Refinement of the Crystal Structure of Magnesium Sulphate Heptahydrate (Epsomite) by Neutron Diffraction

By Giovanni Ferraris, Derry W. Jones,* and Jack Yerkess, School of Chemistry, University of Bradford, Bradford BD7 1DP

Abstract

The crystal structure of orthorhombic $\mathrm{MgSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ has been refined anisotropically to a final R of 0.048 over 900 independent neutron reflexions from a synthetic crystal. For the positional parameters of the 14 crystallographically independent hydrogen atoms, estimated standard deviations are ca. $0.007 \AA$, double those for the other atoms. All hydrogen atoms (mean $\mathrm{O}-\mathrm{H} 0.964 \AA$) are engaged in hydrogen bonds, ranging from $2.692(7)$ to $2.982(7) \AA$. The $W(7)$ water molecule, unique in that it is not co-ordinated to the magnesium, is engaged in relatively weak [$2 \cdot 820(7)$ and $2 \cdot 903(7) \AA$] appreciably non-linear hydrogen bonds; it may be partially absent in water-deficient natural specimens. The assumption of coplanarity of water atoms and oxygen-acceptor atoms proves to be an unreliable guide to hydrogen positions.

For crystals of inorganic hydrates which contain atoms of moderately high atomic number, direct location of hydrogen atoms by X-ray diffraction is feasible only when the data are rather accurate. Plausible waterhydrogen positions (within a radius of ca. $0 \cdot 2 \AA$) may be estimated by several less direct procedures. Of these, (i) electrostatic-energy minimization, ${ }^{1,2}$ (ii) peak searching between short oxygen-oxygen contacts in a final Fourier-difference map, ${ }^{3}$ and (iii) spectroscopic, e.g. n.m.r., ${ }^{4}$ measurements all allow some check on postulated hydrogen sites, but this is hardly true for those predicted ${ }^{5,6}$ largely on the basis of (iv) expected environment of hydrogen-bonded water molecules. ${ }^{7,8}$ Neutron diffraction not only yields the hydrogen positions directly (ref. 9 and refs. therein) but it also enables an estimate to be made of the reliability of these less direct approaches.

Magnesium sulphate crystallizes as mono-, di-, tetra-, hexa-, and hepta-hydrates. ${ }^{10}$ The orthorhombic heptahydrate, the mineral epsomite, $\mathrm{MgSO}_{4}, 7 \mathrm{H}_{2} \mathrm{O}$, is sufficiently closely isostructural with the nickel salt morenosite ${ }^{11}$ for heavy-atom positions from the latter to provide satisfactory starting co-ordinates for a successful X-ray refinement of the $\mathrm{MgSO}_{4}, 7 \mathrm{H}_{2} \mathrm{O}$ structure. Hydrogen-atom positions inferred by method (iv) and consistent with a three-dimensional Fourier synthesis thus derived ${ }^{12}$ led to σ values of $c a .0 \cdot 23 \AA$. In epsomite, $\mathrm{SO}_{4}{ }^{2-}$ tetrahedra and $\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}$ octahedra (which effectively increase the cation size ${ }^{13}$) are linked by hydrogen bonds which also involve the other water molecule, $W(7)$, which is not co-ordinated to magnesium. The hydrogen-bonding system is likely to be significant in understanding the mechanism of the ready dehydration ${ }^{10} \mathrm{M}^{2+} \mathrm{SO}_{4}, 7 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{M}^{2+}$ $\mathrm{SO}_{4}, 6 \mathrm{H}_{2} \mathrm{O} \quad[\mathrm{M}=\mathrm{Mg}, \mathrm{Ni}$, etc. $]$ and the deficiency in water content of some natural specimens. ${ }^{14,15}$ A three-

[^0]dimensional neutron-diffraction investigation was undertaken in order to locate the hydrogen atoms of the several water molecules more precisely.

EXPERIMENTAL

Crystal Data. ${ }^{12}-\mathrm{MgSO}_{4}, 7 \mathrm{H}_{2} \mathrm{O}, M=246.5$, Orthorhombic, $a=11 \cdot 868(10), \quad b=11 \cdot 996(10), \quad c=6.857(7) \quad \AA, \quad U=$ $976(2) \quad \AA^{3}, \quad D_{\mathrm{m}}=1 \cdot 676, \quad Z=4, \quad D_{\mathrm{c}}=1.677(4)$. Space group $P 2_{1} 2_{1} 2_{1}$ (No. 19, D_{2}^{4}).
Neutron Measurements.-From a batch grown just above room temperature from aqueous solution of commercial $\mathrm{MgSO}_{4}, 7 \mathrm{H}_{2} \mathrm{O}$, a crystal of dimensions $0.3 \times 0.3 \times 0.5 \mathrm{~cm}^{3}$, well developed on $\{110\}$ and elongated along c, was selected and set up about the ϕ rotation axis of a Ferranti automatic single-crystal diffractometer at the DIDO reactor, Atomic Energy Research Establishment, Harwell. Neutron intensity data for a wavelength monochromatized to $1 \cdot 17 \AA$ were collected for the $h k l$ reflexions up to 2090° ($\omega-2 \theta$ scanning in 26 steps of 0.08° in ω for the peak, plus 4 steps on each side for the background; monitor count 4×10^{4} per step). Since the crystal remained transparent at the end of the experiments and the intensity of the standard reflection remained constant, no change in water content was suspected.

Setting angles were computed with a program written by Powell. Of 1073 reflections with $2 \theta \leqslant 90^{\circ}, 173$ were rejected because the integrated intensity was $<3 \sigma$. A program by Curry gave structure amplitudes and their σ values. No correction was made for absorption; extinction is discussed later.

