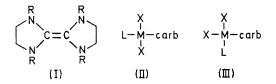
Carbene Complexes. Part II.¹ Thermally-induced Isomerisations of trans-Platinum(II) and Palladium(II) Complexes and the Chemistry of the cis- and trans-lsomers


By B. Cetinkaya, Engin Cetinkaya, and M. F. Lappert,* School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ

trans-Dihalogenoplatinum(II) or palladium(II) (carbene) complexes are isomerised either thermally or in polar solvents to the thermodynamically more stable cis-isomers. Reactivity decreased from Pd^{II} to Pt^{II} and with increasing n-alkyl chain-length of a tertiary phosphine trans to the carbene ligand. Properties of cis- and transcarbene complexes are compared and certain generalisations emerge. Dichloro-complexes undergo CI⁻ displacement (*cis*- more readily than *trans*- and Pd^{II} more than Pt^{IJ}) by Br-(LiBr), Me-(LiMe), H-(Et₃SiH), and PR₃ (NaBF₄/PR₃). trans-Hydrido(chloro)platinum(II) and dimethylplatinum(II) carbene complexes are of particular interest.

IN Part I we described reactions of electron-rich olefins, e.g. (I), with halide-bridged palladium and platinum dimers to give *trans/cis*-carbene complexes (II) and (III)

$$[M = Pd \text{ or } Pt; X = Cl \text{ or } Br; carb = CNRCH_2CH_2NR$$

(R = Me or Ph), $CNMe \cdot C_6H_4 \cdot \dot{S} \cdot o$; L = PR₃ or AsR₃]. Whether the product is the trans- or cis-isomer, or a mixture of these depends on the reagents, solvent, and reaction conditions. We will show that the formation of the trans-complex is kinetically controlled, and the cis-isomer is thermodynamically the more favoured. Other topics to be considered relate to (i) $trans \rightarrow cis$ isomerisations, (ii) a comparison of properties of transwith cis-isomers, and (iii) a study of the chemistry of some of these complexes. With reference to (iii), no reactions of the co-ordinated carbene ligand were observed, but some interesting halide displacements are described: these are illustrated in Scheme 1, with reference to the Pt^{II} trans-complex (IV). It is clear that the carbene ligand is firmly attached to the metal. [Reactions of co-ordinated carbene are best known for alkoxycarbene-chromium(0) derivatives.²] The formation and characterisation of stable hydrido- or methylmetal carbene complexes is noteworthy;³ they might have been expected to tautomerise by H- or Me-transfer to the (carbene) ligand, as is the case for hydrido-metal ketimides.⁴ Attempted preparations of trans-dialkylplatinum(II) complexes yield cis-isomers.

Isomerisation of trans-Carbene Complexes.--trans-Carbene complexes (II) are converted, either thermally or

¹ Part I, D. J. Cardin, B. Cetinkaya, E. Çetinkaya, and M. F. Lappert, J.C.S. Dalton, 1973, 514.

² J. A. Connor and E. O. Fischer, Chem. Comm., 1967, 1024;

and later papers.
³ Cf. D. J. Cardin, B. Çetinkaya, and M. F. Lappert, Chem. Rev., 1972, 72, 545.
⁴ B. Çetinkaya, M. F. Lappert, and J. McMeeking, Chem.

Comm., 1971, 215.

⁶ D. J. Cardin, B. Cetinkaya, M. F. Lappert, Lj. Manojlović-Muir, and K. W. Muir, *Chem. Comm.*, 1971, 400.

in polar solvents, to the corresponding *cis*-isomers. This rearrangement was first noted 5,6 when trans-PtCl₂-

(CNPhCH₂CH₂NPh)(PEt₃) was heated in order to determine its m.p.; at ca. 200° the colour was discharged

to produce cis-PtCl₂(NPhCH₂CH₂NPh)(PEt₃).^{5,6} (A single-crystal X-ray analysis has established the molecular structure for crystalline forms of both isomers.^{5,6}) The work was extended to other ligands and Pd, in order to determine the scope of the isomerisation and to make available a range of cis/trans-metal-carbene complexes so that generalisations might be possible. In addition, for ³¹P (ref. 7) and ¹³C (ref. 8) n.m.r., it was necessary to prepare, by choice of suitable ligands, soluble cis-complexes. The complexes, prepared by the isomerisation reaction, with reaction conditions and selected data, are shown in Table 1; some of the compounds are new, whereas others were described in Part I because they are available directly from electron-rich olefins.1

As the alkyl chain of the phosphine increases, so too does the difficulty in obtaining the *cis*-isomers (see Table

1). For example, trans-PtCl₂(CNPhCH₂CH₂NPh)(PEt₃) rearranges to the cis-isomer in boiling ethanol after 24 h, but under identical conditions trans-PtCl₂-

(CNPhCH₂CH₂NPh)(PBuⁿ₃) yields the cis- and trans-

 $PtCl_2(CNPh_2CH_2CH_2NPh)(PBu_3)$ mixture in 1 : 10 ratio. A similar trend was also observed in cases where the carbene ligand is CNMeCH2CH2NMe or CNMeC6H4-S-o. In general, the palladium carbene complexes are more reactive than the corresponding platinum analogues. Thus, although trans-PdCl₂(CNPhCH₂CH₂NPh)(PEt₂) is

converted into the cis-complex at 65° in methanol within

1 h, trans-PtCl₂(CNPhCH₂CH₂NPh)(PEt₃) was recovered

⁶ D. J. Cardin, B. Çetinkaya, E. Çetinkaya, M. F. Lappert, Lj. Manojlović-Muir, and K. W. Muir, J. Organometallic Chem., 1972, 44, C59.

