Stereochemistry of Flexible-chelate-Metal Complexes. Part III. ${ }^{1}$ Crystal Structure of Dihydrogen Ethylenediaminetetra-acetatostannate(iI)

By K. G. Shields, R. C. Seccombe, and C. H. L. Kennard,* Department of Chemistry, University of Queensland, Brisbane, Queensland, 4067, Australia

Abstract

The crystal structure of the title compound has been determined from three-dimensional diffractometer data. The orthorhombic unit cell, space group Pbca, has dimensions $a=659 \cdot 1(1), b=1303 \cdot 1(2) . c=3221 \cdot 6(6) \mathrm{pm}$, and $Z=8$. The structure was solved by Patterson and Fourier methods, refined by least squares to $R 0.056$ for 2130 observed reflections. The tin atom is centred in the rectangular face of a distorted triangular prism ($\mathrm{Sn}-\mathrm{N}$ $238 \cdot 8$ and $244 \cdot 2$. $\mathrm{Sn}-\mathrm{O} 219 \cdot 6,234 \cdot 3,263 \cdot 5$, and $305 \cdot 7 \mathrm{pm}$). Intermolecular hydrogen bonds link carboxy-groups from differing molecules forming a one-dimensional polymer in the b direction.

In the quest for a compound where ethylenediamine-tetra-acetic acid (edta) is quadridentate, the structure of dihydrogen ethylenediaminetetra-acetatostannate(II) has been determined.

A number of different co-ordination arrangements have been found recently for this ligand. In sodium hexaoxo- μ-ethylenediaminetetra-acetato-dimolybdate-
(vi) octahydrate, ${ }^{2}$ edta bridges two molybdenum trioxide groups with molybdenum(vi) having a co-ordination number of six. The edta is fully complexed, with the two carboxylate groups attached to the metal in a cis-configuration from an apical nitrogen.

Quadridentate edta is found in ammonium (dihydro-genethylenediaminetetra-acetato)dioxovanadate(v) trihydrate, ${ }^{3}$ and trisodium (ethylenediaminetetra-acetato)dioxovanadate(v) tetrahydrate. ${ }^{4}$ The two carboxylate groups from different nitrogens are co-ordinated to the octahedral vanadium atom through polar oxygens. Oxo-ligands are in the remaining two positions.

The ligand edta is sexidentate in (ethylenediamine-tetra-acetato)tin(II) monohydrate, ${ }^{5}$ [$\mathrm{Sn}($ edta $), \mathrm{H}_{2} \mathrm{O}$] ($\mathrm{Sn}-\mathrm{N} 229 \cdot 6$ and $232 \cdot 9, \mathrm{Sn}-\mathrm{O} 207 \cdot 4,207 \cdot 5,208 \cdot 8$, and $209 \cdot 3, \mathrm{Sn}-\mathrm{H}_{2} \mathrm{O} 212 \cdot 4 \mathrm{pm}$), where the metal is seven-coordinate.

Tin(II) (ethylenediaminetetra-acetatostannate(II) dihydrate, ${ }^{6} \mathrm{Sn}[\mathrm{Sn}(\mathrm{edta})], 2 \mathrm{H}_{2} \mathrm{O}$, has a distorted pentagonal bipyramid co-ordination around the tin atom, where the ethylenediamine nitrogens and the tin lone-electronpair occupy equatorial positions ($\mathrm{Sn}-\mathrm{N} 245$ and 246 , $\mathrm{Sn}-\mathrm{O}_{g}, 264$ and $270, \mathrm{Sn}-\mathrm{O}_{r} 229$ and 245 pm) \dagger

In the present complex, dihydrogen ethylenediamine-tetra-acetatostannate(II) (Figure 1), the tin is centered in the rectangular face of a distorted triangular prism ($\mathrm{Sn}-\mathrm{N} 238 \cdot 8$ and $244 \cdot 2, \mathrm{Sn}-\mathrm{O} 219 \cdot 6,234 \cdot 3,263 \cdot 5$, and 305.7 pm) (Table 1). This compound was prepared by the addition of disodium ethylenediaminetetra-acetate to $\operatorname{tin}(\mathrm{II})$ chloride at $\mathrm{pH} 1 \cdot 5$.