Structure Refinement.-The following neutron scattering lengths ${ }^{16}$ were used: $\mathrm{S} \mathbf{2 \cdot 8}, \mathrm{Mg} 5 \cdot 2$, $\mathrm{O} 5 \cdot 77$, and $\mathrm{H}-3.72 \times$ $10^{-13} \mathrm{~cm}$. The parameters derived from the X-ray analysis ${ }^{12}$ gave $R \quad 0 \cdot 18$. Anisotropic least-squares refinement for all atoms, and based on 900 observed structure amplitudes was carried out with the ORFLS program of the ' X-Ray '63' system ${ }^{17}$ (and subsequent modifications) on the Chilton ATLAS computer; it was considered complete when all parameter shifts were $<\sigma$. Unitary weighting, w, gave acceptable $\Sigma w \Delta^{2}$ for groups of reflexions.

[^1]TAble 1
Fractional positional co-ordinates and vibrational parameters $\left(\AA^{2}\right)$, for each atom, with the significant figures of the estimated standard deviations in parentheses. The second line associated with each atom contains the significant figures of Δ, defined as the X-ray parameter value minus the neutron value, and $|\Delta| / \sigma$ (see text)

Mg	x	y	z	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
	0.4226(3)	$0 \cdot 1060(3)$	$0.0392(6)$	$0 \cdot 88(10)$	$1 \cdot 32(12)$	$1 \cdot 36(13)$	$0 \cdot 21(10)$	-0.06(9)	$0 \cdot 10$ (11)
	$31 \cdot 0$	31.0	$-528 \cdot 2$	$80 \cdot 7$	-110.8	-493.6	-10 0.9	$10 \cdot 1$	$-70 \cdot 6$
S	$0.7259(5)$	$0 \cdot 1835(6)$	$0 \cdot 4909$ (9)	$0 \cdot 83(19)$	$1.84(24)$	$0 \cdot 88(20)$	$0 \cdot 25(20)$	$-0 \cdot 10(18)$	$-0.19(22)$
	$71 \cdot 4$	$40 \cdot 7$	$-40 \cdot 4$	$130 \cdot 7$	$-572 \cdot 3$	$10 \cdot 1$	-42 $2 \cdot 0$	00	$-160 \cdot 6$
$\mathrm{O}(1)$	0.6857(4)	$0.0747(3)$	0.4268(7)	$4 \cdot 05(19)$	$1.56(13)$	3.06(17)	-0.83(14)	-0.42(16)	$-0.04(14)$
	$-4 \quad 0.7$	30.6	90.9	-220.7	$-60 \cdot 3$	-522.2	311.4	331.4	-4 $0 \cdot 2$
$\mathrm{O}(2)$	0.8498(2)	0.1869(4)	$0 \cdot 4835(6)$	$1 \cdot 10(10)$	$3 \cdot 15(16)$	$2 \cdot 32(14)$	$0 \cdot 18(11)$	0.01 (11)	$0 \cdot 18(14)$
	$82 \cdot 2$	$-10 \cdot 2$	-140.2	-9 0.6	$130 \cdot 6$	-351.8	$5 \quad 0 \cdot 3$	$90 \cdot 6$	180.9
$\mathrm{O}(3)$	0.6884(3)	$0 \cdot 2063(4)$	0.6908(6)	$2 \cdot 18(15)$	$4 \cdot 10(21)$	2.02(15)	-0.66(14)	$0 \cdot 16(13)$	-0.62(15)
	00	00	$-40 \cdot 5$	-553.0	-47 1-7	$-703 \cdot 8$	$382 \cdot 1$	$261 \cdot 6$	-90.5
$\mathrm{O}(4)$	0.6807(3)	0.2722(3)	$0 \cdot 3617(6)$	1.67(12)	2-29(16)	$2 \cdot 59(15)$	$0 \cdot 03(12)$	-0.48(12)	$0 \cdot 49(3)$
	$10 \cdot 2$	-6 1-2	-12 I•4	$130 \cdot 8$	-51 $2 \cdot 6$	-41 1-9	140.9	-25 1.4	100.5
W(1)	0.2651(3)	$0 \cdot 1743$ (4)	0.0026(7)	$1.72(12)$	$2 \cdot 87(16)$	$2 \cdot 23(17)$	$0 \cdot 85(13)$	-0.06(14)	$-0 \cdot 25(17)$
	$40 \cdot 9$	30.53	$121 \cdot 3$	-311.9	70.3	-572.8	$6 \quad 0.4$	$10 \cdot 1$	-20.1
W(2)	0.4724(3)	$0 \cdot 2478(3)$	0.1990(5)	1-27(13)	$2 \cdot 00(13)$	$1.91(13)$	-0.28(11)	0.09(13)	-0.53(13)
	-8 1.9	00	$20 \cdot 3$	-140.8	-40.2	$-442 \cdot 6$	-110.7	$10 \cdot 1$	00
W(3)	0.4696(3)	0.1755(4)	$-0.2214(6)$	1.48 (15)	$2 \cdot 81(16)$	$1 \cdot 89(14)$	$-0.16(13)$	$0 \cdot 35(13)$	$0 \cdot 50$ (14)
	$-5 \quad 1 \cdot 2$	$30 \cdot 5$	00	$100 \cdot 5$	$-100 \cdot 4$	-29 1.6	-100.6	-12 0.7	321.7
W(4)	0.5828(3)	0.0462(4)	$0.0787(7)$	$1.92(14)$	$3 \cdot 10(18)$	$2 \cdot 79$ (18)	1-34(14)	$-0.94(15)$	-0.91(16)
	00	$10 \cdot 2$	$-141 \cdot 4$	-120.7	-220.9	-70 3.0	20 l -1	-19 1.0	-90.4
W(5)	$0 \cdot 3760(3)$	$-0.0387(3)$	$-0.1118(6)$	$2 \cdot 21$ (15)	1.53 (16)	$1.94(15)$	-0.42 (12)	$-0.15(13)$	$-0.24(13)$
	$10 \cdot 2$	-71.7	-7 1-2	-1 $0 \cdot 1$	$140 \cdot 7$	-49 $2 \cdot 5$	-140.9	$-20 \cdot 1$	$90 \cdot 6$
W(6)	$0 \cdot 3621(4)$	0.0342(3)	$0 \cdot 2929$ (6)	1.94(17)	$2 \cdot 48$ (16)	2.35(17)	0.01(13)	$0 \cdot 42$ (15)	$0 \cdot 50$ (14)
	$10 \cdot 2$	00	-22 3.9	-20.1	$231 \cdot 0$	-81 $3 \cdot 8$	-18 1-1	-90.5	$321 \cdot 7$