⁷ Part IV, D. J. Cardin, B. Çetinkaya, and M. F. Lappert, unpublished work. * Part III, D. J. Cardin, B. Çetinkaya, E. Çetinkaya, M. F.

Lappert, E. W. Randall, and E. Rosenberg, J.C.S. Dalton, in the press.

$$Et_{3}P - Pt - C \xrightarrow{\text{LiBr}} trans - PtBr_{2}(CNMeCH_{2}CH_{2}NMe)(PEt_{3})$$

$$Et_{3}P - Pt - C \xrightarrow{\text{Ne}} Heat cis - PtCl_{2}(CNMeCH_{2}CH_{2}NMe)(PEt_{3})$$

$$Cl \xrightarrow{\text{Ne}} PEt_{3}/NaBF_{4} trans - PtCl_{2}(CNMeCH_{2}CH_{2}NMe)(PEt_{3})$$

$$trans - PtCl_{2}(CNMeCH_{2}CH_{2}NMe)(PEt_{3})$$

$$trans - Pt(H)Cl(CNMeCH_{2}CH_{2}NMe)(PEt_{3})$$

unchanged after 3 h in boiling methanol. Furthermore, treatment of $(:CNMeCH_2CH_2NMe)_2$ or $(:CNMe\cdotC_6H_4\cdotS-o)_2$ with $Pd_2Cl_4L_2$ affords only cis-complexes, but the corresponding platinum dimers yield mixtures of cis- and trans-PtCl_2(carb)L. The effect of other structural parameters upon propensity for isomerisation is less clear cut: thus, chloro- and bromo-complexes behave similarly; however, the decreasing thermal lability of the *trans*-complexes follows the sequence

$$CNMeCH_2CH_2NMe \approx CNMe C_6H_4 \cdot S - o >$$

 $CNPhCH_2CH_2NPh$, which parallels the solubility order. Indeed, the lower solubility of the *cis*- than the *trans*complex favours the precipitation of the *cis*-isomer and

cis-Compounds, prepared by isomerisation									
		-]	Reaction conditions					
Compound ^a	M.p. (t/°C)	Yield (%)	t∫°C	Time (held)	Solvent				
PtCl ₂ (CNPhCH ₂ CH ₂ NPh)(PEt ₃)	308—315 b	80 ¢	78	24 h	Ethanol				
PdCl ₂ (CNPhCH ₂ CH ₂ NPh)(PEt ₃)	275-290 b	81	65	1 h	Methanol				
$PtBr_{2}(CNPhCH_{2}CH_{2}NPh)(PEt_{3})$	312—314 ^b	90 •	78	24 h	Ethanol				
PdBr ₂ (CNPhCH ₂ CH ₂ NPh)(PEt ₃)	278-290 ^b	93	65	1 h	Methanol				
PtCl ₂ (CNPhCH ₂ CH ₂ NPh)(PBu ⁿ ₃)	276-280	59	78	24 h ^đ	Ethanol				
PdCl ₂ (CNPhCH ₂ CH ₂ NPh)(PBu ⁿ ₃)	250-274 ^b	73	65	2 h ª	Methanol				
PdBr ₂ (CNPhCH ₂ CH ₂ NPh)(PBu ⁿ ₃)	240-241	70	65	6 h ^d	Methanol				
$PtCl_{2}(CNPhCH_{2}CH_{2}NPh)(PMe_{2}Ph)$	ca. 253 •	79	78	24 h	Ethanol				
$PtCl_{2}(CNPhCH_{2}CH_{2}NPh)(AsEt_{3})$	265—288 ^b	74	78	24 h	Ethanol				
PtCl ₂ (CNMeCH ₂ CH ₂ NMe)(PEt ₃) †	280290	4	20	3 h	Benzene				
PdCl ₂ (CNMeCH ₂ CH ₂ NMe)(PEt ₃) †	245—260 b	24	81	15 min	Benzene				
PtBr ₂ (CNMeCH ₂ CH ₂ NMc)(PEt ₃) †	268-273	23	81	15 min	Benzene				
$PtCl_2(CNMeCH_2CH_2MMe)(PPr^n_3)$ †	188195	21	20	2 h	Benzene				
$PtCl_2(CNMeCH_2CH_2MMe)(PBun_3)$ †	167—168	15 °	20	3 h	Benzene				
PdCl ₂ (CNMeCH ₂ CH ₂ NMe)(PBu ⁿ ₃) †	186	25	81	15 min	Benzene				
PtCl ₂ (CNMeCH ₂ CH ₂ NMe)(PMe ₂ Ph) †	240-246 ^b	42	81	20 min	Benzene				
PtCl ₂ (CNMeCH ₂ CH ₂ NMe)(AsEt ₃) †	200-240 ^b	16	20	16 h	Benzene				
PtCl ₂ (CNMe·C ₆ H ₄ ·S-o)(PEt ₃) †	250—275 ^b	46	140	10 min	Xylene				
$PdCl_2(CNMe \cdot C_6H_4 \cdot S - o)(PEt_3) \dagger$	200-255 b	57	ca. 95	15 min	$\mathbf{D}\mathbf{M}\mathbf{F}$				
$PtCl_2(CNMe \cdot C_6H_4 \cdot S - o)(PBun_3) \dagger$	256—258 ^b	18	140	10 min	Xylene				
$PdCl_2(CNMe \cdot C_6H_4 \cdot S - o)(PBu^n_3) \dagger$	210—270 ^b	67	ca. 95	15 min	$\mathbf{D}\mathbf{MF}$				
$PtCl_2(CNMe \cdot C_6H_4 \cdot S - o)(PMe_2Ph) \dagger$	259 - 260	43	140	4 min	Xylene				
$PtBr_{2}(CNMe \cdot C_{6}H_{4} \cdot S - o)(PEt_{3}) \dagger$	250—275 ^b	50	140	10 min	Xylene				

