Structural Parameters and Unit Cell Dimensions for the Tetragonal Actinide Tetrachlorides (Th, Pa, U, and Np) and Tetrabromides (Th and Pa)

By David Brown ${ }^{\circ}$ and Thomas L. Hall, Chemistry Division, A.E.R.E., Harwell Patrick T. Moseley, Applied Chemistry Division, A.E.R.E., Harwell

Abstract

Comparison of crystal structure parameters obtained for ThCl_{4} from quantitative X-ray powder data with those available from single-crystal studies has shown that it is possible to obtain reliable parameters from powder studies on simple compounds. Structure refinement based on powder data for $\mathrm{ThCl}_{4}(R=8 \cdot 9 \%), \mathrm{PaCl}_{4}(R=7 \cdot 6 \%)$, $\mathrm{UCl}_{4}(R=9 \cdot 5 \%), \mathrm{NpCl}_{4}(R=9 \cdot 1 \%)$, and ThBr_{4}. $(R=11 \cdot 3 \%)$ has yielded crystal structure parameters, and bond lengths for these isostructural compounds. Accurate unit cell dimensions are also reported.

Structural parameters deduced by Mooney ${ }^{\mathbf{1}}$ for ThCl_{4} and UCl_{4} on the basis of X-ray powder diffraction data have recently been discredited by single-crystal diffractometer studies ${ }^{2}$ on ThCl_{4}, the results justifying the earlier criticism by Zachariasen ${ }^{3}$ concerning the surprisingly large difference between the two sets of bond lengths deduced originally. ${ }^{1}$ Positional parameters are also available for $\mathrm{PaBr}_{4}{ }^{4}$ which is isostructural with the actinide tetrachlorides ($\mathrm{Th}-\mathrm{Np}$) possessing tetragonal symmetry, space group $D_{4 h}^{19}-I 4_{1} /$ amd . However, Scaife ${ }^{5}$ has criticised earlier work ${ }^{6}$ on ThBr_{4} which indicated that this compound crystallised in the same space group. He reports that ThBr_{4} is dimorphic and that the high-temperature (β) form although possessing a unit cell very similar to that deduced previously, gives three weak reflections which break the space group conditions for $D_{4 h}^{19}-I 4_{1} /$ amd $(h k l, h+k+$ $l=2 n: h k o, h(k)=2 n: 0 k l, k+l=2 n: h h l, l=2 n$ and $2 h+l=4 n$). The low-temperature (α) form appears to possess a completely different structure and is not isostructural with monoclinic UBr_{4} and $\mathrm{NpBr}_{4} .{ }^{7}$

As pointed out previously ${ }^{4}$ the published structural parameters for UCl_{4} and ThBr_{4} must be considered unreliable in the light of the new ThCl_{4} and PaBr_{4} results. No data are available for PaCl_{4} whilst Za achariasen, ${ }^{3}$ without presenting quantitative supporting evidence, has reported values for NpCl_{4}.

The present paper describes an evaluation of the

[^0]reliability of structural parameters obtained by refinement of quantitative X-ray powder data by comparison of the results for ThCl_{4} with those obtained from the single crystal study. ${ }^{2}$ Positional parameters for the isostructural tetrachlorides $\mathrm{PaCl}_{4}, \mathrm{UCl}_{4}$, and NpCl_{4} obtained by the 'powder' method are reported. Attempts to repeat the preparation of α - and $\beta-\mathrm{ThBr}_{4}$ described by Scaife ${ }^{5}$ have been unsuccessful, all products being completely isostructural with the above tetrachlorides, and new positional parameters are also reported for this compound.

The tetrahalides obtained during this investigation gave high quality X-ray powder photographs, and in view of the differences between the compiled lists ${ }^{8-10}$ of unit cell dimensions and the fact that the availability of computer programmes for processing X-ray powder diffraction data has increased the precision with which cell dimensions can be determined, these have been redetermined. The redetermination of the unit cell dimensions is also of interest because of the apparent lack of change in the c_{0} values for the first three tetrachlorides $\left(\mathrm{ThCl}_{4}, \mathrm{PaCl}_{4}\right.$, and $\left.\mathrm{UCl}_{4}\right)$ and the sharp fall which occurs at $\mathrm{NpCl}_{4} .{ }^{8}$
${ }_{4}^{4}$ D. Brown, T. J. Petcher, and A. J. Smith, J. Chem. Soc. (A), 1971, 908.

5 D. E. Scaife, Inorg. Chem., 1966, 5, 162.
${ }^{6}$ R. W. M. D'Eye, J. Chem. Soc., 1950, 2764.
${ }^{7}$ D. Brown, J. Hill, and C. E. F. Rickland, J. Chem. Soc. (A), 1970, 476.
${ }^{8}$ 'W. H. Zachariasen, in ' The Actinide Elements,' ed. G. T. Seaberg and J. J. Katz, Nat. Nucl. Energy Series, Div. IV, vol. 14A, McGraw-Hill, New York, 1954, ch. 18.
${ }^{9}$ J. J. Katz and I. Sheft, Adv. Inorg. Chem. Radiochem., 1960, 2, 195.
${ }^{10}$ D. Brown, 'Halides of the Lanthanides and Actinides,' Wiley, London, 1968.