W(7)	0.4908(4)	0.4375 (4)	$0.9383(6)$	2.99(17)	2.04(17)	2.55(16)	$-0.02(15)$	$0 \cdot 11(14)$	$0 \cdot 42$ (14)
	81-4	$20 \cdot 4$	$10 \cdot 1$	110.5	$-30 \cdot 1$	-261.2	251.3	$412 \cdot 2$	-19 1.0
$\mathrm{H}(\mathrm{l})$	$0 \cdot 2346(6)$	$0 \cdot 2215(6)$	$0 \cdot 1058(11)$	$2 \cdot 17(24)$	$3 \cdot 99(32)$	$2 \cdot 43(25)$	$0 \cdot 77(23)$	$0 \cdot 29(21)$	$-0.56(28)$
$\mathrm{H}(2)$	$\begin{gathered} 0.2377(5) \\ -370.4 \end{gathered}$	$\begin{gathered} 0 \cdot 1990(7) \\ 700.7 \end{gathered}$	$\begin{gathered} -0 \cdot 1222(\mathrm{ll}) \\ -1120.5 \end{gathered}$	$2 \cdot 29(24)$	$4 \cdot 18(34)$	$2 \cdot 05(26)$	0.87(23)	$-0 \cdot 37(21)$	$0 \cdot 18(26)$
$\mathrm{H}(3)$	$\begin{gathered} 0.4216(5) \\ 134 \mathrm{I} .2 \end{gathered}$	$\begin{gathered} 0.2719(6) \\ -190.2 \end{gathered}$	$\begin{gathered} 0.3044(12) \\ 256 \mathrm{l} .3 \end{gathered}$	2.08(22)	$3 \cdot 26(29)$	$3 \cdot 28(32)$	$0 \cdot 11(22)$	$0 \cdot 75$ (24)	$-1.08(26)$
H (4)	$0.5478(5)$	$\begin{gathered} 0.2518(5) \\ -580.6 \end{gathered}$	$\begin{gathered} 0 \cdot 2596(10) \\ 840 \cdot 4 \end{gathered}$	1-67(24)	$2 \cdot 79(25)$	$3 \cdot 12(28)$	$-0 \cdot 13(19)$	$-0 \cdot 40(20)$	-0.75(24)
$\mathrm{H}(5)$	$\begin{gathered} 0.4236(5) \\ -460 \cdot 5 \end{gathered}$	$\begin{aligned} & 0 \cdot 2222(6) \\ & 118 \quad 1.2 \end{aligned}$	$\begin{gathered} -0.3062(11) \\ 2981.5 \end{gathered}$	$2 \cdot 09(23)$	$3 \cdot 23(29)$	$3 \cdot 26(29)$	-0.28(23)	$-0 \cdot 18(24)$	$0 \cdot 91$ (28)
H(6)	$\begin{array}{r} 0.5479(5) \\ 110 \cdot 1 \end{array}$	$\begin{gathered} 0.1842(6) \\ 380.4 \end{gathered}$	$\begin{array}{r} -0.2569(9) \\ -1290.7 \end{array}$	$1 \cdot 57(24)$	$3 \cdot 04(24)$	$2 \cdot 21(25)$	-0.08(19)	$0 \cdot 35(18)$	$-0 \cdot 15(22)$
H(7)	$\begin{array}{r} 0.6271(6) \\ 490.5 \end{array}$	$\begin{aligned} & 0.0574(6) \\ & -240.2 \end{aligned}$	$\begin{gathered} 0 \cdot 1934(12) \\ 860 \cdot 4 \end{gathered}$	2.75(26)	$3 \cdot 57(30)$	$2 \cdot 96(29)$	0.27(24)	$-0.67(28)$	-0.26(26)
$\mathrm{H}(8)$	$\begin{aligned} & 0 \cdot 6139(8) \\ & -1391 \cdot 4 \end{aligned}$	$\begin{gathered} -0.0176(9) \\ -160.2 \end{gathered}$	$\begin{gathered} 0 \cdot 0170(15) \\ 800.4 \end{gathered}$	$5 \cdot 35(44)$	6•40(49)	4.62(42)	$4 \cdot 03(43)$	$-1 \cdot 22(37)$	$-2 \cdot 59(41)$
$\mathrm{H}(9)$	$\begin{aligned} & 0.3668(5) \\ & -1081 \cdot 1 \end{aligned}$	$\begin{gathered} -0.1065(6) \\ -951.0 \end{gathered}$	$\begin{gathered} -0.0357(12) \\ 230.1 \end{gathered}$	$3 \cdot 29(26)$	$2 \cdot 01(25)$	$4 \cdot 25(32)$	$0 \cdot 21(24)$	$-0.45(27)$	$0 \cdot 36(26)$
$\mathrm{H}(10)$	$\begin{array}{r} 0 \cdot 4217(7) \\ 630 \cdot 3 \end{array}$	$\begin{gathered} -0.0541(6) \\ -110.1 \end{gathered}$	$\begin{gathered} -0.2239(13) \\ 710.4 \end{gathered}$	$3 \cdot 49(27)$	$3 \cdot 38(3 \mathrm{I})$	$3 \cdot 53(34)$	0.09(26)	$0 \cdot 40(30)$	-0.41 (29)
H(11)	$\begin{array}{r} 0.2840(6) \\ -300 \cdot 3 \end{array}$	$\begin{gathered} 0.0262(7) \\ 68 \quad 0.7 \end{gathered}$	$\begin{gathered} 0.3207(11) \\ -70.1 \end{gathered}$	$2 \cdot 60(30)$	$4 \cdot 21(33)$	$3 \cdot 78(33)$	$-1 \cdot 12(24)$	$0 \cdot 84(24)$	$0 \cdot 99(28)$
$\mathrm{H}(12)$	$\begin{aligned} & 0 \cdot 4067(7) \\ & -117 \end{aligned}$	$\begin{gathered} 0.0001(6) \\ 790.8 \end{gathered}$	$\begin{gathered} 0.3926(11) \\ 1140.6 \end{gathered}$	$4 \cdot 58(33)$	$3 \cdot 50(33)$	$2 \cdot 18(25)$	0.26(28)	$-0.21(28)$	$0 \cdot 86(25)$
H(13)	$\begin{array}{r} 0.4252(7) \\ 580 \cdot 6 \end{array}$	$\begin{gathered} 0.4834(7) \\ 86 \quad 0.9 \end{gathered}$	$\begin{gathered} 0.9562(\mathrm{l} 2) \\ 188 \mathrm{l} \cdot 0 \end{gathered}$	3.57(30)	3•64(31)	$3 \cdot 54(33)$	$0 \cdot 42(30)$	-0.04(28)	0.23(29)
H(14)	$0.4746(7)$ -1041.1	$0.3681(7)$ 190.2	$1.0014(15)$ -60.1	$4 \cdot 13(3 \mathrm{I})$	$2 \cdot 80(32)$	$5 \cdot 84(42)$	-0.68(27)	2.08(37)	0.07(34)

