Reactions of Metal Carbonyls. Part III.† Steric and Stereochemical Limitations of Higher Substitution of Manganese Carbonyl Bromide

By Rolf H. Reimann and Eric Singleton,* National Chemical Research Laboratory, Council for Scientific and Industrial Research, Pretoria, Republic of South Africa

The reaction of $[Mn(CO)_5Br]$ with the ligands, L $[L = P(OMe)_3, P(OEt)_3, P(OMe)_2Ph, PMe_3, PMe_2Ph, and$ AsMe₂Ph] have given *fac*- and *trans*-[Mn(CO)₃L₂Br] and terminated with *mer*-[Mn(CO)₂L₃Br]. The complex *trans*-[Mn(CO)₂{P(OMe)₃}₃Br], prepared by hydrazine reduction of *trans*-[Mn(CO)₂{P(OMe)₃}₃Br]PF₆, further reacts with $P(OMe)_3$ to give the tetra substituted compound *trans*-[Mn(CO){ $P(OMe)_3$ } Br]. Factors influencing the substitution reactions of [Mn(CO)₅Br] with monodentate tertiary phosphorus and arsenic ligands are discussed in terms of incoming ligand size and the stereochemistry of the manganese carbonyl complexes. The i.r. and ¹H n.m.r. spectra of these complexes are discussed.

EXTENSIVE studies on the substitution reactions of halogenomanganese pentacarbonyl compounds with a variety of monodentate tertiary phosphine, phosphite, and arsine ligands have been reported 1 and the results of these reactions may be represented by the general scheme:

$$[Mn(CO)_{5}X] \xrightarrow{\mathbf{L}} [Mn(CO)_{4}LX] \xrightarrow{\mathbf{L}} [Mn(CO)_{3}L_{2}X]$$
(I)
(II)
(X = halogen)

Only the *cis*-isomer of the monosubstituted complex (I) has been isolated by this method, whilst both fac- and trans-isomers of the disubstituted product (IIa and IIb) have been characterised. Attempts at further carbonyl substitutions with these ligands have been successful only for $P(OMe)_3$ and then extended reaction times, in boiling benzene under u.v. irradiation, were required.² Thus, just as the formation of $mer-[Mn(CO)_2]P(OMe)_3]_3$ -Br] and $[{\rm Mn}({\rm CO})\{{\rm P}({\rm OMe})_3\}_4{\rm Br}]$ were attributed to the 'carbonyl-like' π -character of P(OMe)₃,³ the previous failures to induce further substitutions of the [Mn-(CO)₃L₂Br] species with monodentate tertiary phosphorus or arsenic ligands were ascribed to the unfavourable electronic properties of L with respect to CO.⁴ That higher substitutions of octahedral metal carbonyls required ligands with strong π -acceptor properties seemed to gain support from force constant calculations relating decreases in v(CO) in substituted products to increases in metal-carbon bond strength,⁵ and formations of highly substituted products with RNC⁴ and PF_3^6 ligands. It has recently been shown, however, that the trisubstituted rhenium complexes mer-[Re(CO)₂L₃Cl] (L = PMe₂Ph and PMePh₂) can be formed,^{7,8} in spite of the unfavourable electronic properties of the ligands, L, and our reactions of $[Mn(CO)_{5}]$ Br] with nucleophilic diphosphines ⁹ have readily given

[†] Part I, E. Singleton, J. T. Moelwyn-Hughes, and A. W. B. Garner, J. Organometallic Chem., 1970, 21, 449. Part II, R. H. Reimann and E. Singleton, J. Organometallic Chem., 1972, 38, 113.

‡ We have fully characterised this cation as the product of the reaction of $trans-[Mn(CO)_3[P(OMe)_3]_3Br]^+$ and an excess of $P(OMe)_3$ in refluxing chloroform. These compounds are fully discussed in a forthcoming publication.

¹ T. A. Manuel, Adv. Organometallic Chem., 1965, **3**, 181. ² P. M. Treichel and J. J. Benedict, J. Organometallic Chem., 1969, 17, 37.

 $[\mathrm{Mn}(\mathrm{CO})(L_2)_2\mathrm{Br}]~(L_2=\mathrm{dpe}~\mathrm{and}~\mathrm{dpm})$ under relatively mild conditions. This work, together with the recent demonstration that substitution of the tetrahedral carbonyl $[Ni(CO)_4]$ with phosphines and phosphites were dependent only upon the size of the incoming ligand ¹⁰ has prompted us to investigate the reaction of $[Mn(CO)_5Br]$ with a series of sterically favourable ligands of variable electronic properties and this paper presents our results.