EXPERIMENTAL

Unit Cell Dimensions.-The tetrachlorides and tetrabromides were prepared as described previously ${ }^{11^{-14}}$ and purified by repeated sublimation in vacuo in silica tubes. Analytical results are provided in Table 1. Samples were

Table 1
Analytical results

	Found (\%) *		Required (\%)	
Compound	M	X	M	X
ThCl_{4}	$62 \cdot 1$	$38 \cdot 0$	62.06	$37 \cdot 94$
PaCl_{4}	$61 \cdot 8$	$38 \cdot 0$	61.96	$38 \cdot 04$
UCl_{4}	62.7	$37 \cdot 3$	62.66	37.34
NpCl_{4}	$62 \cdot 5$	$37 \cdot 4$	62.56	$37 \cdot 44$
ThBr_{4}	$42 \cdot 1$	57.9	42.06	57.94

* M, metal; X, halogen: determined as described previously, sce refs. 7, 11, and 12 .
mounted in thin-walled silica or Lindemann glass capillaries (internal diameter 0.01 or 0.015 cm) in a nitrogen atmosphere box (water content <20 p.p.m.; oxygen content <20 p.p.m.).

Films were recorded using a 19 cm Debye-Scherrer camera with nickel-filtered copper radiation and exposure times of $12-16 \mathrm{~h}(35 \mathrm{kV}, 15 \mathrm{~mA})$. Positions of both α_{1} and α_{2} reflections were measured where possible (α_{1} / α_{2} splitting was generally observed for θ values $>15^{\circ}$), each film being measured by two people, with a line position accuracy of $\pm 0.03 \mathrm{~mm}$. Since the structure-type was known (tetragonal, space group $\left.D_{4 h}^{19}-I 4_{1} / a m d\right)$ it was possible to calculate the approximate powder pattern using the programme Genstruck ${ }^{15}$ and then index the observed reflections by comparison with the calculated pattern. The indexed reflections were refined by a least-squares method using the programme Cohen ${ }^{15}$ with the appropriate wavelength $\left(\mathrm{Cu}-\alpha_{1}, 1 \cdot 54051 \AA\right.$ or $\left.\mathrm{Cu}-\alpha_{2}, 1 \cdot 54433 \AA\right)$. The agreement limit was set to 0.0004 for values of $\sin ^{2} \theta$ and two cycles of refinement were sufficient to ensure the correct indexing of the film. Results for different samples and for α_{1} and α_{2} sets of reflections agreed within the error limits (2σ) quoted in Table 2. The unit cells listed are based on refinement of reflections with θ values $>30^{\circ}$, the upper limit of θ being ca. 70°, above which value the lines became a little diffuse and therefore could not be measured accurately. Between 60 and 70 reflections were included in each refinement. Checks on the reliability of the camera constants employed have been described recently. ${ }^{16}$

Packing Densities.-By utilising the radioactivity associated with ${ }^{231} \mathrm{~Pa}$ and ${ }^{237} \mathrm{~Np}$ it was possible to measure packing densities directly for PaCl_{4} and NpCl_{4}. The sample diameter and length were measured under magnification $(\times 5)$ following which the capillaries were crushed under concentrated nitric acid in 1 ml graduated flasks and the solution made up to the mark. The concentrations of ${ }^{231} \mathrm{~Pa}$ and ${ }^{237} \mathrm{~N} p$ were determined by α-assay using the

[^1]specific activities 1.062×10^{8} and $1.562 \times 10^{6} \alpha \mathrm{~d} \mathrm{~min}^{-1}$ mg^{-1}, respectively. ${ }^{17,18}$ Using X-ray densities of $\mathbf{4 . 7 2}$ and $4.96 \mathrm{~g} \mathrm{~cm}^{-3}$ for PaCl_{4} and NpCl_{4}, respectively, the packing densities $37 \%\left(\mathrm{PaCl}_{4}\right)$ and $47 \%\left(\mathrm{NpCl}_{4}\right)$ were obtained. The mean value 42% was employed for all the tetrahalides investigated.

Crystal Data.-ThCl ${ }_{4}, \mathrm{PaCl}_{4}, \mathrm{UCl}_{4}, \mathrm{NpCl}_{4}$, and ThBr_{4}, all tetragonal, space group $D_{4 h}^{19}-I 4_{1} /$ amd (No. 141); Cu- K_{α} radiation $\lambda \alpha_{1}=1 \cdot 54051 \AA$. Unit cell dimensions are listed in Table 2.

Structure Determination.--The intensities of powder lines for each compound were measured by scanning both halves of the 19 cm Debye-Scherrer films several times at $5: 1$ linear magnification with a Joyce-Loebl double-beam recording microdensitometer using a 0.39 D wedge. In order to minimise film background and to improve the reliability of the measurements it was necessary to scan films recorded for samples contained in Lindemann rather than silica capillaries.

Peak heights were measured for each scan and the mean values corrected for varying overlap of α_{1} and α_{2} reflections by dividing by a factor of $1+0.5 \cos (F \theta)$, where $F=$ $90 / \theta_{\mathrm{s}}, \theta_{\mathrm{s}}$ being the angle of the first reflection for which α_{1}

TAble 2

Unit cell dimensions for the actinide tetrachlorides and tetrabromides \boldsymbol{a}

Compound	Lattice parameters ($\AA^{\text {a }}{ }^{\text {b }}$		Density ${ }^{c}$$/ \mathrm{g} \mathrm{~cm}^{-3}$	Cell volume
	a_{0}	c_{0}		
ThCl_{4}	$8 \cdot 491$	$7 \cdot 483$	$4 \cdot 60$	$539 \cdot 5$
PaCl_{4}	$8 \cdot 377$	7.481	$4 \cdot 72$	$525 \cdot 0$
UCl_{4}	$8 \cdot 302$	7.481	$4 \cdot 89$	$515 \cdot 6$
NpCl_{4}	8.250	$7 \cdot 457$	$4 \cdot 96$	$507 \cdot 5$
ThBr_{4}	8.931	7.963	$5 \cdot 77$	$635 \cdot 2$
$\mathrm{PaBr}_{4}{ }^{\text {d }}$	8.824	7.957	$5 \cdot 90$	$619 \cdot 5$

