The Mössbauer Effect in Tin(II) Compounds. Part XIII.¹ Data for the Products from Molten Caesium–Tin(II)–Halide Systems

By J. D. Donaldson * and J. Silver, Department of Chemistry, Chelsea College, Manresa Road, London S.W.3

The ¹¹⁹Sn Mössbauer parameters and the X-ray diffraction powder data for the products obtained from the molten mixed halide systems $CsSnX_a-CsSnX'_a$ (X and X' = F⁻, Cl⁻, Br⁻, and l⁻) are reported. The nature of the solidusliquidus curves for these systems and the colours of the mixtures at the melting points, suggest that every phase has a cubic high-temperature modification. Two types of product are obtained from the cooled melts (i) complexes containing tris(ligand)stannate(II) species and (ii) compositions which have cubic or near cubic unit cells based on the perovskite lattice. The Mössbauer data for the latter materials are characterised by relatively high chemical shifts and narrow line widths which suggest that the tin(11) is in a regular octahedral environment. ~ Even the presence of F- in the CsSnBr_a and CsSnl_a lattices does not lead to the disruption of the tin(11) bonding electrons normally associated with the presence of Sn-F bonds.

TIN in most of its tin(II) derivatives² has a trigonal pyramidal environment which can be described in terms of distortion of an octahedral co-ordination. This distortion could arise from a tendency towards covalency and sp^3 hybridisation of the tin(II) orbitals, or from crystal-field effects.² We have, however, recently described³ a series of caesium trihalogeno-stannates(II), $CsSnBr_{3-x}Cl_x$, which have cubic unit cells. Their structures are of the perovskite-type and the tin(II) is apparently in a regular octahedral site. Because of its size, tin(II) should be in an octahedral environment in ionic halides. Any distortion of this co-ordination will depend upon whether the stabilisation energy gained from s-p mixing is large enough to overcome the forces producing the regular octahedron. The small energy separation² between the ground and first excited states of the tin(II) ion generally leads to distortion. The stabilisation energy will, however, decrease rapidly with increasing tin-halide bond distance and this means that crystal field distortion should be greatest in the tin(II) fluorides. We now report on a study of the products obtained from the molten mixed halide systems CsSnX₃--CsSnX'₃. The ¹¹⁹Sn Mössbauer and X-ray diffraction data for the products are discussed in terms of the probable tin(II) environments.

The solid products $CsSnF_{3-x}X_x$ (X = Cl, Br, or I), $CsSnCl_{3-x}X_x$ (X = Br or I) and $CsSnBr_{3-x}I$ were obtained by cooling melts containing the required proportions of caesium and tin(II) halides. The four possible mixed halide phases CsSnX'X''X''' were also obtained from melts containing the necessary proportions of caesium and tin(II) halides.

The solidus-liquidus lines show that continuous variation in composition is achieved at the melting temperature for all the systems studied. CsSnBr₃ is known³ to be cubic $(a = 5.795 \pm 0.002 \text{ Å})$ at room temperature while CsSnCl₃ has a high temperature cubic form.^{3,4} We have shown by X-ray powder diffraction studies that the transition to the high-temperature form of CsSnCl₃ occurs at 90 °C and that the cubic form has a cell edge of 5.560 ± 0.005 Å. CsSnI₃ has a yellow lowtemperature form which has an orthorhombic cell, and

a high temperature black form. $CsPbI_3$ is also known to exist in two modifications, a yellow form and a black form said to be tetragonal.⁵ Yellow CsPbI₃ is orthorhombic $(a = 4.797 \pm 0.005; b = 10.46 \pm 0.01; c =$ 17.78 ± 0.02 Å) and is a distorted perovskite, since $CsSnI_3$ has a similar unit cell ($a = 4.790 \pm 0.003$; $b = 10.43 \pm 0.01$; $c = 17.63 \pm 0.02$ Å) it is reasonable to suppose it also has a similar structure.