Preparation of the Complexes $[Mn(CO)_{5-x}L_xBr]$ (x = 2-4).-[Mn(CO)₅Br] reacts rapidly with two molar equivalents of L $[L = P(OMe)_3, P(OEt)_3, P(OMe)_2Ph,$ PMe₃, PMe₂Ph, and AsMe₂Ph] in refluxing benzene to give initially fac-[Mn(CO)₃L₂Br] (IIa), followed by isomerisation to the trans-isomer (IIb), with the exception of AsMe₂Ph which forms an equilibrium mixture favouring the fac-isomer. Typical complete isomerisation times ranged from 5 min for PMe₂Ph to 2 h for PMe₃ and were hence too rapid for most of the ligands to allow an easy separation of pure (IIa) from benzene solutions. This isomer was readily prepared, however, from [Mn(CO)₅Br] and L using lower boiling acetone as solvent. When [Mn(CO)₅Br] was treated with an excess of $L [L = P(OMe)_3, P(OEt)_3, P(OMe)_2Ph,$ PMe₃, and PMe₂Ph] in refluxing benzene, the trisubstituted complex mer-[Mn(CO)₂L₃Br] (IIIa) was formed within 4 h, with the exception of PMe₃ which required 15 h. For AsMe₂Ph, trisubstitution was only effected by reacting (IIb; $L = AsMe_2Ph$) with an excess of ligand in refluxing n-hexane. Attempts to induce further direct substitutions of [Mn(CO)₅Br] or mer-[Mn(CO)₂- $L_{a}Br$] with L in a variety of high boiling solvents failed. However, when mer-[Mn(CO)₂{P(OMe)₃}₃Br] was reacted with neat boiling P(OMe)₃ the cation cis-[Mn- $(CO)_{2} \{P(OMe)_{3}\}_{4}\}^{+}$ was formed as characterised by an i.r. spectrum of the reaction solution.[‡] Similar halide

³ W. A. G. Graham, Inorg. Chem., 1968, 7, 315.

⁴ K. K. Joshi, P. L. Pauson, and W. H. Stubbs, J. Organometallic Chem., 1963, 1, 51.

- ⁵ F. A. Cotton and R. M. Wing, Inorg. Chem., 1965, 4, 314.

- ⁶ R. J. Clark and P. I. Hoberman, Inorg. Chem., 1965, 4, 1771.
 ⁷ E. Singleton, J. T. Moelwyn-Hughes, and A. W. B. Garner, J. Organometallic Chem., 1970, 21, 449.
 ⁸ J. T. Moelwyn-Hughes, A. W. B. Garner, and N. Gordon, J. Organometallic Chem., 1971, 26, 373.
 ⁹ D. H. Deinerge, and E. Singleton, J. Organometallic Chem.

⁹ R. H. Reimann and E. Singleton, J. Organometallic Chem., 1972, 38, 113.

¹⁰ C. A. Tolman, J. Amer. Chem. Soc., 1970, 92, 2956.

labilisations in manganese carbonyl complexes have previously been observed 11 with strongly basic amines. Although (IIIa) is the only isomer obtained by the direct reaction of $[Mn(CO)_5Br]$ with L, we have been able to characterise trans-[Mn(CO)₂L₃Br] (IIIb) indirectly for $L = P(OMe)_3$ and $P(OEt)_3$. Thus when [IIIa; L = $P(OMe)_3$ and $P(OEt)_3$] are treated with $NOPF_6$ in dichloromethane solution, rapid single-electron oxidation occurs to give the salt trans-[Mn(CO)₂L₃Br]PF₆ (IV) in high yield. (For details of technique see ref. 12.) Hydrazine reduction of (IV) in dichloromethane-light petroleum (b.p. 40-60°) mixtures at 0° gave (IIIb), which rapidly converted to (IIIa) in polar solvents or at temperatures above 20° in the absence of free L. For $L = P(OMe)_3$, the rapid removal of the dichloromethane at 0° under reduced pressure afforded orange crystals of (IIIb) which were fully characterised. However, for $L = P(OEt)_3$, isomer (IIIb) could be obtained only as a mixture with [IIIa; $L = P(OEt)_3$], and was identified by a strong i.r. carbonyl band similar to that observed for [IIIb; $L = P(OMe)_3$]. Although it was J.C.S. Dalton

at reacting [IIIb; $L = P(OEt)_3$] with either $P(OEt)_3$ or P(OMe)₃ gave only the isomerised product [IIIa; $\mathbf{L} = \mathbf{P}(\mathbf{OEt})_{\mathbf{3}}].$

