Co-ordination Compounds of Indium. Part XXII.¹ Anionic Complexes derived from the Lower Halides of Indium

By J. Guillermo Contreras, John S. Poland, and Dennis G. Tuck,*† Department of Chemistry, Simon Fraser University, Burnaby 2, British Columbia, Canada

The halide salts of the dispositive *NN'*-dimethyl-4,4'-bipyridinium cation (Me₂bipy,X₂; X = CI, Br, or I) react with indium monohalides to give salts of the trihalogenoindate(I) anions Me₂bipy,InX₃, in which the anion is isoelectronic with SnX₃⁻ and SbX₃. With indium trihalides the products are either Me₂bipy,[InCl₅] or Me₂bipy²⁺ + InX₄⁻ + X⁻ (X = Br or I); the InCl₅²⁻ anion has C_{4v} symmetry in the salt prepared, and this result is discussed in terms of earlier studies of this anion. The indium dihalides yield a mixture of In^I and In^{III} anions. The Raman spectra are reported for the anionic complexes prepared, for the indium monohalides, and for indium dibromide and di-iodide.

ONE of the features of the chemistry of indium is the dearth of preparative and structural studies of complexes of the element in its lower oxidation states. In the +1 state, simple binary compounds (halides, oxide, sulphide) are known,² but the only complexes reported in the literature are the adducts of the monohalides with ammonia,³ aniline,⁴ and morpholine,⁴ of the type InX,2L (L = NH₃ or morpholine) or InX,4L (L = aniline). The redox reactions of indium(I) species in electrolytically prepared aqueous solutions have recently been described in detail.⁵ Some insertion reactions of the indium monohalides into S-S 6 and C-X (X = Br 7 or I⁸) bonds have also been investigated. Indium(II) compounds have been the subject of curiosity for some time, but only recently has any structural information been available.

This paper reports the preparation of anionic halide complexes by the reaction of the neutral indium mono-, di-, and tri-halides with the corresponding NN'-dimethyl-4,4'-bipyridinium halide (Me₂bipy²⁺X₂⁻). With indium(I) halides, the products are salts of the trihalogenoindate(I) anions, whose preparation has been reported briefly elsewhere.⁹ Indium(III) halides give rise to species which can be compared directly with the anionic indium(III) halide complexes discussed earlier; ¹⁰ some interesting changes result from the use of a dipositive, rather than a monopositive, organic cation The reaction of indium(II) halides with Me₂bipy,X₂ yields mixtures of indium(I) and indium(III) complexes, in keeping with the formulation of these dihalide compounds as mixed oxidation state species.

The cation used in this work, NN'-dimethyl-4,4'bipyridinium, is one of the few readily available dipositive organic cations. The preparation of its salt was first described by Michaelis and Hill,¹¹ who studied these species in terms of the use of the cation as a redox indicator. The colour changes observed in the prepar-

⁵ R. S. Taylor and A. G. Sykes, J. Chem. Soc. (A), 1969, 2419.

ation of indium(I) complexes (see below) are clearly associated with these indicator properties.

Trihalogenoindate(I) Anions.—Anionic complexes of tin(II) of the type SnX_3^- (X = Cl, Br, or I) have been reported,¹² and it seemed likely that the isoelectronic indium(I) species might also be stabilised in some suitable solid lattice. The obvious starting materials, the indium(I) halides, are apparently insoluble in most solvents which provide a useful test of complex formation; for example, indium monochloride does not dissolve in molten tetraethylammonium chloride, so that this route to $[In^{I}Cl_{n}]^{(n-1)-}$ anions is not available. Each of the monohalides however reacted smoothly when a suspension in methanol was stirred under nitrogen with a solution of Me₂bipy,X₂. After a few minutes the suspension became blue, and after 2-3 h a clear (blue) solution was obtained; this colour could be removed by adding a trace of (say) iodine to the solution. It seems probable that a small amount of disproportionation of In^{I} to $In^{0} + In^{III}$ occurs, and that the cation indicator responds to the presence of In⁰; a trace of oxidising agent restores the cation to its colourless form. In each case, evaporation of the solution gave the (Me_2bipy) $[InX_3]$ salt. (See Table 1 for analytical results.)

Following the work of Benoit *et al.*¹³ on germanium(II), we also investigated the electrolytic reduction of indium-(III) in conc. hydrochloric acid, both preparatively and polarographically, but found no evidence to suggest that indium(I) species could be obtained in this way.