Allowance was made for secondary extinction by refining a g factor; ${ }^{18}$ its final value was $0.0092(10) \times 10^{24} \mathrm{~cm}^{2}$. The final R value was 0.048 for the 900 reflexions listed in

* For details see Notice to Authors No. 7 in J. Chem. Soc. (A), 1972, Issue No. 24.

18 A. C. Larson, 1970, in Crystallographic Computing: Proc. Internat. Summer School, Ottawa, eds. F. R. Ahmed, S. R. Hall, and C. P. Huber, Copenhagen, Munksgaard, p. 291.

Supplementary Publication No. SUP 20635 (7 pp, 1 microfiche).* A final Fourier-difference synthesis revealed only statistically distributed peaks with maximum height $\pm 0.06 \times 10^{-12} \mathrm{~cm} \AA^{-3}$.
In Table 1, the upper entries for each atom give the final fractional atomic co-ordinates together with the coefficients, $B_{i j}$ in the expression $\exp \left\{-\frac{1}{4} \sum_{i=1}^{3} \sum_{j=1}^{3} B_{i j} h_{i} h_{j} a_{\imath}{ }^{*} a_{j}{ }^{*}\right\}$.

DISCUSSION

Since the neutron analysis confirms (see Tables 1-3) the main features of the crystal structure (see Figure)

Table 2
Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)(\mathrm{O}-\mathrm{S}-\mathrm{O})$ in the SO_{4} group, uncorrected (A) and corrected for thermal motion (B, C, D) : lower (B) and upper (C) limits and riding model (D). The estimated standard deviations are $0.006 \AA$ and 0.4° for distances and angles, respectively

	A	B	C	D
$\mathrm{S}-\mathrm{O}(1)$	1.458	$1 \cdot 466$	1.530	1.482
$\mathrm{S}-\mathrm{O}(2)$	1.472	1.474	1.540	1.484
$\mathrm{S}-\mathrm{O}(3)$	1.467	$1 \cdot 470$	1.542	$1 \cdot 483$
$\mathrm{S}-\mathrm{O}(4)$	1.485	$1 \cdot 487$	1.543	1.496
Mean	1.471	1.474	1.539	$1 \cdot 486$
				Angle
$\mathrm{O}(1) \cdots \mathrm{O}(2)$				$109 \cdot 9$
$\mathrm{O}(1) \cdots \mathrm{O}(3)$				$110 \cdot 5$
$\mathrm{O}(1) \cdots \mathrm{O}(4)$				$110 \cdot 1$
$\mathrm{O}(2) \cdots \mathrm{O}(3)$				$109 \cdot 3$
$\mathrm{O}(2) \cdots \mathrm{O}(4)$				$108 \cdot 7$
$\mathrm{O}(3) \cdots \mathrm{O}(4)$				$108 \cdot 3$
Mean				

Table 3
Interatomic distances (\AA) and angles (${ }^{\circ}$) ($\mathrm{W}-\mathrm{Mg}-\mathrm{W}$) involving the magnesium co-ordination polyhedron: corrections for thermal motion and estimated standard deviations as in Table 2

as given by Baur, ${ }^{12}$ only the configuration of the water molecules and the associated hydrogen bonding are discussed in detail. The trend of bond lengths is consistent with Baur's ${ }^{19}$ correlation with bond strength, p, received by oxygen atoms. Thus the 'overbonded' atoms $\mathrm{O}(2), \mathrm{O}(4), \mathrm{W}(2)$, and $\mathrm{W}(5)$ have the longest bonds to S or Mg ; generally, those hydrogen bonds with p (donor) $-p$ (acceptor) positive are shorter than others.