TABLE 1						
cis-Compounds.	prepared by	v isomerisation				

• Compounds indicated by (†) were described in ref. 1, here they are included for the sake of completeness. • Decomposes. • Also obtained in quantitative yield by heating (ca. 200°) the corresponding trans-isomer. • The trans->cis-isomerisation was still incomplete. • With sublimation. thus has a major role; but homogeneous isomerisations do also occur, and may be followed by n.m.r. spectroscopy (see above).

The isomerisation reactions take place under even

From an examination of a wide range of complexes, several generalisations may be made. Thus, the main differences between *cis*- and *trans*-carbene complexes are as follows: (i) colour (*cis* are white, *trans* are yellow);

(%) Yield M.p. $(t/^{\circ}C)$ Product Colour Reactants trans-PdCl2(CNPhCH2CH2NPh)(PEt3) trans-PdBr₂(CNPhCH₂CH₂NPh)(PEt₃) Pale 190-191 65 yellow trans-PtCl₂(CNPhCH₂CH₂NPh)(PEt₂) cis-PtBr₂(CNPhCH₂CH₂NPh)(PEt₃) ^a White 312-314 " 74 (1) LiBr trans-PtCl₂(CNMcCH₂CH₂NMe)(PEt₃) trans-PtBr,(CNMeCH,CH,NMe)(PEt,) ° Yellow 173 - 17670 rans-PdCl₂(CNPhCH₂CH₂NPh)(PBun₃) trans-PdBr. (CNPhCH, CH, NPh) (PBuⁿ3) Yellow 150-152 83 trans-PtCl₂(CNMeCH₂CH₂NMe)(PEt₃) trans-PtMe₂(CNMeCH₂CH₂NMe)(PEt₂) White 95-97 73cis-PtCl₁(CNMeCH₂CH₂NMe)(PEt₃) cis-PtMe₂(CNMeCH₂CH₂NMe)(PEt₃) White 125 - 12762 (2) LiMe trans-PtCl₂(CNMeCH₂CH₂NMe)(AsEt₃) trans-PtMe_o(CNMeCH_oCH_oMMe)(AsEt_a) Off-white 7285 - 86cis-PtCla(CNMeCHaCHaNMe)(AsEta) cis-PtMe₂(CNMeCH₂CH₂MMe)(AsEt₃) Off-white 115 - 11760 PMe2Ph/cis-PtCl2(CNMeCH2CH2NMe)(PMe2Ph) trans-[PtCl(CNMeCH,CH,NMe)(PMe,Ph),]+BF,~ White 222-223 67 (3) NaBF4 PEt₃/trans-PtCl₂(CNMeCH₂CH₂NMe)(PEt₃) trans-[PtCl(CNMeCH₂CH₂MMe)(PEt₃)₂]+BF₄-White 181 - 18265trans-PtCl₂(CNMeCH₂CH₂NMe)(PEt₃) · trans-Pt(H)Cl(CNMeCH_CH_NMe)(PEt_) (4) Et₃SiH White 87-90 83

^a Also prepared by isomerisation of *trans*-PtBr₂(CNPhCH₂CH₂NPh)(PEt₃) (see Table 1). ^b Decomposes. ^c Also prepared by bridge splitting reaction.¹

TABLE 3									
Some spectroscopic data for hydrido-platinum complexes									
Compound	v(PtH)/cm ⁻¹ a	ح PtH ٥	J(P-H) (Hz)	J(Pt-H) (Hz)					
trans-Pt(H)Cl(PEt ₃) ₂ °	2183	26.9 (t) ^d	14.5	1276					
trans-Pt(H)Cl(CNMeCH2CH2NMe)(PEt3	2210	27·4 (d) ^đ	18.0	1420					
trans-[Pt(H)($CNMeCH_2CH_2NMe$)(PEt ₂) ₂]+Cl-	2025 °	17.2 (t) ^f	15.0	706					
trans-[Pt(H)(CNMeCH ₂ CH ₂ Me)(PEt ₃) ₂]+BF ₄ - trans-[Pt(H)(PEt ₃) ₃]+ClO ₄ - ^h	2040 2090 f	16·9 (t) f.g 16·2 f	17·0 15·0, ^j 15·6 ^k	702 790					

^a As Nujol mulls. ^b Relative to TMS; d = doublet, t = triplet. ^c See J. Chatt and B. L. Shaw, J. Chem. Soc., 1962, 5075. ^d In C₆H₆. ^e Neat liquid. ^f In CDCl₃. ^g Other signals at τ 5.90 (4, s, CH₂N), 6.45 (6, t, MeN), 7.90 [6, c, (MeCH₂)₃P], 8.5 [9, q, (MeCH₂)₃P]. ^h See ref. 20. ⁱ In CHCl₃ solution. ^j J(P-cis-H). ^k J(P-trans-H).