${ }^{\text {a }}$ All possess tetragonal symmetry, space group $D_{4 h}^{19}-$ $I 4_{1} /$ amd. ${ }^{b}$ Error limits, $0.001 \AA$ (to give 95% confidence) are 2σ where σ is the e.s.d. obtained from a comparison of the results from different films and, where appropriate, from α_{1} and α_{2} sets of reflections. Unit cell dimensions listed were obtained by refinement of reflections with θ values $>30^{\circ}$. ${ }^{c}$ Calculated from the X-ray data. d Data from ref. 4.
and α_{2} were completely resolved. Above the values of θ_{S}, which were 18, 21, 21, 13, and 20° for $\mathrm{ThCl}_{4}, \mathrm{PaCl}_{4}$, $\mathrm{UCl}_{4}, \mathrm{NpCl}_{4}$, and ThBr_{4}, respectively, only the α_{1} reflections were used. The resulting values were corrected in the usual way for geometrical, Lorentz polarisation, and multiplicity factors. An absorption correction was applied (PTMLPCOR ${ }^{19}$) using a packing density of 42% with μ / f for $\mathrm{Th}=401 \mathrm{~cm}^{2} \mathrm{~g}^{-1}, \mathrm{~Pa}=398 \mathrm{~cm}^{2} \mathrm{~g}^{-1}, \mathrm{U}=396$ $\mathrm{cm}^{2} \mathrm{~g}^{-1}$ and $N p=454 \mathrm{~cm}^{2} \mathrm{~g}^{-1}$. Values for $T h$ and U are the experimental figures of Roof ${ }^{20}$ whilst those for Pa and Np are interpolated from the values for Th, U, and $\mathrm{Pu} . \mu / \mathrm{p}$ values for Cl (106) and for bromine (99.6) were taken from Tables. ${ }^{21}$

The positions of all possible reflections were calculated
${ }^{17}$ D. Brown, S. N. Dixon, K. M. Glover, and F. J. G. Rogers, J. Inorg. Nuclear Chem., 1968, 30, 19.
${ }_{18}$ F. P. Brauer, R. W. Stromatt, J. D. Ludwick, F. P. Roberts, and W. L. Lyon, U.S. Report HW-59642 (1959).
${ }_{19}$ P. T. Moseley, Programme PTMLPCOR (1971).
${ }_{20}$ R. B. Roof, jun., Phys. Rev., 1959, 113, 820.
${ }^{21}$ 'International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962.
and those showing any possibility of overlap were rejected. The structures were refined using $25,26,26,29$, and 25 line intensities for $\mathrm{ThCl}_{4}, \mathrm{PaCl}_{4}, \mathrm{UCl}_{4}, \mathrm{NpCl}_{4}$, and ThBr_{4}, respectively.

Recent theoretical values for both real and imaginary parts of the anomalous dispersion corrections were applied ${ }^{\mathbf{2 2}}$ to all scattering factors, the latter being taken from the compilation by Hanson et al. ${ }^{23}$ Positional parameters for $\mathrm{ThCl}_{4}{ }^{2}$ were used initially in all cases, and block-diagonal least-squares refinements using the programme NRC-10 by Ahmed ${ }^{24}$ rapidly led to the parameters and R values shown in Table 3. The final shifts in all parameters were less than

Table 3
Structural parameters for the tetrahalides in $I 4_{1} /$ amd (origin at centre of symmetry $2 / m$) with standard deviations in parentheses

Compound	Metal * Halogen					$R(\%)$
	$\begin{array}{r} \text { Metal } \\ B_{\text {Iso }} \end{array}$	x / a	y / b	z / c	$B_{\text {Iso }}$	
$\mathrm{ThCl}_{4}{ }^{\text {a }}$	c	0	0.5633 (8)	$0 \cdot 7992$ (8)	c	$3 \cdot 8$
ThCl_{4}	$0 \cdot 3(3)$	0	$0 \cdot 561$ (6)	$0 \cdot 795$ (9)	$1.21(1.7)$	$8 \cdot 9$
PaCl_{4}	$0 \cdot 9(3)$	0	$0.557(7)$	0.795 (6)	$1.39(1 \cdot 5)$	$7 \cdot 6$
UCl_{4}	2.6(3)	0	$0 \cdot 556(7)$	$0 \cdot 796(7)$	2.68(1.3)	$9 \cdot 5$
NpCl_{4}	1.5(2)	0	$0 \cdot 558(7)$	$0 \cdot 796(8)$	$2 \cdot 13(1 \cdot 3)$	$9 \cdot 1$
ThBr_{4}	$0 \cdot 5(3)$	0	$0 \cdot 561(3)$	$0.796(5)$	$4 \cdot 71(1 \cdot 0)$	$11 \cdot 3$
$\mathrm{PaBr}_{4}{ }^{\text {b }}$	c	0	$0 \cdot 557(3)$	0.804(4)	c	$12 \cdot 3$

* Positional parameters for the metal atom are $x / a=0$, $y / b=0.25$, and $z / c=0.875$.
${ }^{a}$ Single crystal data from ref. 2. ${ }^{b}$ Data from ref. 4.
- Anisotropic temperature factors given in ref. quoted.
$0 \cdot 1 \sigma$. Lists of observed and calculated structure amplitudes are provided in Table 4. Bond lengths and angles were calculated using the programme NRC-12. ${ }^{25}$

Patterson and Fourier maps were also obtained for ThCl_{4} using the programme NRC-8 by Ahmed. ${ }^{26}$