Infrared and ¹H N.M.R. Spectra.-I.r. and n.m.r, data for all the complexes described here, except [IIa, IIb, and IIIa; $L = P(OMe)_3$ which have been described previously,² are given in the Table. The disubstituted complexes, designated fac-[Mn(CO)₃L₂Br] (IIa), exhibit three strong carbonyl stretching frequencies consistent with the proposed stereochemistry of $C_s(2A' + A'')$. For the other isomer of [Mn(CO)₃- L_2Br prepared, the one weak and two strong v(CO) bands observed could arise from either of the remaining conformers (IIb) $(C_{2v}; 2A_1 + B_1)$ or (IIc) $(C_s; 2A' + B_1)$ A''). However, we have assigned the trans-configuration (IIb) to our complexes by analogy to previously reported examples of these type of complexes prepared by the same reaction sequence.13 The trisubstituted complexes all contain two strong $\nu(CO)$ bands of equal intensity, and of the three possible structures, (IIIa), (IIIb), and (IIIc), only (IIIb) can be eliminated as it is

I.r. and ¹H n.m.r. data ^{*a*} for complexes of the type $[Mn(CO)_{5-x}L_xBr]$ (x = 2-4)

			Carbonyl stretching frequencies (cm ⁻¹)	$-CH_3$ or $-OCH_3$	$-OCH_2^{-}(\tau)$
(IIa)	fac-[Mn(CO)3L2Br]	PMe ₂ Ph AsMe ₂ Ph P(OMe) ₂ Ph P(OEt) ₃ PMe ₃	2020vs, 1954s, 1903s 2024vs, 1951s, 1910s 2045s, 1975s, 1927s 2046s, 1970s, 1932s 2024s, 1952s, 1901s	8.29dt, J 7.0 Hz * 8.44s; 8.49s 6.19m 8.68t, J (H-H) = 7.3 Hz 8.39dt, J 8.4 Hz †	5•77m
(IIb)	trans-[Mn(CO) ₃ L ₂ Br]	PMe ₂ Ph AsMe ₂ Ph P(OMe) ₂ Ph P(OEt) ₃ PMe ₃	2030w, 1947vs, 1909m 2033w, 1946vs, 1908s 2052w, 1972vs, 1929m 2053w, 1967s, 1942m 2033w, 1944s, 1900m	8.09dt, J 8.3 Hz ‡ 8.26s 6.17dt, J 11.4 Hz ‡ 8.67t, J (H-H) = 8.7 Hz 8.35dt, J 8.4 Hz ‡	5·78m
(IIIa)	mer-[Mn(CO) ₂ L ₃ Br]	PMe ₂ Ph ^b AsMe ₂ Ph P(OMe) ₂ Ph P(OEt) ₃ ^c PMe ₃	1929s, 1851s 1931s, 1852s 1977s, 1885s 1973s, 1888s 1929s, 1846s	8·25m; 8·66d, $J(P-H) = 7.2$ Hz 8·46s; 8·52s; 8·78s 6·29m 8·70t, $J(H-H) = 7.5$) Hz 8·43m ⁴	5•71m
(IIIb)	$trans-[Mn(CO)_2L_3Br]$	$P(OMe)_{3}$ $P(OEt)_{3}$	2010vw, 1916vs [•] 2010vw, 1920vs •		
(V)	$trans-[Mn(CO){P(OMe)_3}_4Br]$		1867s		

Complexes may be analysed as a limiting case of an $[AM_3X_3]_2$,* $[AM_3X_3Y_3]_2$,* or $[AX_3]_2$; system (ref. 15) with 'J' the separation of the outer peaks of the observed resonance. s = Singlet. m = Multiplet. t = Triplet. dt = Distorted triplet.

^a I.r. spectra measured for benzene solutions, ¹H n.m.r. spectra measured in CDCl₃ solution unless otherwise stated. ^b J. T. Moelwyn Hughes, A. W. B. Garner, and A. S. Howard, J. Chem. Soc. (A), 1971, 2370. ^c I. S. Butler, N. J. Coville, and H. K. Spendjian, J. Organometallic Chem., 1972, 43, 185. ^d Measured in [²H₆]acetone solution. ^e In dichloromethane.