milder conditions. For instance, in the course of recording the $^{31}{\rm P}$ n.m.r. spectrum of trans-PtBr_2-

(ii) m.p. (cis > trans); (iii) solubility in non-polar solvents (trans > cis); (iv) J(Pt-P) (cis > trans);⁷ (v) $v(MX_2)$ far-i.r. characteristics [both in number of strong bands (cis > trans) and position (trans > cis)];⁷ and (vi) thermodynamic stability (cis > trans). Differences (i)—(v) clearly indicate the similar electronic effects of tertiary phosphines and carbenes; this may be related to their similar trans-influence.⁶ Although complexes of the type $cis-MX_2(PR_3)_2$ are known to isomerise thermally,⁹ photochemically,¹⁰ or in the presence of a catalytic

⁹ G. B. Kauffman and L. A. Teter, *Inorg. Synth.*, 1963, 7, 245. ¹⁰ S. H. Mastin and P. Haake, *Chem. Comm.*, 1970, 202.

 TABLE 2

 New carbene derivatives, prepared by chloride replacement

 $^{(\}dot{C}NMeCH_2CH_2\dot{N}Me)(PEt_3)$, it was noted that the intensity of the central peak slowly decreased and a new peak appeared; when the spectrum of the same sample was re-recorded after 2 days, it was found that intensities and positions of the signals were reversed. The second

signal was assigned to *cis*-PtBr₂(CNMeCH₂CH₂NMe)-(PEt₃) by comparison with the spectrum of the authentic *cis*-complex.⁷

amount of a phosphine,¹¹ the reverse process (i.e., *trans* \rightarrow *cis*) is not common.¹² However, the thermal isomerisation of trans-PtCl₂(NH₂R)(CO)¹³ and trans-PtCl₂(NH₂R)(Me₂SO)¹⁴ have been reported; a tetrahedral transition state has been suggested.¹³

Chloride Displacement Reactions .- Details on the derived new compounds are given in Tables 1-4. The trans-chloro-complexes [II; X = Cl, carb =

$$CNRCH_2CH_2NR$$
 (R = Me or Ph) or $CNMe C_6H_4 \cdot S$ -o, L = PR_3] in acetone, methanol, or ethanol readily reacts, with

the exception of trans-PtCl₂(CNPhCH₂CH₂NPh)(PEt₃), with an excess of lithium bromide to yield the corresponding bromides. These reactions were carried out The compounds *cis*- and *trans*-PtCl₂-

(CNMeCH₂CH₂NMe)(AsEt₃) and cis- and trans-PtCl₂-(CNMeCH₂CH₂NMe)(PEt₃) likewise react with methyllithium to afford the corresponding cis- and trans-

PtMe₂(CNMeCH₂CH₂NMe)(PEt₃), cis- and trans-PtMe₂-

(CNMeCH₂CH₂NMe)(AsEt₃), respectively. The stereochemistry of these compounds was determined by examination of the ¹H n.m.r. and i.r. spectra. The ¹H

n.m.r. spectrum of trans-PtMe₂(CNMeCH₂CH₂NMe)- (PEt_3) (IV) in deuteriobenzene solution shows three 1:1 doublets centred at τ 9.68 assigned to the methyl

TABLE 4

¹H N.m.r. data ^{a,b}

- 2.00-2.76 (10, c, PhN), 5.76 (4, s, CH₂N), 8.34-9.03 (15, c, Et₂P)
- 1.95-2.65 (10, c, PhN), 5.78 (4, s, CH₂N), 8.50-9.30 (27, c, Bun₃P)
- 6.75 (6, t, MeN), 7.15 (4, t, CH₂N), 8.0—8.80 (15, c, Et₃P), 9.68 (6, d, MePt) [J(P-H) = 5.5 Hz, J (Pt-H) = 54.0 Hz]
- 6·45 (4, s, CH₂N), 6·68 (6, t, MeN), 8·32–8·95 (15, c, Et₃P), 9·83 (3, d, MePt) [$J(P-H) = 8\cdot0$ Hz, $J(Pt-H) = 63\cdot0$ Hz], 9·84 (3, d, MePt [$J(P-H) = 7\cdot5$ Hz, $J(Pt-H) = 72\cdot0$ Hz]
- 6.80 (6, t, MeN), 7.20 (4, t, CH₂N), 8.25-8.70 (15, c, Et₃As), 9.70 (6, s, MePt) [J(Pt-H) = 54.0 Hz]
- 6·52 (4, c, CH₂N), 6·71 (6, t, MeN), 8·44—8·90 (15, c, Et₃As), 9·70 (3, s, MePt) [$J(Pt-H) = 81\cdot0$ Hz], 9·87 (3, s, MePt) [$J(Pt-H) = 61\cdot0$ Hz]

6·72 (6, t, MeN), 7·20 (4, t, CH₂N), 8·30–8·85 (15, c, Et₃P), 27·4 (1, d, HPt) [$J(P-H) = 18\cdot0$ Hz, $J(Pt-H) = 14\cdot20$ Hz]

 $6\cdot 20$ [4, d(br, CH₂N] $6\cdot 70$ (6, t, MeN), $7\cdot 90$ [6, c, (MeCH₂)₃P], $8\cdot 90$ [9, q,