An assignment of the carboxy i.r. spectrum suggests ${ }^{7}$ the presence of both free and complexed carboxy-

[^0]groups indicating that edta behaves as a quadridentate ligand. In this case, in terms of a $\mathrm{Sn}-\mathrm{O}$ distance of $213-240 \mathrm{pm},{ }^{8}$ edta chelates as a quadridentate ligand. However, there are weak but definite links to two other oxygens: $\mathrm{Sn}^{-\mathrm{O}(19)} 263.5$ and $\mathrm{Sn}-\mathrm{O}(15) 305 \cdot 1 \mathrm{pm}$.

Figure 1 The structure viewed along the bisector of the $\mathrm{N}-\mathrm{Sn}-\mathrm{N}$ angle
This does not explain completely the i.r. spectrum, because there is little relationship between the long metal-oxygen distance and a proton on the same acid group. However, it is difficult to locate accurately hydrogen atoms in metal complexes. These particular atoms, $\mathrm{H}(34)$ and $\mathrm{H}(35)$, were found at the conclusion of the refinement.

4 W. R. Scheidt, R. Countryman, and J. L. Hoard, J. Amer. Chem. Soc., 1971, 93, 3878.
${ }^{5}$ F. P. van Remoortere, J. J. Flynn, and F. P. Boer, Inorg. Chem., 1971, 10, 2313.
${ }_{6}$ F. P. van Remoortere, J. J. Flynn, F. P. Boer, and P. P. North, Inorg. Chem., 1971, 10, 1511.

7 R. N. Lebedeva, E. M. Yakimets, and E. F. Emlin, Russ. J. Inorg. Chem., 1967, 12, 575.
${ }_{8}$ J. D. Donaldson, Progr. Inorg. Chem., 1967, 8, 287.

In the same way, edta in $\mathrm{Sn}[\mathrm{Sn}(\mathrm{edta})], 2 \mathrm{H}_{2} \mathrm{O}$ acts as a tetradentate through the O_{r} and not the O_{g}. The main difference between these two tin-edta complexes centres

Table 1
(a) Interatomic distances (pm) with estimated standard deviations given in parentheses