The Water Molecules.-The geometries of the water molecules and of their hydrogen-bonded environments
are summarized in Table 4 (where several different best planes $\alpha, \beta, \gamma, \delta$ are introduced) and Table 5 , where a

Clinographic projection of the crystal structure of epsomite down the z axis. Atoms involved in hydrogen bonds are labelled only for the asymmetric set of Table 1. Bonds of the magnesium (small open circles) polyhedra in black are nearer (in the z direction) than those in white; proximity of the sulphate tetrahedra is in the decreasing sequence: dark grey, light grey, white. Sulphate oxygens are shown as single circles and water oxygens as double circles. The hydrogen $H(7)$ of water $W(4)$ is not shown since it is obscured by $O(1) ; O\left(3,3^{I}\right)$, to which $W(1)$ is linked, is obscured by a sulphate tetrahedron

Table 4
For each water molecule, the following weighted leastsquares planes $(A x+B y+\mathrm{C} z-D=0)$ for fractional co-ordinates are listed: (i) α for the three atoms of the water molecule, (ii) β for the water molecule and the two oxygen atoms accepting the hydrogen bonds, and (iii) either δ for these five atoms plus the coordinated cation or γ for the atoms in columns C, F, G of Table 5. For each plane, $\chi^{2}=(d / \sigma)^{2}$ where d is the distance of an atom from the plane in question

W(1)		A	B	C	D	χ^{2}
	α	$9 \cdot 333$	$7 \cdot 336$	-0.597	3.751	0
	β	$8 \cdot 715$	7.998	-0.874	$3 \cdot 721$	21
	δ	6.660	9.768	-1.018	3.711	1569
W(2)	α	$0 \cdot 860$	$11 \cdot 341$	-2.179	2.783	0
	β	$0 \cdot 407$	11.351	-2.206	$2 \cdot 562$	13
	γ	$11 \cdot 374$	-2.454	-1.367	$4 \cdot 493$	0
W(3)	α	$1 \cdot 009$	9.072	$4 \cdot 449$	1.081	0
	β	$0 \cdot 550$	9.010	$4 \cdot 516$	$0 \cdot 834$	12
	δ	1-196	9.922	3.791	1.617	975
W(4)	α	$-7 \cdot 399$	-7.036	$3 \cdot 545$	-4.358	0
	β	9.924	$3 \cdot 861$	-3.045	5.801	197
	δ	-7.050	-6.190	$4 \cdot 232$	$-3 \cdot 693$	5542
W(5)	α	$9 \cdot 740$	2.716	$3 \cdot 597$	$3 \cdot 155$	0
	β	$9 \cdot 699$	$2 \cdot 073$	3.770	$3 \cdot 154$	18
	γ	-2.913	-5.251	5.931	-1.555	0
W(6)	α	$0 \cdot 173$	$10 \cdot 352$	3.464	1.431	0
	β	$1 \cdot 441$	$10 \cdot 725$	$2 \cdot 957$	1.728	55
	δ	1.298	10.545	3-182	1.774	88
W(7)	α	$4 \cdot 566$	$4 \cdot 248$	$5 \cdot 845$	$9 \cdot 584$	0
	β	$7 \cdot 785$	5.368	$4 \cdot 168$	$9 \cdot 989$	260
	γ	$-4 \cdot 393$	$10 \cdot 885$	-1.366	1-324	0

convenient generalized notation is used for referring to interatomic distances and angles. According to a modification ${ }^{8}$ of the water-molecule classification, ${ }^{20}$ in terms of lone-pair co-ordination, $W(2)$ and $W(5)$ are of type H, and $\mathrm{W}(7)$ is of type $E ; \mathrm{W}(1), \mathrm{W}(3)$, W(4), and $W(6)$ [note the $\overline{C F} \alpha$ angles and $\bar{F} \alpha$ distances in Table 5] * are of type D (i.e. hybrids between configurations with Mg along the bisector of the lone-pair orbitals and a configuration with Mg in contact with only one lone-pair orbital). Evidently, this hybrid watermolecule configuration (the possibility of which was hinted at in a footnote to ref. 20) is not uncommon. ${ }^{8,9}$ For $W(4), W(6)$, and $W(7)$, the acceptor-oxygen atoms lie out of the water-molecule plane α (Table 4 and 5); indeed, for $W(4)$ and $W(7)$, departure from planarity

Despite the appreciable spread ($97 \cdot 2-121 \cdot 9^{\circ}$) of acceptor-W-acceptor angle ($A C E$), the $\mathrm{H}-\mathrm{W}-\mathrm{H}$ angles ($B C D$ in Table 5) range only from $105 \cdot 4$ to $110 \cdot 6^{\circ}$ (mean $108 \cdot 2^{\circ}$). As usual, deformation of the $\mathrm{W}-\mathrm{H}-\mathrm{ac}-$ ceptor angle ${ }^{21}$ appears to be easier than that of the $\mathrm{H}-\mathrm{W}-\mathrm{H}$ angle; in fact, all the $\mathrm{W}-\mathrm{H}-$ acceptor angles show significant deviations from 180° (for a linear hydrogen bond), although these deviations are large only for $\mathrm{W}(4)-\mathrm{H}(8) \cdots \mathrm{O}\left(2,2^{\text {IV }}\right)$ and for the two bonds to $\mathrm{W}(7)$. The $\mathrm{W}(4)-\mathrm{H}(8) \cdots \mathrm{O}\left(2,2^{\text {IV }}\right)$ hydrogen bond (Table 5) is the longest $(2.982 \AA)$ and least linear in the structure, and its hydrogen $\mathrm{H}(8)\left[2.089 \AA\right.$ from $\left.\mathrm{O}\left(2,2{ }^{\mathrm{IV}}\right)\right]$ has the largest temperature factor.
$\mathrm{W}(7)$ is unique among the water molecules in that it is not co-ordinated by Mg and that it possesses two rather