When $CsSnF_3$ is heated to a temperature near its melting point and cooled new lines appear on its X-ray powder photograph. These lines are consistent with the existence of a cubic form of CsSnF₃ with a = 4.47 Å. It therefore appears that all of the caesium trihalogenostannates(II), with the possible exception of CsSnI₃, have cubic forms which are stable just below their melting points, and that this explains the nature of the solidus-liquidus lines for these systems. All of the cubic trihalogenostannates(II) are more highly coloured than the non-cubic forms, and we have previously suggested ³ that this is due to the presence of low energy conductance bands in their perovskite-type structures. The colours obtained in these systems at high temperatures are:

CsSnF ₃	CsSnF ₂ Cl	$\begin{array}{c} \mathrm{Cs_2Sn_2F_3Cl_3}\\ \mathrm{cream} \end{array}$	$CsSnFCl_2$	CsSnCl ₃
grey	light grey		cream-yellow	yellow
CsSnF ₃	CsSnF ₂ Br	${\mathop{\rm Cs} olimits}_2{\mathop{ m Sn} olimits}_2{\mathop{ m F} olimits}_3{\mathop{ m Br} olimits}_3{\mathop{ m steel} olimits}$	$CsSnFBr_2$	SsCnBr ₃
grey	dark grey		black	black
CsSnF ₃	$csSnF_2I$	$Cs_2Sn_2F_3I_3$	CsSnFI ₂	CsSnI ₃
grey	brown	brown-black	black	black
CsSnCl ₃	CsSnCl ₂ Br	CsSn ₂ Cl ₃ Br ₃	CsSnClBr ₃	CsSnBr ₃
yellow	orange	bright red	dark red	black
CsSnCl ₃	$CsSnCl_2I$	$cs_2Sn_2Cl_3I_3$	CsSnClI ₃	CsSnI ₃
yellow	yellow-brown	black	black	black
CsSnBr ₃	CsSnBr₂I	$\operatorname{Cs_2Sn_2Br_3I_3}_{\operatorname{black}}$	CsSnI ₂ Br	CsSnI ₃
black	black		black	black
All low temperature systems where CsSnL, is in excess are				

vellow.

The materials obtained at room temperature from mixed halide systems containing Br have cubic unit cells over a range of composition. The ranges over which cubic phases in the various systems are found are: 40-

Part XII, S. R. A. Bird, J. D. Doualdson, and J. Silver, J.C.S. Dalton, 1972, 1950.
 ² J. D. Donaldson, Progr. Inorg. Chem., 1967, 8, 287.

³ J. Barrett, S. R. A. Bird, J. D. Donaldson, and J. Silver, J. Chem. Soc. (A), 1971, 3105. ⁴ F. R. Poulson and S. E. Rasmussen, Acta Chem. Scand.,

^{1970, 24, 150.}

⁵ K. N. Møller, Mat. Fys. Medd. Dan. Vid. Selsk, 1959, 32.

100% CsSnBr₃ in the CsSnCl₃-CsSnBr₃ system, 60-100% CsSnBr_a in the CsSnF_a-CsSnBr_a system and in the CsSnBr_a-CsSnI_a system from 92-100% CsSnBr_a. The formation of continuous ranges of solid solutions with cubic cell dimensions in the Br-containing systems is consistent with simple replacement of one halide ion by another in the perovskite-type lattices.

Ranges of solid solution in the CsSnI₃ rich systems also appear to exist. These are based on the orthorhombic CsSnI₃ structure but the data obtained are complicated by the ease of oxidation of the material to Cs₂SnI₆.6

The powder data for the room temperature products from CsSnF₃-CsSnX₃ systems show distinct phases at CsSnF₂X. The data for materials with composition between CsSnF₃ and CsSnF₂X show the presence of both of these materials. The CsSnF₃-CsSnCl₃ system also has a distinct phase at CsSnCl₂F but the CsSnF₃-CsSnX₃ (X = Br or I) systems have cubic and orthorhombic room temperature products at the 1:2 compositions. The powder data for the distinct phases are more like those of the materials which are known to contain distinct SnX_3^- ions than those of cubic $CsSnBr_3$.

The X-ray powder data for CsSnClBrF are complicated and suggest that the material is not based on a perovskite lattice. The data for CsSnClBrI, CsSnClIF, and CsSnIBrF are those of distorted perovskite structures.