$\mathrm{Sn}-\mathrm{N}(2)$	244.2(5)	$\mathrm{C}(12)-\mathrm{O}(18)$	129.1(8)
$\mathrm{Sn}-\mathrm{N}(3)$	238.8 (5)	$\mathrm{C}(12)-\mathrm{O}(19)$	122.0(8)
$\mathrm{Sn}-\mathrm{O}(15)$	305.7(5)	$\mathrm{C}(13)-\mathrm{O}(20)$	$127 \cdot 0(8)$
$\mathrm{Sn}-\mathrm{O}(16)$	$219 \cdot 6$ (5)	$\mathrm{C}(13)-\mathrm{O}(21)$	125.0(8)
$\mathrm{Sn}-\mathrm{O}(19)$	263.5(5)	$\mathrm{C}(4)-\mathrm{H}(24)$	94
$\mathrm{Sn}-\mathrm{O}(20)$	234-3(5)	$\mathrm{C}(4)-\mathrm{H}(25)$	100
$\mathrm{N}(2)-\mathrm{C}(4)$	147.8(8)	$\mathrm{C}(5)-\mathrm{H}(22)$	90
$\mathrm{N}(2)-\mathrm{C}(6)$	147.2(8)	$\mathrm{C}(5)-\mathrm{H}(23)$	107
$\mathrm{N}(2)-\mathrm{C}(7)$	148.6 (8)	$\mathrm{C}(6)-\mathrm{H}(32)$	106
$\mathrm{N}(3)-\mathrm{C}(5)$	149.7(8)	$\mathrm{C}(6)-\mathrm{H}(33)$	92
$\mathrm{N}(3) \mathrm{C}(8)$	146.9(8)	$\mathrm{C}(7)-\mathrm{H}(30)$	102
$\mathrm{N}(3)-\mathrm{C}(9)$	148.3(8)	$\mathrm{C}(7)-\mathrm{H}(31)$	86
$\mathrm{C}(4)-\mathrm{C}(5)$	149.4(9)	$\mathrm{C}(8)-\mathrm{H}(28)$	76
$\mathrm{C}(6)-\mathrm{C}(10)$	$150 \cdot 4(9)$	$\mathrm{C}(8)-\mathrm{H}(29)$	95
$\mathrm{C}(7)-\mathrm{C}(11)$	$151 \cdot 5(10)$	$\mathrm{C}(9)-\mathrm{H}(26)$	65
$\mathrm{C}(8)-\mathrm{C}(12)$	152.1(9)	$\mathrm{C}(9)-\mathrm{H}(27)$	96
$\mathrm{C}(9)-\mathrm{C}(13)$	$151.7(9)$	$\mathrm{O}(14)-\mathrm{H}(34)$	99
$\mathrm{C}(10)-\mathrm{O}(14)$	132.6 (9)	$\mathrm{O}(17)-\mathrm{H}(34)$	170
$\mathrm{C}(10)-\mathrm{O}(15)$	$120.0(9)$	$\mathrm{O}(18)-\mathrm{H}(35)$	129
$\mathrm{C}(11)-\mathrm{O}(16)$	$128.2(8)$	$\mathrm{O}(21)-\mathrm{H}(35)$	6
$\mathrm{C}(11)-\mathrm{O}(17)$	122.7(8)		

(b) Interatomic angles $\left({ }^{\circ}\right)$ with estimated standard deviations in parentheses