not possible to induce further carbonyl substitutions of (IIIa) with any of the ligands, L, used in this work, a 50% conversion of [IIIb; $L = P(OMe)_3$] to trans- $[Mn(CO){P(OMe)_{3}_{4}Br}]$ (V) occurred within 10 min when a highly concentrated solution of this isomer in refluxing light petroleum (b.p. 80-100°) was treated with a large excess of P(OMe)₃. With longer reaction times isomerisation of (IIIb) to [IIIa; $L = P(OMe)_3$] occurs which terminates the reaction. Similar attempts

¹¹ R. J. Angelici and F. Basolo, J. Amer. Chem. Soc., 1962, 84,

predicted to show one strong band in the v(CO) region. Thus on i.r. evidence alone it was not possible unambiguously to assign the conformation of these isomers as (IIIa) (C_s ; 2A') or (IIIc) (C_s ; A' + A''). The compounds have been assigned as the mer-isomer (IIIa), however, on supplementary ¹H n.m.r. evidence and on empirical observations in this and other work,^{14a} together with theoretical calculations,^{14b} of the instability

¹³ R. J. Angelici, F. Basolo, and A. J. Poë, J. Amer. Chem. Soc., 1963, **85**, 2115.

¹⁴ (a) P. W. Jolly and F. G. A. Stone, J. Chem. Soc., 1965, 5259; (b) D. A. Brown and W. J. Chambers, J. Chem. Soc. (A), 1971, 2083; R. F. Fenske and R. L. De Kock, Inorg. Chem., 1970, 9, 1053.

^{2495.} ¹² R. H. Reimann and E. Singleton, J. Organometallic Chem., 1971, 32, C44.

of manganese carbonyl complexes with L trans to bromine. The i.r. carbonyl spectra of trans- $[Mn(CO)_{2}L_{3}Br]$ - PF_6 and $trans-[Mn(CO)_2L_3Br]$ [L = P(OMe)_3 and $P(OEt)_3$ both contain one weak and one strong v(CO)stretching vibration with the carbonyl of the salt absorbing at higher energy, in keeping with the C_{2v} symmetry $(A_1 + B_1)$ of isomers (IV) and (IIIb). The conformation of the known compound [Mn(CO){P- $(OMe)_{a}$ Br] has been reported ² as the *trans*-isomer (V) on the basis of carbonyl substitution precedents and ¹H n.m.r. evidence.

The ¹H n.m.r. methyl resonance patterns of the facand trans-disubstituted complexes, (IIa) and (IIb) $(L = PMe_3, P(OMe)_2Ph, and PMe_2Ph)$ respectively, were of no use in assigning conformations to the two sets of isomers as they were all of a type corresponding to 'virtually coupled' systems.¹⁵ Thus in (IIa) for the non-equivalent methyl groups on the chemically identical ligands, ${}^{2}I(P-P)$ is sufficiently large for the observed resonances to appear as distorted triplets for $L = PMe_2Ph$ and PMe₃, and a five-line multiplet in the ratio of 1:4: 6:4:1 for $L = P(OMe)_2Ph$, in keeping with limiting cases of $[AM_3X_3]_2$ and $[AM_3X_3Y_3]_2$ type spectra.¹⁵ These spectra were not observed to be solvent or temperature dependent. We have hence discounted the possibility of one or all of these resonances as arising from the presence of conformers in solution, due to restricted rotation about the metal-phosphorus bond, similar to those observed ¹⁶ in certain palladium and platinum tertiary butylphosphine complexes. The ¹H n.m.r. spectrum of (IIa; $L = AsMe_{2}Ph$) consists of a doublet resonance corresponding to two non-identical methyl groups on the chemically equivalent arsine ligands, there being no plane of symmetry along the metal arsine bonds. The magnetically equivalent methyls bonded to the ligands in [IIb; $L = PMe_3$, PMe_2 -Ph, and P(OMe)₂Ph] also give rise to distorted triplets typical of $[AX_3]_2$ patterns for intermediate ${}^2J(P-P)$ couplings. Complex (IIb; $L = AsMe_2Ph$) contains a broad single methyl resonance in its n.m.r. spectrum. For the trisubstituted complex [Mn(CO)₂(PMe₂Ph)₃Br], the n.m.r. spectrum consists of a broad, ill defined quartet arising from the two non-identical methyl groups on the ' virtually-coupled ' trans-phosphine ligands, and a sharp doublet arising from the magnetically equivalent methyl groups on the third phosphine ligand. No ciscoupling was observed in this complex. The methyl resonances in the compound [Mn(CO)₂(AsMe₂Ph)₃Br] occur as a doublet and singlet in the ratio of 2:1 corresponding to the two trans-arsines and the chemically non-equivalent third arsine, respectively. Thus from this n.m.r. evidence we have assigned the mer-configuration (IIIa; $L = PMe_2Ph$ and AsMe_Ph) to these compounds and the same conformation to the other trisubstituted complexes by analogy. The methyl spectra of [IIIa; $L = P(OMe)_{2}Ph$ and PMe_{3}] were observed as a four- and five-line multiplet, respectively and were not further analysed. No ¹H n.m.r. data for [IIIb; $L = P(OMe)_3$ and $P(OEt)_3$] were recorded due to rapid isomerisations occurring in solution.