The ¹¹⁹Sn Mössbauer data for the caesium tin(II) halides obtained from molten systems are in Tables 1

TABLE 1

The ¹¹⁹Sn Mössbauer data for caesium tin(II) halides

(a) Complexes with distinct powder patterns not based on the perovskite lattice $* \pm 0.03$ $\Lambda \pm 0.03$ $\Gamma \pm 0.03$

	0 * ± 0.03	$\Delta \pm 0.03$	$1^{\circ} \pm 0.09$
	mm s ⁻¹	mm s ⁻¹	mm s ⁻¹
1 CsSnF ₃	0.93	1.86	
2 CsSnF ₂ Cl	1.02	1.90	
3 CsSnCl ₂ F	1.47	1.00	
4 $CsSnCl_3$	1.59	0.90	
(monoclinic)			
$5 \text{ CsSnF}_2\text{Br}$	1.02	1.96	
6 CsSnF_2 I	0.96	1.82	
7 CsSnClBrF	1.58	1.08	
(b) Distinct phases based	l on perovskite	lattice	
8 Cubic CsSnCl ₃	1.70	ca. 0	$1 \cdot 42$
9 Cubic CsSnBr ₃	1.93	ca. 0	0.79
10 Orthorhombic CsSnI ₃	1.92	ca. 0	0.83
* 8 Relat	ive to α-Sn at	80 K.	

and 2. Compounds 1-7 are distinct X-ray phases and their Mössbauer data are similar to those for materials known to contain the trifluorostannate(II) ⁷⁻⁹ ions. The X-ray and Mössbauer 10,11 data are thus consistent with the presence of $SnX_2X'^-$ ions in compounds 2, 3, 5, and 6 and $SnXX'X''^-$ in compound 7. The chemical shifts (δ) for the series of compounds CsSnF_{3-n}Cl_n (n = 0-3)

 W. Werker, Rec. Trav. chim., 1939, 58, 257.
 J. D. Donaldson and B. J. Senior, J. Chem. Soc. (A), 1966, 1798. J. D. Donaldson and R. Oteng, J. Chem. Soc. (A), 1969, increase with n. The chemical shifts for the bromide and iodide-containing materials (compounds 5-7) are also higher than that for $CsSnF_3$. In view of the known tendency $^{2,7-9}$ of F to form strong bonds to $\mathrm{Sn^{II}}$ these are the expected trends for the replacement of F by other halogens. The trends in quadrupole splittings (Δ)

TABLE 2

Molar compositions representing solid solutions based on the perovskite lattice

	8 * . 0.03	$\Lambda + 0.02$	T = 0.02
Composition	0 ± 0.05	$\Delta \pm 0.03$	1 ± 0.03
composition	num s -	mm s -	mm s ·
11 CsSnBr ₂ F	$1 \cdot 92$	ca. 0	0.84
12 Cs ₂ Sn ₂ Br ₅ F	1.93	ca. 0	0.83
13 CsSnFI ₂	1.87	ca. 0	0.91
14 Cs ₂ Sn ₂ FI ₅	1.91	ca. 0	0.83
15 Cs ₂ Sn ₂ Cl ₅ I	1.74	ca. 0	1.42
16 CsŠnČl ₂ I	1.76	ca. 0	1.29
17 Cs ₂ Sn ₂ Čl ₃ I ₃	1.77	ca. 0	1.24
18 CsŠnČlI,	1.84	ca. 0	1.10
19 Cs _s Sn _s ClI ₅	1.92	ca. 0	1.08
20 Cs_Sn_Br_I	1.93	ca. 0	0.83
21 CsŠnĒr _a I	1.92	ca. 0	0.84
22 Cs,Sn,Br,I	1.80	ca. 0	0.96
23 CsSnBrL	1.86	ca. 0	0.93
24 Cs.Sn.BrI.	1.91	ca. 0	0.91
25 CsŠnČlIF	1.86	ca. 0	0.91
26 CsSnClBrI	1.86	ca. 0	0.95
27 CsSnClFI	1.87	ca. 0	0.95
	* * * * *		5 00

* δ Relative to α-Sn at 80 K.

for these complexes are interesting in that all species SnF_2X^- have higher, and $SnFX_2^-$ lower, values of Δ than $CsSnF_3$. The imbalance in *p*-electron density around the tin atoms must therefore be at a maximum for complexes containing two Sn-F bonds. The complexes with only one Sn-F bond have splittings closer to that for CsSnCl₃ than CsSnF₃ and are much lower than those normally observed for fluoride containing tin(II) materials. Compounds 8 and 9 are also distinct X-ray phases having cubic unit cells based on the perovskite lattice. The tin in these compounds is presumably in a regular octahedral environment and this is reflected in relatively high chemical shifts and narrow line widths (Γ) in their Mössbauer data. We have previously discussed³ the phases obtained from the CsSnBr₃-CsSnCl₃ system. Although CsSnI₃ (compound 10) has an orthorhombic cell its Mössbauer data suggests that the tin atoms are in an octahedral environment.