The molar conductivities of all three InX_3^{2-} compounds were measured in either acetonitrile or nitrobenzene solution, as dictated by the solubilities. For X = Cl and Br, the molar conductivities in acetonitrile at *ca*. mm concentration were 97 and 85 Ω^{-1} cm² respectively; other 1:1 electrolyte indium complexes ¹⁴

⁶ A. F. Berniaz, G. Hunter, and D. G. Tuck, J. Chem. Soc. (A), 1971, 3254.

⁷ L. Waterworth and I. J. Worrall, Chem. Comm., 1971, 569. ⁸ J. S. Poland and D. G. Tuck, J. Organometallic Chem., 1972, 42, 315.

- ⁹ J. G. Contreras and D. G. Tuck, Chem. Comm., 1971, 1552.
 ¹⁰ J. Gislason, M. H. Lloyd, and D. G. Tuck, Inorg. Chem., 1971, 10, 1907.
- L. Michaelis and E. S. Hill, J. Gen. Physiol., 1933, 16, 859.
 J. D. Donaldson, Progr. Inorg. Chem., 1967, 8, 287.
- ¹³ R. L. Benoit, M. Gauthier, and V. Plichon, *Canad. J. Chem.*, 1967, **45**, 1031.
- ¹⁴ D. G. Tuck and M. K. Yang, J. Chem. Soc. (A), 1971, 214.

[†] Present address: Department of Chemistry, University of Windsor, Windsor 11, Ontario.

¹ Part XXI, J. J. Habeeb and D. G. Tuck, J.C.S. Dalton, 1973, 243.

² See, for example, N. V. Sidgwick, 'Chemical Elements and their Compounds,' Oxford University Press, 1950, p. 480.

³ A. P. Kotchetkova, V. G. Tronev, and U. N. Gilyarov, *Doklady Akad. Nauk. S.S.S.R.*, 1962, **147**, 1986.

⁴ P. L. Goggin and I. J. McColm, J. Inorg. Nuclear Chem., 1966, 28, 2501.

1973

gave values in this solvent in the range 90—140 Ω^{-1} cm². For (Me₂bipy)[InI₃], the molar conductivity in nitrobenzene was 25 Ω^{-1} cm², to be compared with a reported range ¹⁵ of 20—40 Ω^{-1} cm² for 1:1 electrolytes. The formulation of these salts as 1:1 electrolytes is therefore confirmed by these results. The molar magnetic susceptibilities of the three salts were -246, -287, and -132×10^{-6} (c.g.s.u.) for the chloride, bromide, and iodide respectively, values which confirm the expected diamagnetism of the compounds prepared.

With each trihalide, the reaction product has the stoicheiometry Me_2bipy, InX_5 , but spectroscopic investigations show that only in the case of the chloride is an InX_5^{2-} anion actually present.

The Raman spectra of the bromide and iodide compounds have bands at 196s, 232w, 74w, and 84w (bromide), and 137vs, 197m, 181m, and 56w cm⁻¹ (iodide), in addition to the many emissions associated with the cation. Salts of the $InBr_4^-$ ion have Raman bands ¹⁰ at 200s (ν_1 , a_1), 237wm (ν_3 , f_2), and 79 (ν_4 , f_2),

		An	alytical r	esults for ani	ionic indiu	im complex	ces					
	Found (%)						Required (%)					
Salt "	С	н	Ν	Halogen	In	С	\mathbf{H}	Ν	Halogen	In		
C[InCl _a]	36.7	3.7	7.0	26.4	28.4	$35 \cdot 4$	3.4	$6 \cdot 9$	26.2	28.2		
C[InBr ₃]	26.8	2.7	$5 \cdot 1$	44.3	21.3	26.6	$2 \cdot 6$	5.2	44.4	21.2		
C[InI]	21.3	$2 \cdot 2$	$3 \cdot 9$	$55 \cdot 2$	16.2	$21 \cdot 1$	2.1	4.1	55.9	16.8		
C,InCl ₄	$32 \cdot 8$	$3 \cdot 2$	5.6	$32 \cdot 1$	$25 \cdot 8$	32.5	$3 \cdot 2$	6.3	$32 \cdot 1$	$25 \cdot 9$		
C InBr	23.0	$2 \cdot 4$	4.4	51.5	18.5	$23 \cdot 2$	$2 \cdot 3$	4.2	51.5	18.5		
C InI	17.7	1.7	$3 \cdot 2$	$62 \cdot 6$	14.7	17.8	1.7	3.5	62.8	$14 \cdot 2$		
$C[InCl_5]$	30.5	$2 \cdot 9$	5.5	37.4	$24 \cdot 2$	30.1	$2 \cdot 9$	5.9	37.1	24.0		
C,InBr ₅	20.6	$2 \cdot 0$	3.7	56.7	16.7	20.6	$2 \cdot 0$	4 ·0	57.1	16.4		
C,InI ₅	15.4	1.5	$3 \cdot 1$	67.5	12.3	$15 \cdot 4$	1.5	$3 \cdot 0$	67.9	$12 \cdot 3$		
^{<i>a</i>} $C = NN'$ -Dimethyl-4,4'-bipyridinium cation.												