RESULTS AND DISCUSSION

Tetrachlorides.-Comparison of our positional parameters obtained by refinement of quantitative X-ray powder data for ThCl_{4} (Table 3) with those from the single crystal diffractometer investigation illustrates the reliability of ' powder' results when care is exercised in handling the data. The $\mathrm{M}-\mathrm{A}$ and $\mathrm{M}-\mathrm{B}$ bond lengths (Table 5) from the two results agree within the e.s.d. values $(0.06$ and $0.05 \AA$, respectively) for the powder results. Similar agreement is found for the two sets of halogen-halogen contacts and various angles within an isolated dodecahedron (Table 5). The difference between the two values for the $\mathrm{M}-\mathrm{A}$ bond length ($0.05 \AA$) is a consequence of the difference between the z / c positional parameters for the chlorine atom because of the four $\mathrm{M}-\mathrm{A}$ bonds two are parallel to the z direction of the cell and two are at an angle of $33 \cdot 0^{\circ}\left(\theta_{\mathrm{A}}\right)$ to this direction. A combination of the very slight variation in the z / c parameter for the chlorine atoms in the four tetra-

[^2]chlorides, the $\mathrm{M}-\mathrm{A}$ bond direction, and the lack of variation in c_{0} (Table 2) accounts for the identical $\mathrm{M}-\mathrm{A}$ bond lengths obtained for $\mathrm{ThCl}_{4}, \mathrm{PaCl}_{4}$, and UCl_{4}. The $\mathrm{M}-\mathrm{B}$ bond lengths, on the other hand, decrease successively for these three compounds ($c f$. the a_{0} values in Table 2). The fact that the $\mathrm{M}-\mathrm{B}$ bond lengths are virtually identical for UCl_{4} and NpCl_{4} suggests that some errors remain in the data. These may be a consequence of residual absorption errors due to the use of an average packing density or lack of uniformity in the internal diameter of individual capillaries.

Nonetheless, on the whole our results show that for simple compounds the powder method allows the determination of reliable structural parameters relatively rapidly and economically and that compounds with very large linear absorption coefficients present no extraordinary problems. In addition, we were particularly encouraged to find that, despite the small number of reflections (25) a Patterson function calculated using our ThCl_{4} data showed sufficient resolution to make the location of the heavy atom a trivial problem. The resolution on a Fourier difference synthesis was, however, not as good, and obviously in those instances where a single atom, e.g. Th, dominates the phases of the structure factors of the compound the additional factors of packing and space group positions must be considered if the structure is to be completely solved from powder data.

It is interesting to note that the c_{0} values for the unit cells of $\mathrm{ThCl}_{4}, \mathrm{PaCl}_{4}$, and UCl_{4} (Table 2) are virtually constant within the standard deviations quoted. Thus, the uniform decrease in unit cell volume (Table 2) with increasing atomic number of the metal atom (i.e. decreasing ionic radius) is a consequence of the change in a_{0} within this series. These results confirm the earlier values tabulated by Zachariasen ${ }^{8}$ rather than those compiled by other authors. ${ }^{9-11}$ Our new values for the unit cell dimensions of NpCl_{4} are slightly lower than those recorded previously. ${ }^{8}$

The unit cell dimensions obtained during the present investigation are based on data of similar quality to those shown in Table 6 for thorium tetrabromide. The α_{1} / α_{2} splitting was generally discernible above ca. 15° for the various compounds and both α_{1} and α_{2} sets of line positions were used in individual refinements with the appropriate wavelength. It was found that inclusion of reflections below a θ value of 30° resulted in slightly larger unit cell dimensions $(0.001-0.002 \AA)$ whereas refinement with reflections above θ values of 30,40 , and 50°, respectively, gave virtually constant values with slightly increasing values of standard deviations. In view of these observations the unit cells listed in Table 2 are those obtained from refinements involving all lines above 30°.

Thorium Tetrabromide.-The reflections measured on

[^3]Table 4
Structure amplitudes for the tetragonal actinide tetrahalides
(a) ThCl^{2}

h		l
1	0	1
2	0	0
2	1	1
1	1	2
2	0	2
3	0	1
1	0	3
3	2	1
3	1	2
4	0	0
2	1	3
4	1	1

$$
\begin{aligned}
& \text { (b) } \mathrm{PaCl}_{4} \\
& \begin{array}{ll}
\mathrm{PaCl}_{4} \\
1 & 0 \\
2 & 0 \\
1 & 1 \\
2 & 1 \\
2 & 2 \\
2 & 0 \\
3 & 0 \\
1 & 0 \\
3 & 2 \\
3 & 1 \\
4 & 0 \\
2 & 1 \\
4 & 1
\end{array}
\end{aligned}
$$

(c)

UCl_{4}		
1	0	1
2	0	0
2	1	1
1	1	2
2	0	2
3	0	1
1	0	3
3	2	1
3	1	2
4	0	0
2	1	3
4	1	1
3	3	2

$$
\begin{aligned}
& \text { (d) } \\
& \text { d) } \mathrm{NpCl}_{4} \\
& \begin{array}{lll}
1 & 0 & 1 \\
2 & 0 & 0 \\
2 & 1 & 1 \\
1 & 1 & 2 \\
2 & 2 & 0 \\
2 & 0 & 2 \\
3 & 0 & 1 \\
1 & 0 & 3 \\
3 & 2 & 1 \\
3 & 1 & 2 \\
4 & 1 & 1 \\
3 & 3 & 2 \\
2 & 0 & 4 \\
2 & 2 & 4 \\
4 & 1 & 3
\end{array}
\end{aligned}
$$

(e) ThBr_{4}

ThBr_{4}		
1	0	1
1	0	3
1	1	2
1	1	6
2	0	0
2	0	2
2	0	4
2	1	3
2	1	5
2	1	7
2	2	4
3	0	1
3	0	3
3	1	2