Table 2 contains the Mössbauer data for cooled melts of various compositions which are not distinct X-ray phases but are based on ranges of solid solution around perovskite-type lattices. The data are characterised by the relatively high chemical shifts and narrow lines which are indicative of the presence of octahedral coordinated tin(II). The Sn-Cl bond length in cubic $CsSnCl_3$ (2.78 Å)^{3,4} is known to be longer than those found in the monoclinic modification (2.55, 2.52, and2.50 Å). This is consistent with an increase in the

⁹ J. D. Donaldson and B. J. Senior, J. Chem. Soc. (A), 1967, 1821.

 ¹⁰ R. J. M. Clark, L. Marescu, and P. J. Smith, J. Chem. Soc. (A), 1970, 2687.
 ¹¹ M. Goldstein and G. C. Tok, J. Chem. Soc. (A), 1971, 2303.

electrostatic character of the Sn–X bonds in the materials containing octahedral co-ordinated tin(II) environments. Compositions $CsSnBr_2F$ and $Cs_2Sn_2Br_5F$ have the same powder data as $CsSnBr_3$ and their Mössbauer parameters are also very similar. Here the Sn^{II} ion must be in an octahedral environment which is not distorted by the presence of F⁻. This means the Sn–F bonds must be long and that F⁻ ions are randomly distributed on sites that should be occupied by the Br⁻. The Cs⁺ and Br⁻ ions must hold the lattice together and dictate the lattice cell size and prevent the close approach of F⁻ which would disrupt the tin(II) bonding orbitals.

The other F⁻-containing compositions (13, 14, 25, 27) in Table 2 have similar Mössbauer data and must have similar tin(II) environments. The only other fluorinecontaining tin(II) material which has Mössbauer data indicative of an undistorted octahedral environment is $Sn(SbF_6)_2^{12}$ ($\delta = 2.34$, $\Delta = 0$, $\Gamma = 1.21$).

The line width of 1.42 for cubic CsSnCl₃ suggest a slight distortion of the electronic environment of Sn^{II} in its material. It is interesting that the Γ becomes narrower in the CsSnCl₃-CsSnI₃ systems (compounds 15-18) as the iodine content increases and moves towards the octahedral tin environment of CsSnI₃.

Two types of caesium tin(II) halides have been identified in the systems studied: (i) materials which have X-ray and Mössbauer data which suggest that they contain pyramidal tris(ligand)stannate(II) species and (ii) compositions which have cubic or near cubic unit cells based on the perovskite lattice and which show a range of solid solution around CsSnX₃. The nature of the solidus-liquidus lines and the colours obtained at high-temperatures suggest that all of the phases have high-temperature cubic lattices although some of these transform to non-cubic tris(ligand)stannates(II) on cooling. All of the caesium tin(II) halides which contain predominantly Br- or I- have perovskite or distorted perovskite lattices in which the packing forces involved must give lattice energies high enough to prevent the distortive forces of s-p mixing in tin(II) materials. Even the presence of F^{-} in $CsSnBr_{3}$ or $CsSnI_{3}$ lattices, does not lead to distortion of the tin(II) bonding orbitals as it does in most other compounds containing Sn-F bonds.

EXPERIMENTAL

All of the phases reported were prepared from molten systems containing the required proportions of caesium and tin(II) halides. The melts were kept under an atmosphere of oxygen-free nitrogen and the X-ray diffraction powder patterns of the products were obtained with $Cu-K_{\alpha}$ radiation using Phillips 11.64 cameras.

The $\text{CsSnF}_3-\text{CsSnCl}_3$ System.—The solidus-liquidus line for this molten system is a smooth descending curve from CsSnF_3 to $\text{Cs}_2\text{Sn}_2\text{F}_3\text{Cl}_3$ and then it rises sharply to CsSnCl_3 . The only distinct phases identified in the cooled melts were CsSnF_3 , CsSnF_2Cl , CsSnCl_2F , and CsSnCl_3 . All other

¹² T. Birchall, B. Della Valle, E. Martineau, and J. B. Milne, J. Chem. Soc. (A), 1971, 1855.

products were mixtures of these phases and none of them had cubic cells although the cooled melt of $CsSnF_3$ contained lines in addition to its known pattern which could be indexed as a cubic cell with a = 4.47 Å. The powder data for $CsSnCl_3$ were based on its known monoclinic cell and those for the other distinct phases are:

CsSnF₂Cl: 4·16vw, 4·06vw, 3·79vw, 3·76vs, 3·62w, 3·50w, 3·41vs, 3·11s, 3·02w, 2·98w, 2·89vw, 2·85vw, 2·77vw, 2·70s, 2·43s, 2·38s, 2·13w, 2·11w, 2·06m, 2·03w, 1·984s, 1·929m, 1·875mw, 1·844w, 1·803w.

