently assigned to the e'' class is almost certainly the missing a_1' (v_4). Also, as shown by the correlation scheme, in the solid *all* vibrations should be both i.r.-and Raman-active so that nothing but coincidences should be found. In addition to the 6e' + 4e'' skeletal

modes, methyl rocking modes are also bound to be present in the 600-1000 cm⁻¹ region.

In the e'' class only v_{17} , v(Si-C) is expected to be high in frequency, *ca*. 650—800 cm⁻¹; the other three will almost certainly be below 350 cm⁻¹. The 794 cm⁻¹ band is quite strong and is reasonably placed for v(Si-C), whereas that at 644 cm⁻¹ is only found in the Raman spectrum of the cooled solid: the higher band is taken to be v_{17} . Below 350 cm⁻¹ we have to select three of the four Raman-unique bands as e'' fundamentals, without a shred of evidence. Most probably one of these four as a methyl rocking mode, and attribute the 687 and 608 cm⁻¹ vibrations to the two ring modes v_{12} and v_{13} . Finally, we tentatively place v_{14} at 819 cm⁻¹ where a weak, but by no means negligible, Raman band occurs.

Our assignment is summarised in Table 3 and differs from Kriegsmann's principally in being more complete, but also in the treatment of the 454 and 689 cm⁻¹ bands. The recent work of Dobos *et al.*⁴ supports our assignment to a_2'' and e' classes but we disagree with several of their mode descriptions, as detailed above. We consider that their very weak i.r. band at 450 cm⁻¹ is a site-allowed

	Band frequen	cies/cm ⁻¹ and assign	ment for $(Me_2SiO)_3$		
	Raman			I.r.	
Melt, 80 °C	Cooled solid	Solution b	Solution'	Solid, Cooled	Solid, Ambient
199s,br	189sh 199m 209sh	199dP		102w	102 W
311 w,br	307w	306?P		232m	232m 306sh 310s
	319w	$323 \mathrm{dP}$			901
454s	452s 532vvw	453P			391m
586s	583vs	$584\mathrm{P}$			
606vw	605w 644vw	608 dP	606m	610m	607s
689wm 724m 794wm	684m 724s 794ms	689dP 723P 799dP	684 vw	724w	687 wm
876yw	819w 867m	872dP	812s 874wm	812m,br 876w	810s,br 874w
~1049vvw,br	1044vw,br 1254w	1021dP	1015s 1255s	1020vs,br 1257m	1012vs,br 1252m
1264mw	1269vw	1261P			
	1376vvw 1399sh			$1375 \mathrm{m}$	1370m
1416m	1408w 1424m	1411dP	1400w		1405 vw
2814vw	$\sim 2800 \mathrm{vw}$			$2850 \mathrm{wm}$	
2909s 2971s	2909s 2974s	2909P 2969dP	2900vw 2962s	2910s 2945sh	2900w 2965s
	Melt, 80 °C 199s,br 311w,br 454s 586s 606vw 689wm 724m 794wm ~1049vvw,br 1264mw 1416m 2814vw 2909s 2971s	Band frequen Raman Cooled solid 199s,br 189sh 199m 209sh 311w,br 307w 319w 454s 452s 532vvw 586s 583vs 606vw 605w 644vw 689wm 684m 724m 724m 724s 794wm 794ms 819w 867m ~1049vvw,br 1044vw,br 1264mw 1269vw 1376vvw 1399sh 1408w 1408w 1416m 1424m 2814vw ~2800vw 2909s 2909s 2971s 2909s	Band frequencies/cm ⁻¹ and assign Raman Cooled solid Solution b 199s,br 189sh 199m 209sh 199dP 311w,br 307w 306?P 311w,br 307w 323dP 454s 452s 453P 586s 583vs 584P 606vw 605w 608dP 689wm 684m 689dP 724m 724s 723P 794wm 794ms 799dP 819w 1021dP 1264mw 1269vw 1376vvw 1320P 1416m 1424m 1411dP 2814vw ~2800vw 2909s 2909s 2909s 2909P 2971s 2974s 2909P	Band frequencies/cm ⁻¹ and assignment for $(Me_2SiO)_3$ Raman Melt, 80 °C Cooled solid Solution b Solution' 199s,br 189sh 199m 199dP Solution b Solution' 311w,br 307w 306?P Solution' Solution' 454s 452s 453P Solution' Sologen colspan="2">Sologen colspan="2"Sologen colspan="2">Sologen colspan="2"Sologen colspan="2">Sologen colspan="2"Sologen colspan="2"Sologen colspan="2">Sologen colspan="2"Sologen colspan="2"Sologen colspan="2"Sologen colspan="2"Sologen colspan="2">Sologen colspan="2"Sologen colspan="2"Sologen colspan="2"Sologen colspan="2"Sologen colspan="2"Sologen colspan="2"Sologen colspan="2"Sologen colspan="2"Sologen colspan="2">Sologen colspan="2"Sologen colspan="2"Sologen colspan="2"Sologen colspan="2">Sologen colspan="2"Sologen colspan="2"Sologen colspan="2"Sologen colspan="2">Sologen colspan="2"Sologen colspan="2"Sologen colspan="2"Sologen colspan="2"Sologen colspan="2">Sologen colspan="2"Sologen colspan=	Band frequencies/cm ⁻¹ and assignment for $(Me_2SiO)_3$ Raman I.r. Melt, 80 °C Cooled solid Solution b Solution' Solid, Cooled 162w 199s, br 189sh 199m 199dP 232m 311w, br 307w 306?P 232m 311w, br 319w 323dP 232m 454s 452s 453P 586s 586s 583vs 584P 606m 610m 689wm 684im 689dP 604ww 724w 724m 724s 723P 724w 794vm 799dP 812s 812m, br 876vw 867m 872dP 874wm 876w ~1049vvw, br 1021dP 1015s 1020vs, br 1020vs, br 1264mw 1261P 1376vvw 1376vvw 1376vvw 1376w 1416m 1424m 1411dP 1400w 1375m 1375m 2814vw ~2800vw 2909F 2900vw 2910s 2910s <t< td=""></t<>