3·30 (10, c, PhP), 7·90 (6, c, MeN), 8·34 (4, c, CH₂N), 9·00 (12, t, Me₂Ph) [$J(P-H) = 8\cdot0$ Hz, $J(Pt-H) = 28\cdot0$ Hz]

trans-[PtCl(CNMeCH2CH2NMe)(PEt3)2]+BF4- c

 $(MeCH_2)_3P]$ • τ Values relative to TMS. ^b Information in parentheses refers successively to (i) the number of H atoms; (ii) the nature of the signal (c = complex, d = doublet, q = quintet, s = singlet, t = triplet); (iii) assignment. ^c In CDCl₃. ^d In C₆D₆. ^e In (CD₃)₂SO.

for two reasons: (i) to confirm the assignment (far i.r.) for $\nu(MCl_2)$,⁷ and (ii) to look at the reactivity of transcarbene complexes. Analogous reactions of some cisdichloroplatinum(II) carbene complexes have been described.¹⁵ An attempt to convert trans-PtCl₂-(CNPhCH₂CH₂NPh)(PEt₃) into the bromo-analogue at 20° in acetone was unsuccessful. However, under more forcing conditions (heating for 24 h under reflux in ethanol), cis-PtBr₂(CNPhCH₂CH₂NPh)(PEt₃) was obtained. The formation of trans-PdBr₂-

(CNPhCH₂CH₂NPh)(PEt₃), by the former procedure, demonstrates the greater reactivity of Pd^{II} compared with Pt^{II} trans-carbene complexes.

protons of the Me-Pt groups, split by ³¹P and ¹⁹⁵Pt. The assignment was confirmed by examining the n.m.r. spectrum of trans-PtMe₂(CNMeCH₂CH₂NMe)(AsEt₃) in deuteriobenzene solution; the methyl protons appear as a triplet at τ 9.70. The Me-Pt protons of the ciscomplexes are so deshielded that they are obscured by the protons of PEt₃ or AsEt₃ which give rise to two groups of complex multiplets at $\tau 8.25$ and 8.90. However, using deuteriochloroform as solvent, this obscurity was resolved (see Table 4). It is interesting that similar large solvent effects (CDCl₃ vs. C_6D_6) are noted in ¹H n.m.r. spectra of the carbene complexes derived from the olefin (I; R = Me), which is manifested in changes in chemical shifts associated with the NMe and endocyclic

trans-PdBr₂(CNPhCH₂CH₂NPh)(PBuⁿ₃) ^c trans-PtMe2(CNMeCH2CH2NMe)(PEt3)

trans-PdBr₂(CNPhCH₂CH₂NPh)(PEt₃) °

cis-PtMe, (CNMeCH, CH, NMe) (PEt,) °

trans-PtMe₂(CNMeCH₂CH₂MMe)(AsEt₃)^d

cis-PtMe₂(CNMeCH₂CH₂NMe)(AsEt₃) ^c

trans-Pt(H)Cl(CNMeCH₂CH₂NMe)(PEt₃) d

trans-[PtCl(CNMeCH₂CH₂NMe)(PMe₂Ph)₂]+BF₄-

¹¹ J. Chatt and B. L. Shaw, J. Chem. Soc., 1959, 4020; J. Chatt and J. M. Davidson, *ibid.*, 1964, 2433. ¹² E. A. Allen, N. P. Johnson, D. T. Rosevear, and W. Wilkinson, *Chem. Comm.*, 1971, 171. ¹³ R. Ellis, T. A. Weil, and M. Orchin, J. Amer. Chem. Soc., 1070, 20, 1076.

^{1970, 92, 1078.}

¹⁴ Y. N. Kukushkin, Y. E. Vyaz'menski, and E. S. Postnikova, *Zhur. priklad. Khim.*, 1969, **42**, 926 (*Chem. Abs.*, 1969, **71**,

²⁷⁰⁵⁵z). ¹⁵ E. M. Badley, J. Chatt, and R. L. Richards, J. Chem. Soc. (A), 1971, 21.

CH₂ groups of the carbene ligand. A further complication is that trans-, unlike cis-, PtMe₂(CNMeCH₂CH₂NMe)-

(PEt₃) appears to be slowly attacked by chloroform. In the i.r. spectrum of trans-dimethyl compounds, a strong band at 470 cm⁻¹ is assigned to $v(PtC_2)$; for tetramethylplatinum(IV) complexes, in which two methyls are trans to one another, similar values and assignments have been reported.¹⁶ On the other hand, the stretching modes for the *cis*-dimethyl complexes of platinum(II) have been assigned to bands in the range 500-570 cm⁻¹.¹⁷ Consistent with this, we observe a strong band at 515 cm⁻¹, with a shoulder at 521 cm⁻¹ in the spectrum

(Nujol mull) of cis-PtMe₂(CNMeCH₂CH₂NMe)(PEt₃).

The use of methyl-lithium to prepare platinum(II)methyl complexes is well established.¹⁸ But the derived compounds, like other Pt^{II} dialkyls, invariably have had the cis-configuration. [Traces of trans-PtMe₂(PEt₃)₂ have been obtained by repeated distillation of the corresponding *cis*-dimethyl compound.¹⁹] It is not clear why carbene and phosphine ligands have differing roles in control of this reaction, especially as there is evidence of a similarity in their trans-influence; ⁶ this does not, however, preclude that their trans-effect may be different.

One of our objectives in preparing these methyl complexes was to see whether methyl migration from metal to the highly electrophilic carbene carbon⁸ might be induced. Accordingly, a benzene solution of the trans-complex (IV) was heated with triethylphosphine in benzene under reflux. After $1\frac{1}{2}$ h, the starting platinum compound was recovered (90%). It may be that, as for the hydride (see below), tautomerisation from alkyl-(carbene)- or hydrido(carbene)- into alkyl-metal complex is thermodynamically unfavourable.