CsSnCl₂F: 7·03vw, 6·33w, 5·56m, 4·56w, 4·27w, 4·16m, 3·82s, 3·69w, 3·59m, 3·50m, 3·45m, 3·42w, 3·35w, 3·27m, 3·22vvw, 3·13mw, 3·08mw, 3·00m, 2·97m, 2·92w, 2·83w, 2·76m, 2·69m, 2·39m, 2·35m, 2·27s, 2·25w, 2·16w, 2·13w, 2·12w, 2·07w, 2·02w, 1·986w, 1·943w.

The CsSnF_3 -CsSnBr₃ System.—The solidus–liquidus line is a smooth curve with a minimum at 60% CsSnF₃. The products identified in the cooled melts containing >60% CsSnBr₃ had cubic unit cells identical to that of CsSnBr₃ ($a = 5.795 \pm 0.002$ Å) and the only other distinct phases were CsSnF₃ and CsSnF₂Br.

CsSnF₂Br: 4·47vw, 4·13m, 3·96vw, 3·77s, 3·43s, 3·40vw, 3·25w, 3·13s, 3·04w, 2·92m, 2·89m, 2·79m, 2·58w, 2·48w, 2·38ms, 2·37ms, 2·11vw, 2·06ms, 2·01ms, 1·945w, 1·903w, 1·888s, 1·834m, 1·785w.

The CsSnF_3 - CsSnI_3 System.—The solidus-liquidus line falls steeply from CsSnF_3 to 90% CsSnF_3 , and rises to CsSnI_3 with incongruities at 58, 54, and 4% CsSnF_3 . The iodide rich products from the melts ($\text{CsSnI}_3 > 80\%$) had orthorhombic unit cells based on that of CsSnI_3 (Table 3)

TABLE 3

CsSnI₃

Yellow orth	orhombic		
$a = 4.790 \pm$	0.003; $b = 10.43$	$t \pm 0.01; c =$	17.63 \pm 0.02 Å
I	$d/{ m \AA~obs.}$	hkl	d/Å(calc.)
\mathbf{m}	8.98	011	9.00
w	6.75	012	6.73
m	4.23	111	4.23
vvw	4.06	014	4.06
m	3.88	023	3.90
s	3.51	113	3.50
s	3.45	121	3.46
vs	3.35	015	3.35
vs	3.27	122	3.27
s	2.84	105	2.84
w	2.78	131	2.78
w	2.73	034	2.73
m	2.68	132	2.68
s	2.38	043	2.38
-			

CsSnCl₃

renow cubic			
	$a = 5 \cdot 1$	56 at 90 °C	
vvw	5.57	100	5.56
vs	3.92	110	3.916
w	$3 \cdot 209$	111	3.205
vs	2.780	200	2.780
w	$2 \cdot 481$	210	2.483
vs	$2 \cdot 267$	211	2.266
vs	1.964	220	1.962
vw	1.858	300 221	1.859
m	1.758	310	1.756
w	1.605	222	1.603
m	1.484	321	1.483

and the product of composition $CsSnFI_2$ had a powder pattern based on this cell but with a few additional lines. The high temperature phases in this system on the $CsSnI_3$

rich side were black but on grinding the yellow orthorhombic phase was also formed. The distinct phases identified in the fluoride rich regions were $CsSnF_a$ and $CsSnF_2I$.

 $CsSnF_2I: 5\cdot 16m, \ 4\cdot 16w, \ 3\cdot 82m, \ 3\cdot 52m, \ 3\cdot 36vs, \ 3\cdot 28w, \ 3\cdot 11m, \ 2\cdot 74m, \ 2\cdot 70w, \ 2\cdot 58w, \ 2\cdot 48w, \ 2\cdot 40m, \ 2\cdot 34vs, \ 2\cdot 12m, \ 1\cdot 976m, \ 1\cdot 928vs, \ 1\cdot 906s, \ 1\cdot 863m, \ 1\cdot 793ms, \ 1\cdot 755m.$

The $CsSnCl_3-CsSnBr_3$ System.—The solidus-liquidus line is a smooth one with a minimum at 28% $CsSnBr_3$. The products obtained from this system have been described in detail in earlier work.³

The $CsSnCl_3-CsSnI_3$ System.—The solidus-liquidus line is a smooth curve with a minimum at 50% $CsSnCl_3$. Noncubic distinct phases found in the cooled melts were $CsSnCl_3$, $CsSnCl_2I$, and $CsSnClI_2$. The iodide rich systems had orthorhombic unit cells based on that of $CsSnI_3$. The materials with compositions from 50% $CsSnI_3$ to 100% $CsSnI_3$ were found to exist in both yellow and black forms.