$\mathrm{N}(2)-\mathrm{Sn}-\mathrm{N}(3)$	73-86(13)	$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(10)$	113.7(4)
$\mathrm{N}(2)-\mathrm{Sn}-\mathrm{O}(15)$	$59 \cdot 85(9)$	$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{H}(32)$	111
$\mathrm{N}(2)-\mathrm{Sn}-\mathrm{O}(16)$	69.74(18)	$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{H}(33)$	106
$\mathrm{N}(2)-\mathrm{Sn}-\mathrm{O}(19)$	80.53 (15)	$\mathrm{C}(10)-\mathrm{C}(6)-\mathrm{H}(32)$	108
$\mathrm{N}(2)-\mathrm{Sn}-\mathrm{O}(20)$	129.82(16)	$\mathrm{C}(10)-\mathrm{C}(6)-\mathrm{H}(33)$	108
$\mathrm{N}(3)-\mathrm{Sn}-\mathrm{O}(15)$	119.69(16)	$\mathrm{H}(32)-\mathrm{C}(6)-\mathrm{H}(33)$	110
$\mathrm{N}(3)-\mathrm{Sn}-\mathrm{O}(16)$	92-2(2)		
$\mathrm{N}(3)-\mathrm{Sn}-\mathrm{O}(19)$	$65 \cdot 1$ (2)	$\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{C}(11)$	111-1(4)
$\mathrm{N}(3)-\mathrm{Sn}-\mathrm{O}(20)$	69.5(2)	$\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{H}(30)$	106
$\mathrm{O}(15)-\mathrm{Sn}-\mathrm{O}(16)$	104.5(2)	$\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{H}(31)$	103
$\mathrm{O}(15)-\mathrm{Sn}-\mathrm{O}(19)$	$70 \cdot 8(2)$	$\mathrm{C}(11)-\mathrm{C}(7)-\mathrm{H}(30)$	107
$\mathrm{O}(15)-\mathrm{Sn}-\mathrm{O}(20)$	169.8(2)	$\mathrm{C}(11)-\mathrm{C}(7)-\mathrm{H}(31)$	108
$\mathrm{O}(16)-\mathrm{Sn}-\mathrm{O}(15)$	146.9(2)	$\mathrm{H}(30)-\mathrm{C}(7)-\mathrm{H}(31)$	122
$\mathrm{O}(16)-\mathrm{Sn}-\mathrm{O}(20)$	78.5(2)	$\mathrm{N}(3)-\mathrm{C}(8)-\mathrm{C}(12)$	111.6(4)
$\mathrm{O}(19)-\mathrm{Sn}-\mathrm{O}(20)$	112.1(2)	$\mathrm{N}(3)-\mathrm{C}(8)-\mathrm{H}(28)$	101
		$\mathrm{N}(3)-\mathrm{C}(8)-\mathrm{H}(29)$	102
$\mathrm{Sn}-\mathrm{N}(2)-\mathrm{C}(4)$	107.1(3)	$\mathrm{C}(12)-\mathrm{C}(8)-\mathrm{H}(28)$	91
$\mathrm{Sn}-\mathrm{N}(2)-\mathrm{C}(6)$	117.5(3)	$\mathrm{C}(12)-\mathrm{C}(8)-\mathrm{H}(29)$	104
$\mathrm{Sn}-\mathrm{N}(2)-\mathrm{C}(7)$	103.3(3)	$\mathrm{H}(28)-\mathrm{C}(8)-\mathrm{H}(29)$	146
$\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(6)$	109.1(4)	$\mathrm{N}(3)-\mathrm{C}(9)-\mathrm{C}(13)$	112.7(4)
$\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(7)$	109.3(4)	$\mathrm{N}(3)-\mathrm{C}(9)-\mathrm{H}(26)$	99