DISCUSSION

Trisubstituted manganese carbonyl bromide complexes have been prepared in this study with surprising ease for both strong σ -donor and strong π -acceptor ligands with small steric requirements. With the bulkier ligands PMePh₂ and P(OMe)Ph₂ only disubstituted products were obtained. For $P(OPh)_3$ an intermediate case was observed in which an approximately equimolar mixture of the di- and tri-substituted species was obtained in the reaction solution as characterised by i.r. spectroscopy. Attempts to isolate [Mn- $(CO)_{2} \{P(OPh)_{3}\}_{3} Br]$ gave only trans-[Mn(CO)₃{P-(OPh)₃₂Br] with the i.r. spectrum of the mother liquor still showing an approximate 1:1 ratio of these two compounds. In fact, initial kinetic results obtained by perturbation experiments involving variations in the free ligand concentrations have shown the existence of the equilibrium (i) for the larger ligands used in this

$$(IIb) + L \rightleftharpoons (IIIa) + CO \qquad (i)$$

study. As the steric crowding in the molecule increases, the effective competence by CO in the reverse reaction of equation (i), is demonstrated by the rapid carbonylations of (IIIa) in acetone solutions to give (IIb) within 10 min at ambient temperatures for $L = PMe_2Ph$, AsMe₂Ph, and PMe₃, and under reflux for $L = P(OMe)_3$, $P(OEt)_3$, and $P(OMe)_2Ph$, even in the presence of free L. No reaction of (IIb) with CO at atmospheric pressure was observed in cold or refluxing benzene for all the ligands used in these experiments. That the carbonylation reaction depicted in equation (i) is probably a steric assisted dissociative process is better demonstrated by corresponding reactions ¹⁷ of mer-[Re(CO)₂-L₃Br] in refluxing benzene, which have given the rhenium analogues of (IIb) at rates corresponding to $P(OPh)_3 \sim P(OEt)Ph_2 \sim PEt_2Ph \sim PMePh_2 \gg PMe_2$ - $Ph > PMe_3 > P(OMe)_2Ph$. It can also be seen from this series that the larger rhenium atom facilitates the formation of very stable trisubstituted carbonyl compounds with much bulkier ligands, than the manganese. We have noted, as has been found previously in substituted metal carbonyl complexes, that on successive replacement of carbonyl groups, the carbonyl stretching frequencies decrease in energy (see Table), with the greatest decrease noted for the phosphine ligands. However, qualitative investigations of the times required for successive substitutions of [Mn(CO)₅Br] with all the ligands L have revealed only slight differences in reaction times. These observations must hence cast doubt on the effective use of wholly empirical

R. K. Harris, Canad. J. Chem., 1964, 42, 2275.
 A. Bright, B. E. Mann, C. Masters, B. L. Shaw, R. M. Slade, and R. E. Stainbank, J. Chem. Soc. (A), 1971, 1826.

¹⁷ R. H. Reimann and E. Singleton, unpublished results.

correlations of force constants, calculated from $\nu(CO)$ frequencies, with bond strength and/or carbonyl lability as explanations for low substitutions in metal carbonyls. It is pertinent to note that the reported ¹⁸ decreases in the rates of reactions of $[Mn(CO)_5 \tilde{X}]$ as X varies from chlorine to the more polarisable iodine, and attributed to stronger metal carbon bonding inferred from decreases in v(CO), can also be explained on simple size effects as only large tertiary phosphorus ligands were used in the study.