CsSnCl₂I: 6.97w, 6.06w, 5.62w, 5.29vw, 4.55w, 4.31m, 4.17vw, 4.04w, 3.97w, 3.88s, 3.71m, 3.65vw, 3.36s, 3.30vw, 3.20s, 3.15vw, 3.00s, 2.86s, 2.78w, 2.74s, 2.54vw, 2.21s, 2.13w, 2.09m, 1.973w, 1.805w.

CsSnClI₂: 6·11vw, 5·35vw, 4·75vw, 4·21vw, 3·97vs, 3·51w, 3·43m, 3·36m, 3·28m, 3·24s, 3·13s, 3·05m, 2·85vw, 2·80s, 2·50m, 2·38m, 2·15s, 1·982m, 1·959m, 1·710w.

The $CsSnBr_3-CsSnI_3$ System.—The solidus-liquidus line is a shallow smooth curve with a minimum at 50% $CsSnBr_3$. The $CsSnBr_3$ rich side is cubic and the $CsSnI_3$ is orthorhombic at room temperature, high temperature powder data on $CsSnBr_3$ shows that it does not undergo a phase change before melting. The $CsSnI_3$ goes to a black form at high temperature but the material did not give any new powder lines which could be compared with $CsPbI_3$ because of the rapid oxidation of $CsSnI_3$. All products in the melt are black at high temperatures but the $CsSnI_3$ rich products rapidly relax to yellow materials based on orthorhombic $CsSnI_3$. Melts of CsSnClBrF, CsSnClBrI, CsSnFIBr, and CsSnClIF were also prepared and their X-ray powder data are given.

CsSnClFBr (pink-orange material): 6.68w, 5.46s, 4.65m, 4.23m, 4.04s, 3.87vs, 3.64m, 3.51vs, 3.31m, 3.19w, 3.13w, 3.07vs, 2.87m, 2.81w, 2.73ms, 2.66w, 2.34w, 2.33m, 2.30s, 2.20m, 2.012m, 1.971w, 1.912s, 1.853m, 1.639m, 1.555s, 1.510w, 1.486m, 1.436mw.

CsSnClFI (yellow-green powder, black melt): 5·31w, 4·74m, 3·94vs, 3·63w, 3·34w, 3·14vs, 3·03s, 2·87vs, 2·46m, 2·09vs, 1·974m, 1·770w, 1·66w, 1·543w, 1·526vw, 1·460vw, 1·449mw, 1·291vw.

CsSnFBrI (black powder): 6.00m, 4.23s, 3.46s, 3.37s, 3.00s, 2.69w, 2.45w, 2.31w, 2.13s, 1.738vw.

CsSnClBrF (black powder): 6.82vw, 6.21w, 5.73w, 4.83vw, 4.70w, 4.34vvw, 4.19vw, 4.04m, 3.93m, 3.73w, 3.41s, 3.35m, 3.22vs, 3.14vw, 3.08w, 2.93vvs, 2.86vvw, 2.83w, 2.71w, 2.67w, 2.56w, 2.53w, 2.33w, 2.19vw, 2.15w, 2.12mw, 2.03w, 1.967w, 1.934w, 1.768m, 1.736m, 1.543w, 1.493w, 1.287w,

The Mössbauer spectra of the solids were obtained with the absorber and a $BaSnO_3$ source at 80 K. The errors quoted are total experimental errors not simply those arising from computer fitting. The chemical shift for the reference material, α -Sn from the source was 2.10 mm s⁻¹ at 80 K. The percentage resonance dips for all materials were 14—25% when >100,000 counts per channel had been accumulated. The Mössbauer apparatus has been described.¹³

We thank the director of the Rutherford High Energy Laboratories for facilities in the Nuclear Chemistry section and the S.R.C. for a studentship (to J. S.).

[2/2143 Received, 14th September, 1972]

¹³ S. R. A. Bird, J. D. Donaldson, S. A. Keppie, and M. F. Lappert, J. Chem. Soc. (A), 1971, 1311.