(b)
$\left|F_{\text {obs }}\right|$
$215 \cdot 0$
$309 \cdot 4$
$123 \cdot 8$
$269 \cdot 4$
$162 \cdot 2$
$350 \cdot 5$
$334 \cdot 5$
$237 \cdot 3$
$290 \cdot 9$
$353 \cdot 6$
$188 \cdot 4$
$173 \cdot 8$
$\left|F_{\text {cale }}\right|$
$219 \cdot 3$
$344 \cdot 8$
$154 \cdot 6$
$257 \cdot 2$
$141 \cdot 3$
$310 \cdot 0$
$284 \cdot 4$
$250 \cdot 6$
$294 \cdot 5$
$352 \cdot 9$
$165 \cdot 8$
$158 \cdot 6$
α_{c}
8.73
8.19
11.37
$10 \cdot 12$
$183 \cdot 27$
7.36
$187 \cdot 82$
$188 \cdot 48$
$9 \cdot 49$
8.58
11.01
11.36

$190 \cdot 0$	$224 \cdot 7$	8.91
$315 \cdot 8$	$341 \cdot 9$	$8 \cdot 55$
$248 \cdot 5$	$259 \cdot 9$	$10 \cdot 37$
$139 \cdot 3$	$156 \cdot 6$	$11 \cdot 64$
$166 \cdot 8$	$145 \cdot 7$	$196 \cdot 10$
$156 \cdot 5$	$141 \cdot 8$	$183 \cdot 27$
$307 \cdot 4$	$303 \cdot 7$	7.65
$303 \cdot 8$	$280 \cdot 3$	$188 \cdot 05$
$229 \cdot 0$	$241 \cdot 9$	$188 \cdot 82$
$298 \cdot 2$	$288 \cdot 7$	$9 \cdot 82$
$375 \cdot 8$	$353 \cdot 2$	$8 \cdot 72$
$191 \cdot 8$	$158 \cdot 2$	$11 \cdot 58$
$170 \cdot 4$	$158 \cdot 2$	11.58

$209 \cdot 7$
$277 \cdot 9$
$146 \cdot 4$
$247 \cdot 0$
$137 \cdot 4$
$296 \cdot 4$
$328 \cdot 4$
$235 \cdot 3$
$284 \cdot 2$
$339 \cdot 7$
$167 \cdot 6$
$180 \cdot 6$
$242 \cdot 7$

$202 \cdot 5$	$231 \cdot 9$	$9 \cdot 41$
$294 \cdot 0$	$350 \cdot 8$	$9 \cdot 01$
$136 \cdot 5$	$163 \cdot 5$	$12 \cdot 14$
$258 \cdot 6$	$268 \cdot 4$	$10 \cdot 86$
$153 \cdot 4$	$158 \cdot 0$	$196 \cdot 27$
$169 \cdot 3$	$136 \cdot 7$	$183 \cdot 31$
$314 \cdot 7$	$303 \cdot 7$	$8 \cdot 06$
$343 \cdot 3$	$280 \cdot 5$	$188 \cdot 48$
$240 \cdot 6$	$241 \cdot 0$	$189 \cdot 31$
$309 \cdot 2$	$289 \cdot 7$	$10 \cdot 32$
$167 \cdot 0$	$158 \cdot 9$	$12 \cdot 16$
$286 \cdot 7$	$299 \cdot 2$	$190 \cdot 17$
$261 \cdot 6$	$230 \cdot 2$	$191 \cdot 92$
$258 \cdot 5$	$260 \cdot 8$	$11 \cdot 04$
$190 \cdot 0$	$176 \cdot 8$	$11 \cdot 30$

$203 \cdot 8$	$211 \cdot 9$	$8 \cdot 91$
$468 \cdot 4$	$377 \cdot 7$	$186 \cdot 42$
$209 \cdot 2$	$209 \cdot 6$	$11 \cdot 66$
$359 \cdot 2$	$257 \cdot 8$	$190 \cdot 10$
$310 \cdot 8$	$377 \cdot 6$	$7 \cdot 64$
$301 \cdot 1$	$289 \cdot 2$	$182 \cdot 94$
$311 \cdot 1$	$225 \cdot 3$	$191 \cdot 06$
$161 \cdot 6$	$134 \cdot 3$	$12 \cdot 52$
$306 \cdot 1$	$230 \cdot 8$	$188 \cdot 78$
$214 \cdot 5$	$167 \cdot 3$	$190 \cdot 61$
$332 \cdot 8$	$302 \cdot 7$	$9 \cdot 14$
$385 \cdot 1$	$423 \cdot 9$	$6 \cdot 01$
$233 \cdot 5$	$203 \cdot 0$	$189 \cdot 38$
$313 \cdot 4$	$315 \cdot 6$	8.79

$170 \cdot 4$
$158 \cdot 2$

$275 \cdot 6$	$9 \cdot 16$
$336 \cdot 0$	$8 \cdot 83$
$153 \cdot 3$	$12 \cdot 01$
$253 \cdot 1$	$10 \cdot 69$
$135 \cdot 4$	$183 \cdot 31$
$287 \cdot 4$	$7 \cdot 87$
$263 \cdot 8$	$188 \cdot 27$
$222 \cdot 8$	$189 \cdot 12$
$266 \cdot 9$	$10 \cdot 10$
$326 \cdot 4$	$8 \cdot 95$
$143 \cdot 8$	$12 \cdot 04$
$144 \cdot 4$	$11 \cdot 94$
$270 \cdot 2$	$189 \cdot 90$

h	k	l
4	2	0
3	3	2
5	1	2
4	4	0
6	0	0
6	1	1
5	3	2
6	2	0
1	1	6
6	1	3
4	1	5
6	4	0
7	2	1