In addition to the reaction dependence on ligand size, we have also observed stereochemical limitations to the substitution reaction. A qualitative investigation of the reaction sequence obtained by treating [Mn(CO)₅Br] with successive molar equivalents of PMe₃ in refluxing benzene is depicted in the Scheme, and has indicated that carbonyl substitution in this system is favoured only by isomers containing mutually trans-CO groups. The slow reaction of (IIa) to give (IIIa) can be related

SCHEME Treatment of [Mn(CO)₅Br] with PMe₃ in refluxing benzene solution

to earlier kinetic studies 13 which have shown the isomerisation rates of (IIa) to (IIb) to be suppressed by free ligand in solution. The inertness to substitution of isomers containing cis-carbonyl groups is also demonstrated by: (a) the failure to induce further reactions in all the compounds (IIIa) prepared here and (b) the failure to form (IIIa) with pyridine which can be related to the inability to effect isomerisation of fac-[Mn(CO)₃- $(py)_2Br$]. On the other hand [IIIb; $L = P(OMe)_3$] with trans-CO groups readily reacts with P(OMe)₃ to give the tetrasubstituted complex (V), which was previously prepared ² by treating $[Mn(CO)_5Br]$ with an excess of P(OMe)₃ in refluxing benzene under u.v. irradiation for 6 days. We have reinvestigated this reaction and find that (V) can be prepared by irradiating either (IIIa) or (IIIb) with u.v. in cold dichloromethane solution in the presence of P(OMe)₃. When (IIIa) was irradiated in cold dichloromethane solution, in the absence of P(OMe)₃, an i.r. spectrum of the solution showed the strong v(CO) band characteristic of (IIIb), indicating that the substitution pathway of (IIIa) to (V) induced by u.v. also occurs via the formation of the thermally unstable isomer (IIIb).

This may hence explain why long reaction times were required in the previous preparation of (V) as opposing reaction conditions were used. This type of 'kinetic

trans-effect ' is well established in square planar systems and has precedents in substitution reactions of octahedral¹⁹ complexes. Studies^{20a} on Pt^{II} complexes have shown that CO has a stronger trans-labilising influence than phosphines, and in our study the inability to replace either phosphines or phosphites with CO

in (IIb) in refluxing benzene must further emphasise the much stronger labilising effect of the carbonyl group in these systems than phosphines or phosphites. It has been suggested 20b from earlier studies that because isomer [IIa; $L = PPh_3$ and $P(OPh)_3$] is formed first, the preferential pathway to the disubstituted manganese carbonyl halide complexes may occur via the fac-isomer (IIa), because of greater reductions in the metal-carbon bond strength when two CO's are mutually trans rather than trans to L. However, our reactions have only demonstrated a trans-labilising effect and whether this is related to bond weakening has yet to be shown in these systems. It may be interesting to observe whether substitutions ²¹ of [Mn(CO)₅H] with PF₃ to give the products $[Mn(CO)_{5-x}(PF_3)_xH]$ (x = 1-5) occurs more readily than the corresponding phosphines and phosphites because of the strong labilising effect of both the hydride and the PF₃ ligand coupled with the small size of the latter, and whether all five carbonyl groups can be replaced in $[Mn(CO)_5Br]$ with PF₃.

We are currently investigating the substitution pathway of the dimer $[Mn_2(CO)_{10}]$ with phosphine and phosphite ligands to give the disubstituted dimeric species $[Mn_2(CO)_8L_2]$. X-Ray diffraction studies on the

¹⁸ R. J. Angelici and F. Basolo, J. Amer. Chem. Soc., 1962, 84, 2495; Inorg. Chem., 1963, 2, 728.
 ¹⁹ E. J. Bounsall and A. J. Poë, J. Chem. Soc. (A), 1966, 286

and references therein.

 ²⁰ F. Basolo and R. G. Pearson, 'Mechanisms of Inorganic Reactions,' Wiley, 1967, (a) p. 355; (b) p. 567.
 ²¹ W. J. Miles and R. J. Clark, Inorg. Chem., 1968, 7, 1801.

complexes $[Mn_2(CO)_8L_2]$ (L = PEt₃²² and PMePh₂²³) have shown them to be diaxially substituted, whilst for the smaller ligand AsMe₂Ph²³ i.r. and X-ray data, respectively have shown that diequatorial substitution has occurred. Initial X-ray data on the monosubstituted complex $[Mn_2(CO)_9L]$ (L = PMePh₂) has also indicated equatorial substitution, and thus it seems likely that the formation of the diaxial products with bulky ligands may occur via a thermodynamically controlled isomerisation from a diequatorial isomer.