In the presence of the appropriate neutral ligand (L). addition of sodium perchlorate to an acetone solution of $PtXCl(PEt_3)_2$ [X = H, Cl, Br, o- or p-F·C₆H₄; L = Py, PR₃, P(OR)₃, CNR, or CO] removes the chloride as sodium chloride to give the cationic complex trans-[PtX(L)- $(PEt_3)_2]^+[ClO_4]^{-.20}$ Cationic carbene complexes have previously been synthesised by reaction of a cationic isonitrile precursor with an alcohol or primary amine.²¹ We now find that *cis*- or *trans*-carbene complexes (II) or (III) behave similarly and afford cationic carbene complexes of the type trans-[PtCl(carb)L₂]⁺[BF₄]⁻ (carb

= CNMeCH₂CH₂NMe; L = PMe₂Ph or PEt₃). As expected, in the ¹H n.m.r. spectrum of the triethylphosphine complex, the methyl resonance from PEt₃ appears as a 1:4:6:4:1 quintet. The dimethylphenylphosphine complex is just adequately soluble in deuteriochloroform to show three triplets, and it is soluble in DMSO.

¹⁶ J. D. Ruddick and B. L. Shaw, J. Chem. Soc. (A), 1969,

2801. ¹⁷ D. M. Adams, J. Chatt, and B. L. Shaw, J. Chem. Soc., ¹⁴ D. M. Huans, J. 1960, 2047.
¹⁸ R. J. Cross, Organometallic Chem. Rev., 1967, 2, 97.
¹⁹ J. Chatt and B. L. Shaw, J. Chem. Soc., 1959, 705.
²⁰ M. J. Church and M. J. Mays, J. Chem. Soc. (A), 1968, Northern Mathematical Science (A), 1968,

Free carbenes insert into Si-H bonds, and silanes are good traps for nucleophilic carbenes derived from Group VIA metal complexes.²² In an attempt similarly to trap the carbene from (IV), the complex was heated in benzene under reflux with an excess of triethylsilane

(1:3): trans-Pt(H)Cl(CNMeCH₂CH₂NMe)(PEt₃) was obtained. (Some cis-platinum dihalides are converted into hydrides by silanes; an initial oxidative addition of silane followed by reductive elimination of chlorosilane has been suggested as the reaction sequence.²³)

In the i.r. spectrum of trans-Pt(H)Cl-

 $(\dot{C}NMeCH_2CH_2\dot{N}Me)(PEt_3)$, a strong band at 2210 cm⁻¹ is assigned to v(PtH). The configuration of this complex is readily determined from the n.m.r. coupling constants (for comparison with other platinum hydrides, see Table 3). The Pt-H ¹H n.m.r. resonance appears as a doublet (at $\tau 27.4$) due to coupling with the ³¹P nucleus, J(P-H) = 18.0 Hz, and platinum satellites of ca. $\frac{1}{4}$ intensity, J(Pt-H) = 1420 Hz. Whereas *cis*-PtCl₂-(PR₃)₂ reacts with triethylsilane to yield trans-Pt(H)Cl-(PR₃)₂,²³ cis-PtCl₂(CNMeCH₂CH₂NMe)(PEt₃) did not produce the expected hydride but a very air-sensitive,

unidentified oil. Attempts to transfer hydride from platinum to carbene carbon by treatment of trans-Pt(H)Cl-

(CNMeCH₂CH₂NMe)(PEt₃) with triethylphosphine in benzene at 20° resulted in the formation of an extremely

hygroscopic material trans-[Pt(H)(CNMeCH2CH2NMe)-(PEt_a)₂]⁺Cl⁻. The ¹H n.m.r. spectrum is entirely consistent with the proposed structure (see Table 3). The absence of v(Pt-Cl) in the far-i.r. spectrum and the appearance of a 1:4:6:4:1 quintet (methyls of triethylphosphine) also support the cationic structure. [The phosphine was used because it was considered (see ref. 4) that tautomerisation required initial conversion to the *cis*-hydridocarbene complex, thus its role was to have been both that of a catalyst and as a displacing ligand.] The complex was converted into the stable tetrafluoroborate (see Table 3) by treatment with sodium tetrafluoroborate in acetone.

EXPERIMENTAL

General Procedure .-- These were as described in Part I.1 Starting materials were mentioned there and triethylsilane was a generous gift from Dr. S. Takahashi.

Preparation of cis-Carbene Complexes .--- These compounds were prepared by the isomerisation of the appropriate trans-complexes in appropriate solvents (see Table 1). The general procedure was as follows. The trans-complex was heated and the yellow colour of the solution was discharged. Upon cooling, white crystals of the cis-isomer

²¹ E. M. Badley, B. J. L. Kilby, and R. L. Richards, J. Organometallic Chem., 1971, 27, C37; H. C. Clark and L. E. Manzer, Inorg. Chem., 1972, 11, 503.
 ²² J. A. Connor and P. D. Rose, J. Organometallic Chem., 1970, 24, C45; E. O. Fischer and K. H. Dötz, *ibid.*, 1972, 36, C4.
 ²³ A. J. Chalk and J. F. Harrod, J. Amer. Chem. Soc., 1965, 87 16

87, 16.

were deposited. The crystals were filtered off, washed with ether, and dried *in vacuo*.