$\left|F_{\text {obs }}\right|$
$239 \cdot 0$
$362 \cdot 5$
$187 \cdot 0$
$235 \cdot 4$
$268 \cdot 1$
$160 \cdot 3$
$186 \cdot 5$
$239 \cdot 8$
$265 \cdot 1$
$213 \cdot 8$
$165 \cdot 0$
$227 \cdot 4$
$157 \cdot 2$

\| $F_{\text {cale }} \mid$	α_{c}
$207 \cdot 3$	$192 \cdot 00$
$320 \cdot 5$	$189 \cdot 29$
$193 \cdot 0$	12.77
$239 \cdot 9$	11.17
$327 \cdot 6$	$9 \cdot 53$
$149 \cdot 6$	12.17
$223 \cdot 7$	$191 \cdot 80$
$220 \cdot 4$	191.94
$251 \cdot 0$	191-22
$188 \cdot 6$	$10 \cdot 89$
$151 \cdot 1$	192-32
243.5	11.50
$156 \cdot 6$	192-16

Table 5
Principal interatomic distances (\AA) and selected angles (${ }^{\circ}$) in the tetrahalides. The nomenclature of the dodecahedron edges and of θ_{A} and θ_{B} is that of ref. 27
(a) Bond lengths $/ \AA$

Bond lengths/A		
Compound	$\mathrm{M}-\mathrm{A}^{a}$	$\mathrm{M}-\mathrm{B}{ }^{a}$
$\mathrm{ThCl}_{4} b$	$2 \cdot 903(7)$	$2 \cdot 718(8)$
ThCl_{4}	$2 \cdot 95(6)$	$2 \cdot 71(5)$
PaCl_{4}	$2 \cdot 95(5)$	$2 \cdot 64(4)$
UCl_{4}	$2 \cdot 95(5)$	$2 \cdot 60(4)$
NpCl_{4}	$2 \cdot 93(6)$	$2 \cdot 60(4)$
ThBr_{4}	$3 \cdot 12(3)$	$2 \cdot 85(2)$
$\mathrm{PaBr}_{4}{ }^{c}$	$3 \cdot 07(2)$	$2 \cdot 77(2)$

$\mathrm{X}-\mathrm{X}$ *			
a	b	m	g
$3 \cdot 17$	3.93	3.19	$3 \cdot 61$
3.21 (7)	3.92 (8)	$3 \cdot 25$ (7)	$3 \cdot 61$ (8)
$3 \cdot 24$ (6)	3.83 (8)	$3 \cdot 21$ (6)	3.57 (7)
$3 \cdot 23$ (7)	$3 \cdot 78$ (7)	3-19 (7)	3.54 (8)
$3 \cdot 18$ (7)	3.78 (7)	$3 \cdot 20$ (7)	3.53 (8)
$3 \cdot 38$ (7)	$4 \cdot 12$ (7)	$3 \cdot 42$ (5)	$3 \cdot 81$ (4)
$3 \cdot 28$ (3)	$4 \cdot 00$ (3)	$3 \cdot 40$ (3)	3.77 (3)

$\mathrm{M}-\mathrm{A} /$
$\mathrm{M}-\mathrm{B}$
1.07
$1.09(3)$
$1.12(3)$
$1.13(3)$
$1.12(3)$
$1.09(2)$
$1.11(2)$
(b) Angles $/^{\circ}$
Compound
$\mathrm{ThCl}_{4}{ }^{\text {a }}$
ThCl_{4}
PaCl_{4}
UCl_{4}
NpCl_{4}
ThBri_{4}
$\mathrm{PaBr}_{4}{ }^{c}$

a	b	m	g
$66 \cdot 1$	$92 \cdot 5$	$69 \cdot 0$	79.9
65.9 (1.4)	92.8 (1.5)	69.9 (1.5)	$79 \cdot 3$ (1.5)
66.6 (1.2)	92.9 (1.4)	69.8 (1.3)	79.1 (1-3)
66.5 (1.3)	93.0 (1.5)	69.9 (1.4)	79.0 (1-4)
$65.8(1.3)$	93.0 (1.5)	$70 \cdot 3$ (1.4)	78.9 (1.4)
65.6 (1.0)	92.8 (1.0)	69.9 (1.0)	79.3 (1.0)
67.3 (0.7)	92.4 (0.7)	68.1 (0.7)	80.2 (0.7)

$\theta_{\text {A }}$	$\theta_{\mathbf{B}}$
$33 \cdot 1$	$78 \cdot 0$
$33 \cdot 0(0.7)$	$77 \cdot 2(0.7)$
$33 \cdot 3(0 \cdot 6)$	$76 \cdot 9(0 \cdot 7)$
$33 \cdot 3(0 \cdot 6)$	$76 \cdot 9(0 \cdot 7)$
$32.9(0.6)$	$76.8(0 \cdot 8)$
$32.8(0.5)$	$77.3(0.5)$
$33.7(0.3)$	$78.2(0.4)$

${ }^{a} \mathrm{~A}$ and B refer to halogen atoms designated as in ref. 27. $\mathrm{X}-\mathrm{X}$ are halogen contacts for the dodecahedron edges listed. b Calculated from the crystal data (ref. 2). © Data from ref. 4.