EXPERIMENTAL

 $[Mn(CO)_5Br]$ was prepared by the method of Abel and Wilkinson.²⁴ All ligands were obtained commercially and were not further purified. M.p.s were recorded on a Kofler hot-stage apparatus, i.r. spectra on a Perkin-Elmer 457 grating spectrophotometer, and n.m.r. spectra with Varian A-60A and HA 100 instruments. Elemental analyses were performed by Mr. G. J. Roberts of this laboratory.

trans-[Mn(CO)₃(PMe₂Ph)₂Br].--Dimethylphenylphosphine (0.765 g, 5.54 mmol) was added to a suspension of $[Mn(CO)_5Br]$ (0.74 g, 2.71 mmol) in benzene (30 ml) and the mixture refluxed for 4 h. The orange solution was filtered while hot and the solvent removed under reduced pressure. The resultant oil was crystallised from hot light petroleum (b.p. 60-80°) to give the required product as yellow needles (1·21 g, 90%), m.p. 115-117° (Found: C, 46·25; H, 4·2; Br, 16·1. C₁₉H₂₂O₃P₂BrMn requires: C, 46·1; H, 4.5; Br, 16.15%).

The following compounds were prepared in a similar wav.

trans- $[Mn(CO)_3 \{P(OMe)_2Ph\}_2Br]$ as orange needles (90%) yield), m.p. 128-131° (Found: C, 41.05; H, 4.1; Br, 14.25. C₁₉H₂₂O₇P₂BrMn requires: C, 40.8; H, 3.95; Br, 14·3%).

trans- $[Mn(CO)_3 \{P(OEt)_3\}_2 Br]$ as orange prisms (50%) yield), m.p. 99° (Found: C, 32.50; H, 5.5; Br, 14.65. C₁₅H₃₀O₉P₂BrMn requires: C, 32.65; H, 5.45; Br, 14.5%). trans-[Mn(CO)₃(PMe₃)₂Br], after refluxing for 15 h, as brown needles (50% yield), m.p. 129° (Found: C, 29.2;

H, 4.95; Br, 21.75. $C_9H_{18}O_3P_2BrMn$ requires: C, 29.1; H, 4.85; Br, 21.55%). fac- and trans-[Mn(CO)₃(AsMe₂Ph)₂Br], isolated only as a

crystalline mixture, which on separating mechanically, gave the fac-isomer as orange prisms (60% yield), m.p. 114° (Found: C, 39.25; H, 3.8; Br, 13.5. C₁₉H₂₂O₃As₂-BrMn requires: C, 39.1; H, 3.8; Br, 13.7%), and the trans-isomer as yellow needles (25% yield), m.p. 107° (Found: C, 39.3; H, 3.85; Br, 13.8%).

fac-[Mn(CO)₃(PMe₃)₂Br] as yellow needles (75% yield), m.p. 63° (Found: C, 29.0; H, 4.95; Br, 21.75. C₉H₁₈O₃-P2BrMn requires: C, 29.1; H, 4.85; Br, 21.55%).

mer-[Mn(CO)₂(PMe₂Ph)₃Br] as brown prisms (82% yield), m.p. 131-133° (decomp.) (Found: C, 51.45; H, 5.65; Br, 13.4. C₂₆H₃₃O₂P₃BrMn requires: C, 51.6; H, 5.5; Br, 13.2%).

mer-[Mn(CO)₂{P(OMe)₂Ph}₃Br], recrystallised from hot ethanol as orange needles (80% yield) m.p. 132° (Found: C, 44·45; H, 4·75; Br, 11·25. C₂₆H₃₃O₈P₃BrMn requires: C, 44.5; H, 4.7; Br, 11.4%).

mer-[Mn(CO)₂{P(OEt)₃}₃Br], crystallised by freezing out

of ethanol solution to give orange plates (50% yield) m.p. 75° (Found: C, 34.9; H, 6.6; Br, 11.55. C20H45O11P3-BrMn requires: C, 34.85; H, 6.55; Br, 11.6%).

mer-[Mn(CO)₂(PMe₃)₃Br], after refluxing for 15 h, as orange plates (50% yield), m.p. 120-128° (decomp.) (Found: C, 31.65; H, 6.55; Br, 19.3. C₁₁H₂₇O₂P₃BrMn requires: C, 31.5; H. 6.45; Br, 19.1%).

mer-[Mn(CO)₂(AsMe₂Ph)₃Br].—A suspension of trans-[Mn(CO)₃(AsMe₂Ph)₂Br], (1.0 g, 1.72 mmol) and dimethylphenylarsine (0.83 g, 4.56 mmol) in hexane (30 ml), was refluxed for 18 h. The solution was filtered while hot and allowed to cool slowly, depositing large crystals of both fac- and trans-[Mn(CO)₃(AsMe₂Ph)₂Br], together with the required product. Mechanical separation gave the required product as dark brown prisms (0.5 g, 40%) m.p. 103-106° (Found: C, 42.4; H, 4.5; Br, 11.15. C₂₆H₃₃-O₂As₃BrMn requires: C, 42.35; H, 4.5; Br, 10.85%).