Attempts to isomerise the complexes *trans*-MX₂(carb)L, where carb = $CNMeCH_2CH_2NMe$ or $CNMe\cdot C_6H_4\cdot S$ -o [heating (24 h) in ethanol under reflux] were unsuccessful. Therefore, in these cases the isomerisations were carried out without a solvent (usually at 150—200° for 1 h). The *cis*complexes were finally crystallised from chloroform–ether.

Analytical data on new compounds are shown below. Others were described in Part $I.^1$ Further data are in the Tables.

cis-Dichloro(1,3-diphenylimidazolidin-2-ylidene)(triethylphosphine)platinum(II) (Found: C, 41.7; H, 4.8; N, 4.6. C21H29Cl2N2PPt requires C, 41.6; H, 4.8; N, 4.6%), cisdichloro(1,3-diphenylimidazolidin-2-ylidene)(triethylphosphine)palladium(II) (Found: C, 48.9; H, 5.8; N, 5.5. C₂₁H₂₂Cl₂N₂PPd requires C, 48.7; H, 5.6; N, 5.6%), cisdibromo(1,3-diphenylimidazolidin-2-ylidene)(triethylphosphine)platinum(II) (Found: C, 37.6; H, 4.2; N, 4.2. C₂₁H₂₉Br₂N₂PPt requires C, 36.3; H, 4.2; N, 4.0%, cisdibromo-(1,3-diphenylimidazolidin-2-ylidene)(triethylphosphine)palladium(II) (Found: C, 42.7; H, 5.0; N, 4.9. C21H29Br2N2PPd requires C, 41.6; H, 4.8; N, 4.6%), cisdichloro(1,3-diphenylimidazolidin-2-ylidene)(tri-n-butylphosphine)platinum(II) (Found: C, 46.4; H, 5.85; N, 4.1. C27H41Cl2PPt requires C, 46.95; H, 5.9; N, 4.05%), cisdichloro(1,3-diphenylimidazolidin-2-ylidene)(tri-n-butylphosphine)palladium(II) (Found: C, 54.0; H, 7.1; N, 4.8. C₉₇H₄₁Cl₂N₂PPd requires C, 53.9; H, 6.8; N, 4.7%), cisdibromo(1,3-diphenylimidazolidin-2-ylidene)(tri-n-butylphosphine)palladium(II) (Found: C, 46.75; H, 6.0; N, 4.0. C₂₇H₄₁Br₂N₂PPd requires C, 46.9; H, 5.9; N, 4.05%), cisdichloro(1,3-diphenylimidazolidin-2-ylidene)(dimethylphenylphosphine)platinum(II) (Found: C, 44.6; H, 4.2; N, 4.4. C23H25Cl2N2PPt requires C, 44.1; H, 3.7; N, 4.5%), cisdichloro(1,3-diphenylimidazolidin-2-ylidene)(triethylarsine)platinum(II) (Found: C, 39.5; H, 4.5; N, 4.4. C₂₁H₂₉-AsCl₂N₂Pt requires C, 38.8; H, 4.5; N, 4.3%).

Chloride Replacement. (a) Reactions with lithium bromide. The trans-dichloride was treated with an excess of lithium bromide (ca. 10-fold) in acetone at 20° for 24 h. The solvent was removed in vacuo and the residue was washed with water $(3 \times 15 \text{ ml})$ and then recrystallised (Me₂CO-Et₂O). The following derivatives were prepared in this way: trans-dibromo(1,3-diphenylimidazolidin-2-ylidene)(triethyl-phosphine)palladium(II) (Found: C, 41.6; H, 5.0; N, 4.7.

 $C_{21}H_{29}Br_2N_2PPd$ requires C, 41.6; H, 4.8; N, 4.6%), trans-dibromo(1,3-diphenylimidazolidin-2-ylidene)(tri-nbutylphosphine)palladium(II) (Found: C, 47.2; H, 6.3; N, 4.1%; M, 662. $C_{27}H_{41}Br_2N_2PPd$ requires C, 46.9; H, 5.9; N, 4.05%; M, 690), trans-dibromo(1,3-dimethylimidazolidin-2-ylidene)(triethylphosphine)platinum(II) (Found: C, 23.8; H, 4.6; N, 4.9. Calc. for $C_{11}H_{21}Br_2N_2PPt$: C, 23.1; H, 4.4; N, 4.9%).

Under identical conditions, trans-dichloro(1,3-diphenylimidazolidin-2-ylidene)(triethylphosphine)platinum(II) did not react with lithium bromide. However, when the reactants were heated (24 h) in ethanol under reflux, a white solid was precipitated which was washed successively with water, ethanol, and ether; it was identified as *cis*dibromo(1,3-diphenylimidazolidin-2-ylidene)(triethylphosphine)platinum(II) (Found: C, 37.8; H, 4.50; N, 4.3. Calc. for $C_{21}H_{29}Br_2N_2PPt$: C, 36.3; H, 4.2; N, 4.0%).