Table 6
X-Ray powder diffraction data for ThBr_{4}

h, k, l	$\sin ^{2} \theta_{\text {obs }}$	$\sin { }^{2} \theta_{\text {cale }}$	$I^{*}{ }_{\text {est }}$	h, k, l	$\sin { }^{2} \theta_{\text {obs }}$	$\sin { }^{2} \theta_{\text {cate }}$	$I^{*}{ }_{\text {est }}$
1,0,1	0.0172	0.0170	S-	7,3,2	$0 \cdot 4698$	0.4696	M+
2,0,0	0.0302	0.0301	S-	7,4,1	$\{0.4934$	0.4935	W
1,1,2	0.0530	0.0527	M	8,1,1	$\{0.4934$	0.4935	
2,0,2	0.0678	$0 \cdot 0677$	M+	2,1,7	$0 \cdot 4963$	$0 \cdot 4966$	M+
3,0,1	0.0771	0.0768	S-	5,1,6	$0 \cdot 5309$	0.5311	S-
1,0,3	0.0924	$0 \cdot 0922$	S	6,5,3	$0 \cdot 5383$	$0 \cdot 5386$	W+
3,2,1	$0 \cdot 1069$	$0 \cdot 1066$	S	8,3,1	$0 \cdot 5530$	0.5530	W
3,1,2	$0 \cdot 1125$	0.1124	S	3,2,7	$0 \cdot 5555$	$0 \cdot 5560$	W+
4,0,0	$0 \cdot 1199$	$0 \cdot 1196$	W+	4,1,7,	$0 \cdot 5854$	$0 \cdot 5858$	W+
2,1,3	$0 \cdot 1221$	$0 \cdot 1221$	W	5,3,6	$0 \cdot 5909$	0.5905	W +
4,1,1	$0 \cdot 1367$	$0 \cdot 1364$	W-	8,0,4	$0 \cdot 6261$	$0 \cdot 6264$	W-
4,2,0	$0 \cdot 1496$	$0 \cdot 1494$	VW-	7,2,5	$0 \cdot 6288$	$0 \cdot 6288$	M
3,0,3	$0 \cdot 1518$	$0 \cdot 1518$	W+	7,6,1	$\{0.6422$	$0 \cdot 6422$	M-
4,0,2	$0 \cdot 1571$	$0 \cdot 1571$	VW-	9,2,1	$\{0.6422$	$0 \cdot 6422$	
3,3,2	$0 \cdot 1721$	$0 \cdot 1720$	M+	9,1,2	$0 \cdot 6480$	$0 \cdot 6479$	M-
2,0,4	$0 \cdot 1801$	$0 \cdot 1802$	M-	8,2,4	0.6557	$0 \cdot 6562$	M
4,2,2	0.1868	$0 \cdot 1869$	VW-	2,2,8	0.6592	$0 \cdot 6592$	M+
4,3,1	$\{0 \cdot 1961$	$0 \cdot 1960$	S-	5,2,7	0.6745	0.6750	M+
5,0,1	$\{0.1961$	$0 \cdot 1960$	S-	3,1,8	0.6745	$0 \cdot 6740$	
2,2,4	$0 \cdot 2101$	$0 \cdot 2100$	M+	9,3,2	0.7074	$0 \cdot 7074$	W
4,1,3	$0 \cdot 2115$	0.2114	M +	5,5,6	$\{0.7094$	$0 \cdot 7094$	M
3,1,4	$\{0.2250$	$0 \cdot 2249$	M	7,1,6	$\{0.7094$	$0 \cdot 7094$	
5,2,1	\{0.2250	$0 \cdot 2256$		7,4,5	$\{0.7178$	$0 \cdot 7180$	M+
5,1,2	$0 \cdot 2311$	$0 \cdot 2315$	VW-	8,1,5	$\{0.7178$	$0 \cdot 7180$	
4,4,0	$0 \cdot 2386$	$0 \cdot 2387$	VW-	9,4,1	0.7315	0.7313	W
6,0,0	$0 \cdot 2685$	$0 \cdot 2685$	W	8,4,4	¢	0.7454	
2,1,5	0.2718	$0 \cdot 2720$	M+	10,0,0	$\{0.7449$	0.7444	W+
6,1,1	$0 \cdot 2856$	0.2853	W	8,6,0		0.7444	
5,3,2	$0 \cdot 2913$	0.2911	M-	4,2,8	0.7479	0.7484	M
4,2,4	$0 \cdot 2993$	0.2993	M	10,2,0	0.7738	0.7740	W
3,2,5	$0 \cdot 3317$	0.3315	M+-	8,3,5	0.7778	0.7775	M
6,2,2	0.3355	0.3357	W	2,1,9	0.7953	0.7959	M -
6,3,1	$0 \cdot 3448$	$0 \cdot 3448$	M	10,3,1	0.8205	$0 \cdot 8205$	M -
1,1,6	0.3526	$0 \cdot 3526$	M+	3,0,9	$\{0.8263$	$0 \cdot 8258$	W
6,1,3	$0 \cdot 3601$	$0 \cdot 3602$	M	9,5,2	$\{0.8263$	0.8263	
7,0,1	$0 \cdot 3751$	0.3746	W	10,1,3	0.8361	$0 \cdot 8359$	M-
6,4,0	$0 \cdot 3876$	$0 \cdot 3875$	W	10,4,0	$0 \cdot 8629$	0.8631	W+
5,4,3	$0 \cdot 3898$	$0 \cdot 3899$	M	9,2,5	¢	$0 \cdot 8668$	
5,3,4	$0 \cdot 4026$	$0 \cdot 4033$	W	7,6,5	$\{0.8676$	0.8668	M -
7,1,2	$\{0.4098$	0.4101	M	6,0,8		0.8673	
5,5,2	$\{0.4098$	0.4101	N	9,6,1	0.8802	0.8799	W+
6,3,3	$0 \cdot 4197$	$0 \cdot 4197$	W	10,0,4	$0 \cdot 8942$	0.8939	W+
6,2,4	0.4478	$0 \cdot 4480$	M	6,2,8	$0 \cdot 8979$	0.8972	M-
5,2,5	$0 \cdot 4503$	$0 \cdot 4504$	M				

powder patterns of several different preparations of thorium tetrabromide complied strictly with the space group conditions for $D_{4 h}^{19}-I 4_{1} / a m d$. A typical complete list of observed and calculated values of $\sin ^{2} \theta$ for α_{1} reflections is provided in Table 6. From these results it is apparent that we have not observed the three reflections found by Scaife ${ }^{5}\left(\sin ^{2} \theta\right.$ values $0 \cdot 1270$, $0 \cdot 1310$, and $0 \cdot 2172$, respectively) which break the space group conditions. We do, on the other hand, observe a few reflections extra to those listed by Scaife, all of which obey the space group conditions. The only other line observed by Scaife and apparently not present on our films is that which he recorded at a $\sin ^{2} \theta$ value $0 \cdot 1790$ which may have been the α_{2} reflection associated with the strong $2,0,4$ line at $\sin ^{2} \theta=0 \cdot 1777$.