$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(7)$	110.3(4)	$\mathrm{N}(3)-\mathrm{C}(9)-\mathrm{H}(27)$	117
$\mathrm{Sn}-\mathrm{N}(3)-\mathrm{C}(5)$	111.1(3)	$\mathrm{C}(13)-\mathrm{C}(9)-\mathrm{H}(26)$	105
$\mathrm{Sn}-\mathrm{N}(3)-\mathrm{C}(8)$	108.2(3)	$\mathrm{C}(13)-\mathrm{C}(9)-\mathrm{H}(27)$	84
$\mathrm{Sn}-\mathrm{N}(3)-\mathrm{C}(9)$	108.1(3)	$\mathrm{H}(26)-\mathrm{C}(9)-\mathrm{H}(27)$	137
$\mathrm{C}(5)-\mathrm{N}(3)-\mathrm{C}(8)$	110.2(4)	$\mathrm{C}(6)-\mathrm{C}(10)-\mathrm{O}(14)$	$110 \cdot 1$ (5)
$\mathrm{C}(5)-\mathrm{N}(3)-\mathrm{C}(9)$	109.9(4)	$\mathrm{C}(6)-\mathrm{C}(10)-\mathrm{O}(15)$	124.2(5)
$\mathrm{C}(8)-\mathrm{N}(3)-\mathrm{C}(9)$	109.3(4)	$\mathrm{O}(14)-\mathrm{C}(10)-\mathrm{O}(15)$	$125 \cdot 7(6)$
$\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	111.2(4)	$\mathrm{C}(7)-\mathrm{C}(11)-\mathrm{O}(16)$	116.9(4)
$\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{H}(24)$	109	$\mathrm{C}(7)-\mathrm{C}(11)-\mathrm{O}(17)$	117.6(5)
$\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{H}(25)$	111	$\mathrm{O}(16)-\mathrm{C}(11)-\mathrm{O}(17)$	125.4(5)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(24)$	103		
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(25)$	110	$\mathrm{C}(8)-\mathrm{C}(12)-\mathrm{O}(18)$	114.1(5)
$\mathrm{H}(24)-\mathrm{C}(4)-\mathrm{H}(25)$	112	$\mathrm{C}(8)-\mathrm{C}(12)-\mathrm{O}(19)$	$120 \cdot 9(5)$
		$\mathrm{O}(18)-\mathrm{C}(12)-\mathrm{O}(19)$	$124.9(5)$
$\mathrm{N}(3)-\mathrm{C}(5)-\mathrm{C}(4)$	111.1(4)	$\mathrm{C}(9)-\mathrm{C}(13)-\mathrm{O}(20)$	117.3(5)
		$\mathrm{C}(9)-\mathrm{C}(13)-\mathrm{O}(21)$	$119 \cdot 0(4)$
$\mathrm{N}(3)-\mathrm{C}(5)-\mathrm{H}(22)$	107	$\mathrm{O}(20)-\mathrm{C}(13)-\mathrm{O}(21)$	123.7(5)
$\mathrm{N}(3)-\mathrm{C}(5)-\mathrm{H}(23)$	102	$\mathrm{Sn}-\mathrm{O}(15)-\mathrm{C}(10)$	104-3(3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(22)$	104	$\mathrm{Sn}-\mathrm{O}(16)-\mathrm{C}(11)$	118.1(3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(23)$	121	$\mathrm{Sn}-\mathrm{O}(19)-\mathrm{C}(12)$	105-7(3)
$\mathrm{H}(22)-\mathrm{C}(5)-\mathrm{H}(23)$	110	$\mathrm{Sn}-\mathrm{O}(20)-\mathrm{O}(13)$	117.3(3)