TABLE 1

• Modes are labelled only when this is fairly unambiguous; see text. • In CCl_4 , CH_2Cl_2 , or C_6H_6 according to clear range of solvent. • In CS_2 and CCl_4 .

is v_4 . We arbitrarily place v_4 at 199 cm⁻¹ thereby making three assignments to the e'' class, two of which should be correct.

Six e' skeletal modes are required of which two (v_{15}, v_{16}) will be below 350 cm⁻¹: since we have only one in this region we should presumably add an e' label to the complex of Raman bands at *ca*. 200 cm⁻¹. It is likely that one or more of the higher e' modes is a methyl rock: we have only qualitative arguments to help us decide. A band near 1000 cm⁻¹ is known to be characteristic of Si-O bonded compounds;¹ we therefore accept 1020 cm⁻¹ as v_{11} . In comparison with other ring systems the second e' ring stretching vibration (v_{12}) is unlikely to be as close to v_{11} as 876 cm⁻¹; for this reason we accept this

counterpart of the a_1' Raman line at 453 cm⁻¹ and not an e' fundamental. Since our Raman and i.r. data are the most complete yet obtained for the siloxane (I), we believe the basis for our assignment is firmer.

Hexamethylcyclotrisilazane.—We confirm Kriegsmann's suspicion that his 582 cm⁻¹ band is due to an instrumental feature.¹ Our Raman data for the solid are entirely new, although our discussion is handicapped by ignorance of the crystal structure and unit-cell occupancy.

We confine our discussion to additions to or differences from Kriegsmann's. Owing to the similarity of the compounds (I) and (II) large differences in spectrum are not expected. Accordingly we proceed by analogy with the assignment of the siloxane (I). Both the 789 and 814 cm⁻¹ i.r. bands have exceedingly weak Raman counterparts. We can interpret this to mean *either* that both are e' (coincidences required) or

TABLE 2 Band frequencies/cm⁻¹ and assignments for $(Me_3SiNH)_3$

	R	I.r.					
Liquid-nitrogen							
Assignment	temp.	, Liquid	CS_2 solution				
$e^{\prime\prime}(+e^{\prime})$	_	(~172sh	-				
a'1, v4	192m,br	{ 190m					
e''		∖~208sh					
a2′′,v4	233w	232w					
	269vw						
	285vw		282sh				
e',ν ₁₅	322vw,br		300s				
$a_{2}^{\prime\prime}$, v ₅		100 T	393wm				
a_1	433s	430s,P					
e', y ₁₃	615sh	613sh	617m,br				
a_1	0385 678m)	640vs,P	000				
o' 11	600m	682s	677WIII				
e, v ₁₂	7195	715m P					
<i>u</i> ₁	735	/10m,1					
e'' No.	770sh]						
<i>v</i> ,•17	777m	774wm					
as".ve	790sh		789s				
e'.V14	815vvw		814m				
CII	853w	050					
$\rho_r CH_3$	865vvw∫	856vw	864wm				
<i></i>	928vw,br}	091	0950				
<i>e</i> , v ₁₁	938vw,br∫	931VW,DI	9208				
			1008vw				
δNH		1167vvw	1162s				
8CH_S	1250w	1253wm P	1250s				
001130	1255shJ	1410	1400				
NOLL	1410m	1410wm	1400vw				
ocH ₃ a	11460	1460	\sim 1430vvw				
	(1400vw,b)	1402VW,DI 1550rm br					
	C	1000VW,DI 9860vw P					
v(C-H)	29005	2805s P	2895yrw				
	29625	2955m	2958m				
v(N-H)	3412m	3405m,P	3405wm				