Table 5
Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ for water molecules and atoms in contact with them. F and G are Mg ions to which the water molecule is co-ordinated, or H atoms from which the water molecule accepts hydrogen bonds. σ Values are $0.009 \AA$ and 0.8° for interatomic distances and angles involving hydrogen atoms; others are as shown. Columns $A-G$ list the distances between the atom given and the corresponding α (and, where appropriate, γ) planes of Table 4; σ values for these are $0.013 \AA$ if they involve hydrogen atoms and $0.007 \AA$ otherwise

is appreciable, as evidenced (Table 4) by χ^{2} for plane β. In view of the frequency of these deviations, ${ }^{8}$ it would seem that it is not always justifiable to calculate hydrogen positions on the basis of the coplanarity of the water molecule with the two acceptor oxygens.

In crystal hydrates, ${ }^{8}$ the co-ordinated cations often do not lie symmetrically about the plane α (compare angles $\overline{C F} \alpha$ and $\overline{C G} \alpha$ in Table 5) of the water molecule, i.e. they do not lie exactly along the idealized directions of the lone-pair orbitals and in the plane orthogonal to the water plane α (see the $\alpha \gamma, \beta \gamma, \overline{C F} \alpha$, and $\overline{C G} \alpha$ angles in Table 5); this is true for $\mathrm{W}(2), \mathrm{W}(5)$, and $\mathrm{W}(7)$ in epsomite. Thus the assumption of tetrahedral co-ordination of the water molecule is not always a reliable basis for hydrogen-atom location.

[^2]weak ($2 \cdot 820$ and $2.903 \AA$) and appreciably non-linear (161.8 and 161.0°) hydrogen bonds. In view of the similarities between the structures of epsomite and hexahydrite, ${ }^{22}$ these results help to explain the ready reversibility of the $\mathrm{MgSO}_{4}, 7 \mathrm{H}_{2} \mathrm{O}$ (epsomite) $\rightleftharpoons \mathrm{MgSO}_{4}$, $6 \mathrm{H}_{2} \mathrm{O}$ (hexahydrite) process and the deficiency of water content in some natural specimens of epsomite. ${ }^{14,15}$ Accordingly, atoms in this water molecule exhibit slightly larger thermal parameters (Table 6). None of the intrawater interproton distances ($B D$ in Table 5) in epsomite or in leonhardtite, ${ }^{23} \mathrm{MgSO}_{4}, 4 \mathrm{H}_{2} \mathrm{O}$, is unusually long, despite the report of $1.66 \pm 0.02 \AA$ in kieserite, $\mathrm{MgSO}_{4}, \mathrm{H}_{2} \mathrm{O}$, from proton resonance. ${ }^{24}$

The $\mathrm{O}-\mathrm{H}$ bond lengths (mean $0.964 \AA$) have a narrow

[^3]spread from 0.950 to $0.985 \AA$ (Table 7); W-acceptor bond lengths range from 2.692 to $2.982 \AA$. While $\mathrm{H} \cdots \mathrm{O}$ increases linearly vs. $\mathrm{O} \cdots \mathrm{O}$, there is little evidence in epsomite for decrease in the length of $\mathrm{W}-\mathrm{H}$ with increase of either $\mathrm{H} \cdots \mathrm{O}$ or $\mathrm{O} \cdots \mathrm{O}^{8}$

Table 6
Parameters characterizing the principal directions (1, 2, 3) of thermal vibration for the atoms in the structure: root-mean-square amplitude (column A) and angles which the principal directions make with the $a(B)$, $b(C)$, and $c(D)$ axes