around the rotation of the acetato-arms about the nitrogen atoms. In the dihydrate, there are two definite O_{r} ${ }^{9}$ S. Richards, B. Pedersen, J. V. Silverton, and J. L. Hoard, Inorg. Chem., 1964, 3, 27.
and two O_{g} arms. However, in the acid complex, these arms are approximately equivalent and similar to those in the manganese structure. ${ }^{9}$
In solution, the edta probably acts as a quadridentate ligand with the tin out of a square planar arrangement. No doubt in the solid state, the free carboxy-groups are attracted by the available orbitals of the metal atom and form weak links.

Intermolecular hydrogen bonds link carboxy-groups from differing molecules forming a one-dimensional polymer in the b direction (Figure 2).

EXPERIMENTAL

Crystal Data.- $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Sn}, M=408 \cdot 9$, Orthorhombic, $a=659 \cdot 1(1), b=1303 \cdot 1(2), c=3221 \cdot 6(6), U=2.767 \mathrm{~nm}^{3}$,

Table 2

Atomic positions (fractional co-ordinates) and temperature factors with estimated standard deviations in parentheses

Atom	x / a	y / b	z / c	B / \AA^{2}
Sn	$0 \cdot 63856$ (6)	$0 \cdot 18331$ (3)	$0 \cdot 36794(1)$	*
$\mathrm{N}(2)$	0.8716 (8)	$0 \cdot 2618(4)$	0.4176(2)	$2 \cdot 0$ (1)
$\mathrm{N}(3)$	$0 \cdot 8335(7)$	$0 \cdot 3053$ (4)	$0 \cdot 3296(2)$	1.8(1)
C(4)	0.9375 (10)	$0 \cdot 3607(5)$	$0 \cdot 3996(2)$	$2 \cdot 0$ (1)
C(5)	1.0018(10)	$0 \cdot 3483$ (5)	$0 \cdot 3555(2)$	$2 \cdot 1$ (1)
C(6)	1.0518(10)	$0 \cdot 2023$ (5)	0.4298(2)	2.2(1)
C(7)	$0.7410(10)$	$0 \cdot 2816$ (5)	0.4543(2)	$2 \cdot 3(1)$
C(8)	$0.9165(10)$	$0 \cdot 2534(5)$	0.2928(2)	2-3(1)
C(9)	0.6957(10)	$0 \cdot 3889$ (5)	$0 \cdot 3162(2)$	$2 \cdot 2(1)$
$\mathrm{C}(10)$	1-0074(11)	0.0915 (5)	$0 \cdot 4391$ (2)	$2 \cdot 4(\mathrm{l})$
C(11)	$0.5315(10)$	0.3169(5)	$0 \cdot 4413$ (2)	2.2(1)
C(12)	$0.9988(11)$	$0 \cdot 1476$ (5)	$0 \cdot 3034(2)$	$2 \cdot 2(1)$
C(13)	0.4846(10)	$0 \cdot 3507(5)$	$0 \cdot 3055$ (2)	$2 \cdot 0(1)$
O(14)	I-1742(7)	$0 \cdot 0446(4)$	$0 \cdot 4522$ (2)	*
$\mathrm{O}(15)$	$0 \cdot 8449$ (7)	$0.0517(4)$	$0 \cdot 4342$ (2)	*
O(16)	$0 \cdot 4835$ (6)	$0 \cdot 3046$ (4)	$0 \cdot 4031$ (1)	*
O(17)	$0 \cdot 4212$ (7)	$0 \cdot 3538(4)$	$0 \cdot 4682(1)$	*
$\mathrm{O}(18)$	1-0727(8)	0.0984 (4)	$0 \cdot 2721$ (1)	*
$\mathrm{O}(19)$	0.9850 (8)	$0 \cdot 1133$ (3)	$0 \cdot 3386(1)$	*
$\mathrm{O}(20)$	$0 \cdot 4398$ (7)	$0 \cdot 2596$ (3)	$0 \cdot 3162(1)$	*
$\mathrm{O}(21)$	$0 \cdot 3657(7)$	$0 \cdot 4091$ (3)	$0 \cdot 2866$ (2)	*
$\mathrm{H}(22)$	$1 \cdot 1000 \dagger$	$0 \cdot 3000$	$0 \cdot 3563$	$2 \cdot 0$
$\mathrm{H}(23)$	$1 \cdot 0500$	$0 \cdot 4125$	0.3375	$2 \cdot 0$
$\mathrm{H}(24)$	$0 \cdot 8250$	$0 \cdot 4050$	0.3975	$2 \cdot 0$
$\mathrm{H}(25)$	1.0500	$0 \cdot 3925$	$0 \cdot 4163$	$2 \cdot 0$
$\mathrm{H}(26)$	$0 \cdot 6850$	$0 \cdot 4125$	0.3337	$2 \cdot 0$
$\mathrm{H}(27)$	$0 \cdot 7000$	$0 \cdot 4075$	$0 \cdot 2875$	$2 \cdot 0$
$\mathrm{H}(28)$	$0 \cdot 8200$	$0 \cdot 2300$	$0 \cdot 2837$	$2 \cdot 0$
$\mathrm{H}(29)$	1.0350	$0 \cdot 2925$	$0 \cdot 2875$	$2 \cdot 0$
$\mathrm{H}(30)$	$0 \cdot 7250$	$0 \cdot 2125$	$0 \cdot 4687$	$2 \cdot 0$
$\mathrm{H}(3 \mathrm{I})$	$0 \cdot 8000$	$0 \cdot 3325$	$0 \cdot 4663$	$2 \cdot 0$
$\mathrm{H}(32)$	1-1650	$0 \cdot 2050$	$0 \cdot 4063$	$2 \cdot 0$
$\mathrm{H}(33)$	1-1000	$0 \cdot 2325$	0.4537	$2 \cdot 0$
$\mathrm{H}(34)$	$1 \cdot 1000$	-0.0175	0.4612	$2 \cdot 0$
$\mathrm{H}(35)$	1-1100	0.0032	$0 \cdot 2800$	$2 \cdot 0$

	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Sn	1050(11)	265(3)	57(1)	-71(5)	18(2)	$1(1)$
$\mathrm{O}(14)$	121(12)	40(3)	14(1)	16 (5)	-10(2)	1 (1)
$\mathrm{O}(15)$	142(12)	36(3)	12(1)	$-14(5)$	-11(2)	1(1)
$\mathrm{O}(16)$	95(11)	42(3)	7(1)	$7(5)$	$-1(2)$	-2(1)
O(17)	144(12)	37(3)	7(1)	1 (5)	12(2)	-1(1)
$\mathrm{O}(18)$	171(13)	$41(3)$	6(1)	16(5)	$10(2)$	-1(1)
$\mathrm{O}(19)$	218(14)	28(3)	6(1)	$5(5)$	$5(2)$	-1(1)
$\mathrm{O}(20)$	125(11)	28(3)	8(1)	$-13(5)$	-2(2)	1(1)
$\mathrm{O}(21)$	123(11)	$33(3)$	7(1)	14(5)	-7(2)	$-2(1)$