that one is e', the other a_{2}'' with the coincidence resulting from non-planarity of the ring (see correlation scheme). There is no *a priori* means of deciding between these alternatives. We chose the order $v_{14} e' 814$; $v_6 a_{2}''$ 789 cm⁻¹, not least because if both are labelled e' there is no other prominent i.r. band in this region to label v_6 . In contrast to the siloxane (I) there are several bands which split at low temperature; this could be due to site and correlation effects if there is more than one molecule per unit cell, or to relaxation of selection rules owing to non-planarity of the ring. Since the doublets concerned are associated with what appear to be *e*-modes, we attribute the splitting to unit-cell effects, because *e*-modes cannot split if the symmetry is reduced to C_{3e} .

Below 300 cm⁻¹ the assignment is rather speculative

and is made by analogy with (I). We may have missed one or more weak i.r. bands below 200 cm^{-1} .

Comparison of Compounds (I), (II), and (III).—Comparison of ring mode assignments for compounds (I) and

TABLE 3

Approximate mode descriptions, band frequencies/cm⁻¹, and assignments for skeletal modes of compounds (I) and (II)

			(I)	(II)
a_1'	ν1	Ring breathing ^a	724	712
	ν_2	Ring in-plane deformation ^a	584	638
	ν ₃	v(Si-C)s ^a	453	433
	ν4	$\delta(SiC_2)s^{a}$	199 ^b	190 ^b
$a_{2}^{\prime\prime}$	ν ₅	Ring out-of-plane deformation	391	393
-	Va	$\nu(Si-C)a$	812	789
	ν7	$\rho_r SiC_2$	232	232
a.''	N-	or SiC.	<u> </u>	_
a.'	*8 V.	Ring stretch		_
	ν ₁₀	$p_{\omega} \operatorname{SiC}_{2}$		-
e'	٧.,	Ring stretch	1020	925
	V10	Ring stretch	689	677
	V12	Ring in-plane deformation	608	615
	V14	v(Si-C)s	819	814
	V15	Po SiC 4	306	300
	ν ₁₆	$\delta(SiC_2)^{a}$	(∼200) °	(~200)
e''	V17	v(Si-C)a	799	774
	V10	Ring out-of-plane deformation	323	322
	V10	p_{τ} SiC ₀ ^a	209	208
	· 19 Voo	p. SiC. a	189	172
	- 20	112	-50	

[•] Not individually assigned owing to probable internal co-ordinate mixing. [•] Arbitrarily assigned to an observed band; see text. [•] Presumed frequency; see text.

TABLE 4

Comparison	of	hexatomic	ring	vibrational	$frequencies/cm^{-1}$
------------	----	-----------	------	-------------	-----------------------

C ₆ H ₆	D_{6h}		D_{3h}	(PNCl ₂) ₃	(Me ₂ SiO) ₃	(Me ₂ SiNH)
1599	ν	e_{2q}	e'	1226	1020	925
1482	ν	e_{1u}	e'	875	689	677
1309	ν	b_{2n}	a_{2}'			
1010	δ	$b_{1,\mu}^{}$	a_1'	786	584	638
993	ν	a_{1g}	a_1'	669	453	433
707	π	b_{2q}	$a_2^{\prime\prime}$	619	391	393
606	δ	e 24	e7	528	608	615
398	π	e_{2u}	e''	205	323	322

(II), arrived at independently of those for $(PNCl_2)_3$ (III), are seen to be mutually consistent (Table 4) with the possible exception of two of the lower frequencies. These trends, including comparison with benzene, lend support to the majority of our assignments for (I) and (II).

We thank Dr. I. M. T. Davidson and Mr. J. F. Thompson for bringing this problem to our attention and for assistance with purification of the silazane. We thank Vidyodaya University of Ceylon for a grant (to W. S. F.).

[2/1258 Received, 5th June, 1972]