Mg		A / \AA	$B 1^{\circ}$	$C 1^{\circ}$	$D 1^{\circ}$
	1	$0 \cdot 13$	111	121	39
	2	$0 \cdot 14$	78	41	52
	3	$0 \cdot 10$	24	112	81
S	1	$0 \cdot 10$	116	74	31
	2	$0 \cdot 16$	77	17	101
	3	$0 \cdot 10$	30	97	61
$\mathrm{O}(1)$	1	$0 \cdot 19$	76	100	17
	2	0.24	22	105	106
	3	$0 \cdot 13$	73	18	85
$\mathrm{O}(2)$	1	$0 \cdot 17$	91	101	11
	2	$0 \cdot 20$	85	12	79
	3	$0 \cdot 12$	5	95	90
$\mathrm{O}(3)$	1	$0 \cdot 16$	19	77	103
	2	0.24	107	22	105
	3	$0 \cdot 15$	81	72	20
$\mathrm{O}(4)$	1	$0 \cdot 16$	63	35	111
	2	$0 \cdot 20$	106	59	35
	3	$0 \cdot 13$	32	106	63
W(1)	1	$0 \cdot 17$	81	81	12
	2	0.21	63	30	102
	3	$0 \cdot 13$	29	118	94
W(2)	1	$0 \cdot 14$	113	57	42
	2	$0 \cdot 18$	102	43	103
	3	$0 \cdot 12$	26	66	80
W (3)	1	$0 \cdot 16$	52	108	44
	2	$0 \cdot 20$	90	24	66
	3	$0 \cdot 12$	38	75	124
W(4)	1	$0 \cdot 16$	85	55	36
	2	$0 \cdot 25$	60	47	123
	3	$0 \cdot 11$	30	117	77
W(5)	1	$0 \cdot 16$	94	112	22
	2	$0 \cdot 17$	25	114	95
	3	$0 \cdot 12$	66	33	69
W(6)	1	$0 \cdot 17$	130	48	113
	2	$0 \cdot 20$	74	48	46
	3	$0 \cdot 14$	44	71	128
W(7)	1	$0 \cdot 19$	110	61	36
	2	$0 \cdot 20$	20	83	71
	3	0.15	87	30	120
$\mathrm{H}(\mathrm{l})$	1	$0 \cdot 18$	56	89	34
	2	$0 \cdot 24$	73	22	103
	3	$0 \cdot 14$	40	112	121
$\mathrm{H}(2)$	1	$0 \cdot 17$	129	77	42
	2	0.24	69	21	89
	3	$0 \cdot 14$	46	106	48
$\mathrm{H}(3)$	1	0.18	51	49	66
	2	0.24	78	130	43
	3	$0 \cdot 14$	41	112	123
$\mathrm{H}(4)$	1	$0 \cdot 17$	116	42	60
	2	0.22	97	127	38
	3	$0 \cdot 14$	27	74	70
$\mathrm{H}(5)$	1	$0 \cdot 17$	77	132	45
	2	0.23	99	46	46
	3	$0 \cdot 16$	16	74	93
$\mathrm{H}(6)$	1	$0 \cdot 17$	67	77	27
	2	$0 \cdot 20$	96	13	102
	3	$0 \cdot 13$	24	90	114

Table 6 (Continued)

		A / \AA	$B 1^{\circ}$	$C 1^{\circ}$	$D /{ }^{\circ}$
$\mathrm{H}(7)$	1	$0 \cdot 20$	117	46	55
	2	$0 \cdot 22$	63	44	121
	3	$0 \cdot 17$	40	92	50
H(8)	1	$0 \cdot 22$	59	87	31
	2	$0 \cdot 38$	54	45	113
	3	$0 \cdot 14$	129	46	79
$\mathrm{H}(9)$	1	$0 \cdot 20$	23	75	72
	2	$0 \cdot 24$	110	84	21
	3	$0 \cdot 15$	102	16	101
$\mathrm{H}(10)$	1	$0 \cdot 21$	44	46	95
	2	0.23	60	115	4 I
	3	$0 \cdot 19$	119	54	50
H(1I)	1	$0 \cdot 23$	52	107	43
	2	$0 \cdot 25$	102	33	60
	3	$0 \cdot 13$	41	62	117
H(12)	1	0.22	101	30	63
	2	$0 \cdot 24$	13	77	90
	3	$0 \cdot 15$	84	116	27
H(13)	1	0.21	119	86	29
	2	$0 \cdot 23$	53	42	74
	3	$0 \cdot 20$	129	49	114
H(14)	1	$0 \cdot 21$	123	44	64
	2	$0 \cdot 30$	56	94	35
	3	$0 \cdot 17$	52	46	111

Table 7
Interatomic angles ($\sigma 0.8^{\circ}$) and distances ($\sigma 0.009 \AA$) for water molecules; the latter are corrected for thermal motion: ${ }^{a}$ uncorrected (A), lower (B) and upper (C) limits, and riding model (D)

		Distances/ \AA			
	Angles ${ }^{\circ}$	A	B	C	D
$\mathrm{W}(\mathbf{1})-\mathrm{H}(\mathbf{1})$	109.9	0.976	0.977	1-126	0.987
$\mathrm{W}(1)-\mathrm{H}(2)$		0.963	0.964	$1 \cdot 112$	0.977
$\mathrm{W}(2)-\mathrm{H}(3)$	106.9	0.985	0.988	$1 \cdot 119$	1.006
$\mathrm{W}(2)-\mathrm{H}(4)$		$0 \cdot 961$	0.963	1.089	0.970
$\mathrm{W}(3)-\mathrm{H}(5)$	109.1	$0 \cdot 975$	0.976	$1 \cdot 108$	0.989
$\mathrm{W}(3)-\mathrm{H}(6)$		0.967	0.967	1.101	0.970
$\mathrm{W}(4)-\mathrm{H}(7)$	$105 \cdot 4$	0.956	0.956	$1 \cdot 130$	0.962
$\mathrm{W}(4)-\mathrm{H}(8)$		0.950	0.962	1.212	1.006
$\mathrm{W}(\overline{5})-\mathrm{H}(9)$	109.5	$0 \cdot 972$	0.975	1-112	0.993
$\mathrm{W}(5)-\mathrm{H}(10)$		0.959	0.964	1.098	0.985
$\mathrm{W}(6)-\mathrm{H}(11)$	$110 \cdot 6$	0.952	0.955	$1 \cdot 129$	0.975
$\mathrm{W}(6)-\mathrm{H}(12)$		0.957	$0 \cdot 960$	$1 \cdot 118$	0.980
$\mathrm{W}(7)-\mathrm{H}(13)$	106.2	0.962	0.964	$1 \cdot 123$	0.980
$\mathrm{W}(7)-\mathrm{H}(14)$		0.959	0.963	I-163	0.987
Mean	$108 \cdot 2$	0.964	0.967	1-124	0.984