(b) Reactions with methyl-lithium. The same general

procedure was used for all the reactions. The appropriate dichloride (0.5 mmol) dissolved or suspended in benzene (20 ml) was treated with methyl-lithium (0.6 mmol) in ether (2 ml), and the reaction mixture was stirred at 20° for 1 h. The solution was evaporated to a small volume (ca. 10 ml) in vacuo, and was filtered. The filtrate was evaporated to dryness and ether (5-10 ml) was added to the residue. Upon cooling (-20°), white crystals of the dialkyl complex separated out. The complexes prepared in this way were: trans-dimethyl(1,3-dimethylimidazolidin-2ylidene)(triethylphosphine)platinum(II) (Found: C, 35.95; H, 7.5; N, 6.4. $C_{13}H_{31}N_2PPt$ requires C, 35.4; H, 7.05; N, 6.35%), ν (PtC) 471s, cis-dimethyl(1,3-dimethylimidazolidin-2-ylidene)(triethylphosphine)platinum(II) (Found: C, 35.9; H, 7.3; N, 6.3. $C_{13}H_{31}N_2PPt$ requires C, 35.4; H, 7.05; N, 6.35%), v(PtC) 515s, 521sh, trans-dimethyl(1,3dimethylimidazolidin-2-ylidene)(triethylarsine)platinum(II) (Found: C, 32·35; H, 6·6; N, 5·9. C₁₃H₃₁AsN₂Pt requires C, 32.2; H, 6.4: N, 5.8%), v(PtC) 470s, cis-dimethyl(1,3dimethylimidazolidin-2-ylidene)(triethylarsine)platinum(II) (Found: C, 32.4; H, 6.6; N, 5.85. C13H31AsN2Pt re-

quires C, $32 \cdot 2$; H, $6 \cdot 4$; N, $5 \cdot 8\%$), v(PtC) 520s or 533m cm⁻¹. (c) Reactions with sodium tetrafluoroborate. Dimethylphenylphosphine (0·1 ml) was added to a suspension of cisdichloro(1,3-dimethylimidazolidin-2-ylidene)(dimethylphenylphosphine)platinum(II) (0·1700 g, 0·34 mmol) and sodium tetrafluoroborate (0·0370 g, 0·34 mmol) in acetone (20 ml). The mixture was stirred at 20° for 2 h. The acetone was replaced by methanol (10 ml). Upon cooling (-20°), white crystals separated out, which were washed with ether, and identified as trans-chloro(1,3-dimethylimidazolidin-2-ylidene)bis(dimethylphenylphosphine)platinum(II) tetrafluoroborate (0·1560 g) (Found: C, 36·2; H, 4.9: N 4.0: C, H BCLE N B Dt requiring C, 26 4: H, 4.9:

trans-Chloro(1,3-dimethylimidazolidin-2-ylidene)bis(triethylphosphine)platinum(II) tetrafluoroborate (0.4230 g) (Found: C, 31.6; H, 6.3; N, 4.3. $C_{17}H_{40}BClF_4N_2P_2$ requires C, 30.8; H, 6.1; N, 4.3%), v(CN) 1540s or 1520sh; v(PtCl) 298m cm⁻¹, was similarly prepared from trans-dichloro(1,3-dimethylimidazolidin-2-ylidene)(triethylphosphine)platinum(II) (0.4820 g, 1.00 mmol), sodium tetrafluoroborate (0.120 g, 1.10 mmol), and triethylphosphine (0.2 ml, 0.170 g, 1.4 mmol).

(d) Reactions with triethylsilane. Triethylsilane (0.71 ml, 2.5 mmol) was added to a solution of trans-dichloro(1,3-dimethylimidazolidin-2-ylidene)(triethylphosphine)platinum-(II) (0.8000 g, 1.67 mmol) in benzene (30 ml). This solution was heated under reflux for ca. 20 min, whereafter it was concentrated to ca. 7 ml. To this, n-hexane (20 ml) was added to yield trans-hydridochloro(1,3-dimethylimidazolidin-2-ylidene)(triethylphosphine)platinum(II) (0.6160 g) (Found: C, 29.4; H, 6.1; N, 6.4. $C_{11}H_{26}ClN_2PPt$ requires C, 29.45; H, 4.8; N, 6.25%).

Under identical conditions, the *cis*-isomer with triethylsilane did not give the expected compound; instead an oily material was obtained which was not characterised.

Reaction of trans-Hydridochloro(1,3-dimethylimidazolidin-2-ylidene)(triethylphosphine)platinum(II) with Triethylphosphine.—Addition of triethylphosphine (0·1 ml, 0·85 g, 0·72 mmol) to a solution of the trans-hydride (0·2450 g, 0·55 mmol) in benzene (10 ml) at 20° did not cause any significant colour change, but the ¹H n.m.r. spectrum of the mixture (see Table 3) indicated that a reaction had taken place. Volatiles were removed under reduced pressure and the residue was washed with ether to obtain a hygroscopic solid (0.2488 g, 80%) believed to be *trans*-[PtH-

 $(CNMeCH_2CH_2NMe)(PEt_3)_2]^+Cl^-$ (on the basis of spectroscopic data, see Table 3). A solution of this solid (0·2410 g, 0·43 mmol) in acetone (10 ml) was stirred at 20° with sodium tetrafluoroborate (0·0500 g, 0·45 mmol) for 2 h. The solvent was evaporated and the residue was taken up in chloroform (5 ml). Addition of ether (10 ml) to the solution gave a solid which was recrystallised (MeOH-Et₂O) and identified as trans-hydrido(1,3-dimethylimidazolidin-2-ylidene)bis(triethylphosphine)platinum(II) tetrafluoroborate (0.1596 g, 60%) (Found: C, 33.3; H, 6.7; N, 4.8. $C_{17}H_{41}BF_4N_2P_2Pt$ requires C, 33.1; H, 6.65; N, 4.55%), m.p. 105—108°.

[2/2097 Received, 5th September, 1972]