* Anisotropic thermal parameters $\left(\times 10^{4}, \mathrm{Sn} \times 10^{5}\right)$ in the form: $\quad \exp -\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+2 \beta_{12} h k+2 \beta_{13} h l+\right.$ $\left.2 \beta_{23} k l\right)$.
$Z=8, D_{\mathrm{c}}=1 \cdot 95, F(000)=1616$. Space group $P b c a\left(D_{2 h}^{15}\right.$, No. 61). Mo- K_{α} radiation, $\lambda=71.07 \mathrm{pm}$.

Angle data, from a crystal mounted about the a axis,
were measured from six Friedel pairs and used to obtain accurate unit-cell dimensions by a least-squares procedure. Of 2450 independent reflections measured on a Hilger and Watts computer-controlled four-circle diffractometer by use of a $20-\omega$ step scan up to a 0 value of $26^{\circ}, 2130$ were considered observed, having $I>2 \cdot 5 \sigma(I)$. Data were

A list of observed and calculated structure amplitudes $(\times 10)$ appears in Supplementary Publication No. SUP 20622 (8 pp., 1 microfiche).*

Atomic scattering factors for tin, oxygen, nitrogen, carbon, and hydrogen, were taken from ref. 10 with a correction for anomalous dispersion ${ }^{10}$ applied to the tin

collected at a constant scan rate of $0.01^{\circ} \mathrm{s}^{-1}$, and a scanwidth of 1° in 2θ.

Structure Determination and Refinement.--The tin atom was located from a Patterson synthesis. By use of the tin co-ordinates, an electron-density calculation revealed all the non-hydrogen atom positions. The hydrogen atoms were located from a difference-Fourier synthesis. The final least-squares cycle reduced R to 0.056 and R^{\prime} to 0.054 $\left\{R^{\prime}=\left[\Sigma w\left(\left|F_{0}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma w\left|F_{0}\right|^{2}\right]^{\frac{7}{2}}\right\}$. A final differenceFourier synthesis revealed no unaccounted electron density. Atomic and thermal parameters are given in Table 2.

* For details see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20 (items less than 10 pp . are sent as full size copies).
${ }^{10}$ ' International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962, pp. 202--216.
atom. The structure was determined, refined, and bond distances calculated with local versions of standard programs. ${ }^{11}$

We thank Professor B. Penfold, University of Canterbury, for making available the diffractometer, and Dr. W. Robinson for this assistance during data collection. K. G. S. and R. C. S. are supported by Commonwealth Postgraduate Scholarships.
[2/2081 Received, 4th September, 1972]
${ }^{11}$ PREFOUR, Structure Factor; FOURIER, J. Blount, 1966; ORFLS, Full-matrix Least-Squares, W. R. Busing, K. O. Martin, and H. A. Levy, Oak Ridge National Laboratory, ORNL TM 305, 1962; ORTEP, C. J. Johnson Oak Ridge National Laboratory, ORNL 3794, 1965.

[^0]: \dagger The g refers to the five membered acetato-metal ring in the plane of the ethylenediamine ring, while r is the one perpendicular.
 ${ }^{1}$ Part II, D. J. Robinson and C. H. L. Kennard, J. Chem. Soc. (A), 1970, 1008 .
 i J. J. Park, M. D. Glick, and J. L. Hoard, J. Amer. Chem. Soc., 1969, 91, 301.
 ${ }^{3}$ W. R. Scheidt, D. M. Collins, and J. L. Hoard, J. Amer. Chem. Soc., 1971, 93, 3873.