Comparison of Neutron and X-Ray Parameters.-In addition to the neutron parameters, Table 1 lists the significant figures of Δ [X-ray parameter ${ }^{12}$ minus neutron parameter] and the ratio of $|\Delta|$ to its standard error: $\sigma=\left[\sigma^{2} \text { (neutron) }+\sigma^{2}(X \text {-ray })\right]^{\frac{1}{2}}$. As a check on freedom from systematic errors in the two sets of parameters and on the appropriateness of their apparent standard deviations, a half-normal probability plot ${ }^{25}$ of $|\Delta|$ showed a slope of $1 \cdot 1$ and zero intercept. This means that the $|\Delta|$ values are normally distributed and that the X-ray and neutron standard deviations have been estimated reasonably, at least for the heavy atoms for which σ (neutron) and $\sigma(X$-ray) are com-
${ }^{25}$ S. C. Abrahams and E. T. Keve, Acta Cryst., 1971, A27, 157.
parable; for the hydrogen atoms, σ is almost independent of σ (neutron). Since $|\Delta|$ (Table 1) is only occasionally larger than σ, one can regard the X-ray and neutron structures as statistically equal (including the thermal parameters), so that ${ }^{9}$ there is no chemical significance in the differences $|\Delta|$ between X-ray and neutron parameters. Randomness of the $|\Delta|$ values must be associated with absorption, a common systematic error; but it will be small in each case, for μ is very low for neutrons and the X-ray data, obtained by use of Mo- K_{α} radiation, were collected along four different directions and averaged. Even so, since the z and B_{33} values generally have the largest values of $|\Delta| / \sigma$, some systematic error appears to be present along the z direction.

Baur derived ${ }^{12}$ hydrogen-atom co-ordinates from heavy-atom positions by approach (iv), refined them
by least-squares, and checked them by a difference Fourier. The present results emphasize that assumption (iv) (hydrogens coplanar with the water-oxygen and the acceptor-oxygen atoms) can be an unsatisfactory predictor of hydrogen co-ordinates. However, in this structure, as was also found ${ }^{26}$ for $\mathrm{Na}_{2} \mathrm{HAsO}_{4}, 7 \mathrm{H}_{2} \mathrm{O}$, least-squares refinement of the X-ray data gave hydrogen parameters in agreement, within the large X-ray σ values, with those obtained by neutron diffraction.
We thank D. H. C. Harris and the University Support Group, A.E.R.E., for help, and the S.R.C. for access to neutron facilities at A.E.R.E., Harwell, and to the Chilton ATLAS computer.
[2/1617 Received, 10th July, 1972]
${ }^{26}$ G. Ferraris, D. W. Jones, and J. Yerkess, Acta Cryst., 1971, B27, 354.

[^0]: ${ }^{1}$ W. H. Baur, Acta Cryst., 1965, 19, 909.
 ${ }^{2}$ C. Cohen-Addad, Acta Cryst., 1969, B25, 1644.
 ${ }^{3}$ G. Ferraris and G. Chiari, Acta Cryst., 1970, B26, 1574.
 4 Z. M. El Saffar, Acta Cryst., 1968, B24, 1131.
 ${ }^{5}$ W. H. Baur, Acta Cryst., 1964, 17, 1167.
 ${ }^{6}$ W. H. Baur and A. A. Khan, Acta Cryst., 1970, B26, 1584.
 ${ }^{7}$ W. H. Baur, Acta Cryst., 1972, B28, 1456.
 ${ }^{8}$ G. Ferraris and M. Franchini-Angela, Acta Cryst., 1972, B28, 3572.
 ${ }_{9}$ G. Ferraris, D. W. Jones, and J. Yerkess, Acta Cryst., 1972, B28, 209.

[^1]: ${ }^{10}$ K. Heide, Ber. deutsch. Ges. geol. Wiss., 1969, B14, 97.
 ${ }^{11}$ C. A. Beevers and C. M. Schwartz, Z. Krist., 1935, 91, 157.
 ${ }^{12}$ W. H. Baur, Acta Cryst., 1964, 17, 1361.
 ${ }^{13}$ M. R. Truter, Chem. in Britain, 1971, 7, 203.
 ${ }^{14}$ C. Palace, H. Berman, and C. Frondel, ' System of Mineralogy,' vol. II, 7th edn., Wiley, New York, 1963.
 ${ }^{15}$ G. Rigault, Per. Mineral., 1961, 30, 81.
 ${ }^{16}$ G. E. Bacon, Acta Cryst., 1969, A25, 391.
 ${ }^{17}$ ' X-Ray ' 63 ' System, ed. J. M. Stewart, University of Maryland Report TR 646.

[^2]: * Atoms are designated as follows: a single value in parentheses (or no value) denotes an atom of the asymmetric unit listed in Table 1 ; a second figure, ranging from 2 to 4 , is included for related atoms in the positions $\frac{1}{2}-x, \bar{y}, \frac{1}{2}+z ; \frac{1}{2}+x$, $\frac{1}{2}-y, \bar{z}$; and $\bar{x}, \frac{1}{2}+y, \frac{1}{2}-z$. Roman numbers represent the following translations: I, $-a, c$; II, $-a$; III, $-c$; IV, $a,-c$; $\mathrm{V}, a,-b ; \mathrm{VI}, a,-b, c$; VII, c; VIII, a, c; IX, a.

[^3]: ${ }^{20}$ R. Chidambaram, A. Sequeira, and S. K. Sikka, J. Chem. Phys., 1964, 41, 3616.

 21 W. C. Hamilton and J. A. Ibers, 'Hydrogen Bonding in Solids,' Benjamin, Amsterdam, 1968.

 22 A. Zalkin, H. Ruben, and D. H. Templeton, Acta Cryst., 1964, 17, 235.
 ${ }^{23}$ W. H. Baur, Acta Cryst., 1964, 17, 863.
 ${ }^{24}$ G. Handel, B. Schnabel, B. Jungnickel, T. Taplick, and K. Heide, Krist. Tech., 1971, 6, 193.