In view of these results we have refined the structure of ThBr_{4} in $D_{4 h}^{19}-I 4_{1} /$ amd. The positional parameters and bond lengths are compared with those for the tetrachlorides and for PaBr_{4} in Tables 3 and 5, respectively.

Attempts to reproduce the $\beta \rightarrow \alpha$ transition, observed by Scaife ${ }^{5}$ for ThBr_{4}, by heating samples at 320 or $420^{\circ} \mathrm{C}$ and by allowing products to crystallise at $400^{\circ} \mathrm{C}$ on sublimation have all proved unsuccessful. In addition, in contrast to the slow $\beta \rightarrow \alpha$ transformation stated to occur at room temperature ($t_{1}=c a .12$ weeks) we have observed no evidence for such a phase change in samples stored for 70 weeks in a nitrogen atmosphere.

The structures of the isostructural tetrahalides comprise infinite arrays of edge-sharing polyhedra. The dodecahedra about the metal atoms in the various compounds, which have strict $\overline{4} 2 m$ symmetry, are defined by the parameters $\theta_{\mathrm{A}}, \theta_{\mathrm{B}}$, and $\mathrm{M}-\mathrm{A} / \mathrm{M}-\mathrm{B}$ listed in Table 5. The angle of intersection of the two trapezoids, which are each planar, is 90° in each case. The values for the above parameters may be compared with those given by Hoard and Silverton ${ }^{27}$ for the ' most favourable' dodecahedron, $\theta_{\mathrm{A}}=35 \cdot 2^{\circ}, \theta_{\mathrm{B}}=73 \cdot 5^{\circ}$, and $\mathrm{M}-\mathrm{A} / \mathrm{M}-\mathrm{B}=1 \cdot 03$, these values being calculated for ' neon shell ' ligands.

Covalent Radii.-Using the shorter (M-B) metalhalogen bond lengths and values for Cl and Br of 0.99 and $1 \cdot 14 \AA$, respectively, ${ }^{28}$ the following covalent radii are obtained: $\mathrm{Th}^{4+} 1.71\left(1.71\right.$ and 1.72 from ThBr_{4} and ThCl_{4}, respectively), $\mathrm{Pa}^{4+} \mathbf{1} \cdot 64$ ($\mathbf{1} \cdot 63$ and 1.65 from PaBr_{4} and PaCl_{4}, respectively), $\mathrm{U}^{4+} 1.61$, and $\mathrm{Np}^{4+} 1.61 \AA$. The fact that those for U^{4+} and Np^{4+} are identical perhaps illustrates the deficiencies inherent in the ' powder' method although one must also consider the e.s.d's associated with these bond lengths and the fact that the difference between U^{4+} and Np^{4+} is expected to be only ca. $0.02 \AA .{ }^{8}$
[2/1834 Received, 3rd August, 1972]
${ }_{28}^{27}$ J. L. Hoard and J. V. Silverton, Inovg. Chem., 1963, 2, 235. ${ }^{28}$ L. Pauling, 'The Nature of the Chemical Bond,' 3rd edn., Ithaca, New York, 1960.

[^0]: ${ }^{1}$ R. C. L. Mooney, Acta Cryst., 1949, $2,189$.
 ${ }^{2}$ K. Mucker, G. S. Smith, Q. Johnson, and R. E. Elson, Acta Cryst., 1969, B25, 2362.
 ${ }^{3}$ W. H. Zachariasen, in 'The Transuranium Elements,' eds. G. T. Seaborg, J. J. Katz, and W. H. Manning, Nat. Nucl. Energy Series, Div. IV, vol. 14B, McGraw-Hill, New York, 1949, ch. 20.6 .

[^1]: 11 D. Brown and P. J. Jones, J. Chem. Soc. (A), 1967, 719.
 ${ }_{12}$ K. W. Bagnall and J. B. Laidler, J. Chem. Soc. (A), 1966, 516.
 ${ }^{13}$ K. W. Bagnall, D. Brown, J. G. H. du Preez, and P. J. Jones, J. Chem. Soc. $(A), 1966,737$.
 ${ }_{14}$ K. W. Bagnall, D. Brown, and P. J. Jones, J. Chem. Soc. (A), 1966, 1763 .
 ${ }_{15}$ J. A. C. Marples and J. L. Shaw, Brit. Report AERE-R 5210 (1966).
 ${ }_{16}$ D. Brown and J. F. Edwards, J.C.S. Dalton, 1972, 1757.

[^2]: ${ }^{22}$ D. T. Cromer, Acta Cryst., 1965, 18, 17.
 ${ }^{23}$ H. P. Hanson, F. Herman, J. D. Lea, and S. Skillman, Acta Cryst., 1964, 17, 1040.
 ${ }^{24}$ F. R. Ahmed, NRC Crystallographic Programme No. 10 (1968).

[^3]: ${ }^{25}$ M. E. Pippy and F. R. Ahmed, NRC Crystallographic Programme No. 12 (1968).
 ${ }^{26}$ F. R. Ahmed, NRC Crystallographic Programme No. 8 (1968).