fac-[Mn(CO)₃(PMe₂Ph)₂Br].—A refluxing solution [Mn(CO)₅Br] (0.74 g, 2.71 mmol) and dimethylphenylphosphine (0.765 g, 5.54 mmol) in acetone (20 ml) was monitored by i.r. spectroscopy until total conversion to the required product was observed (ca. 1 h). The solvent was then removed under reduced pressure and the resultant red oil crystallised under hexane. Recrystallisation of the crude material from dichloromethane-light petroleum (b.p. $40-60^{\circ}$) gave the product as orange plates (0.69 g, 52%), m.p. 120° (Found: C, 46.0; H, 4.5; Br, 16.2. C₁₉H₂₂O₃P₂BrMn requires: C, 46·1; H, 4·5; Br, 16·15%).

The following compounds were prepared in a similar wav.

fac-[Mn(CO)₃{P(OMe)₂Ph}₂Br], recrystallised from dichloromethane-methanol as orange plates (70% yield), m.p. 108-110° (decomp.) (Found: C, 40.7; H, 3.95; Br, 14.5. C₁₉H₂₂O₇P₂BrMn requires: C, 14.8; H, 3.95; Br, 14.3%).

fac-[Mn(CO)₃{P(OEt)₃}₂Br], crystallised by freezing out of methanol as yellow microcrystals (30% yield) (Found: C, 32.75; H, 5.6; Br, 14.7. $C_{15}H_{30}O_{9}P_{2}BrMn$ requires: C, 32.65; H, 5.45; Br, 14.5%).

trans-[Mn(CO)₂{P(OMe)₃}₃Br].-A solution of mer-[Mn-(CO)₂{P(OMe)₃}₃Br]² (0.5 g, 0.89 mmol) in dichloromethane (5 ml) was treated with an excess of $NOPF_6$ at room temperature, giving a deep red solution containing the cation trans-[Mn(CO)₂{P(OMe)₃}₃Br]⁺ after 2 min, accompanied by the evolution of NO gas. Light petroleum (b.p. 60-80°) was then added to the filtered solution and the mixture was cooled to 0°. After the addition of anhydrous hydrazine (0.1 ml), the dichloromethane was rapidly removed under reduced pressure to give the product as orange needles (0.38 g, 76%), m.p. 125° (decomp.) (Found: C, 23·45; H, 4·7; Br, 14·2. C₁₁H₂₇O₁₁P₃BrMn requires: C, 23·45; H, 4·8; Br, 14·2%).

trans- $[Mn(CO)_2{P(OEt)_3}_3Br]$ was similarly prepared from mer-[Mn(CO)₂{P(OEt)₃}₃Br] and characterised on i.r. evidence only (see Table).

 $[Mn(CO){P(OMe)_3}_4Br]$.--(a) A suspension of trans-[Mn(CO)₂{P(OMe)₃}₃Br] (0.5 g, 0.89 mmol) in light petroleum (b.p. 80-100°, 5 ml) was refluxed with trimethyl phosphite (2.21 g, 17.8 mmol). After 10 min an i.r. spectrum of the reaction solution indicated the presence of an equimolar mixture of mer-[Mn(CO)₂{P(OMe)₃}₃Br] and

M. J. Bennett and R. Mason, J. Chem. Soc. (A), 1968, 75.
 M. Laing, T. Ashworth, P. Sommerville, R. H. Reimann, and E. Singleton, J.C.S. Chem. Comm., 1972, 1251.
 E. W. Abel and G. Wilkinson, J. Chem. Soc., 1959, 1501.

 $[Mn(CO){P(OMe)_{3}_{4}Br}]$. These compounds were identified by comparisons with solution spectra of the pure samples.

(b) A solution of trans- $[Mn(CO)_2\{P(OMe)_3\}_3Br]$ [0.5 g, 0.89 mmol) and trimethyl phosphite (0.17 g, 1.37 mmol) in dichloromethane (10 ml)-light petroleum (b.p. 60-80°, 200 ml) was irradiated with a Hanovia 125 W u.v. lamp for 10 min. After filtration the solvent was removed under

reduced pressure. The resultant oil was washed with n-pentane and recrystallised from dichloromethane-light petroleum (b.p. 40–60°) to give the required product as yellow plates (0.19 g, 32%), m.p. 136° (decomp.) (Found: C, 23.7; H, 5.45; Br, 12.1. $C_{13}H_{36}O_{13}P_4BrMn$ requires C, 23.65; H, 5.45; Br, 12.15%).

[2/2240 Received, 25th September, 1972]