TABLE 1

Vibrational Spectra of Indium Monohalides and Trihalogenoindate(I) Anions.—The Raman spectra of the solid indium monohalides showed the following bands:

- 86sh, 102w, 234m InCl
- 38w, 47s, 68ms, 86ms InBr
- InI 39mw, 78vs, 105mw, 135w, 211s cm⁻¹

Two of these solids (bromide ¹⁶ and iodide ¹⁷) have been shown to have thallium(I) iodide layer structures.¹⁸ No attempt was made at assigning the bands observed; the more important point is that the InX_3^{2-} complexes have very different spectra in this region.

Table 2 gives the Raman spectra of the three InX_3^{2-} anions, together with the appropriate results 19-21 for the isoelectronic SnX₃⁻ and SbX₃ species. The assignments are based on an assumed C_{3v} symmetry, although Wharf and Shriver 21 have questioned this assumption for the $SnBr_3^-$ and SnI_3^- anions, for which they suggest C_s symmetry. The similarities in the spectra within a given group of MX_3 species supports the suggestion that the InX_3^{2-} anions are isostructural with the analogous tin(II) and antimony(III) compounds. These assignments for InX₃²⁻ species are supported by force constant calculations.22

Reactions Involving Indium Trihalides.-In order to elucidate the nature of the products of the reaction of Me_2bipy, X_2 with the corresponding indium dihalides (see below), it was first necessary to investigate the reaction of these salts with the neutral indium(III) halides. The results are interesting in terms of the comparisons with earlier studies of anionic indium(III) halide complexes.¹⁰

¹⁵ D. M. Murray-Rust, H. J. Hadow, and Sir Harold Hartley, J. Chem. Soc., 1931, 215. ¹⁶ N. C. Stephenson and D. P. Mellor, Austral. J. Sci. Res., 1950, **3**A, 581.

¹⁷ R. E. Jones and D. H. Templeton, Acta Cryst., 1958, 8, 847.

while for InI_4^{-} , the analogous modes are at 139s, 186w, and 58 cm⁻¹. We therefore conclude that the solid state lattices of the compounds Me_2bipy , InX_5 (X = Br or I)

TABLE 2
Raman spectra of InX ₃ ^{2–} anions, and vibrational spectra
of SnX ₂ ⁻ and SbX ₂ analogues (in cm ⁻¹)

9
0
9
0
1
0
6 in
() () () () () ()

 C_s symmetry by these authors.

are in fact $Me_2bipy^{2+} + InX_4^- + X^-$, with the $InX_4^$ anion in some site symmetry lower than tetrahedral, so that some splitting of v_3 occurs. This conclusion is in keeping with earlier work,10 in which the compound $(Me_4N)_2InBr_5$ was shown to consist of $2Me_4N^+ + InBr_4^- + Br^-$ by similar arguments. Since no crystalline anionic iodo-complexes of indium(III) with a coordination number greater than four have been reported, the failure to obtain InI_5^{2-} is not surprising.

In contrast, the relevant part of the Raman spectrum

- of Me₂bipy[InCl₅] is very similar to that reported for the ¹⁸ See A. F. Wells, 'Structural Inorganic Chemistry,' Oxford
- ¹⁰ Ster A. P. Wens, Structural Inorganic Chemistry, Oxford University Press, 3rd edn., 1962, p. 888.
 ¹⁹ L. A. Woodward and M. J. Taylor, J. Chem. Soc., 1962, 402.
 ²⁰ E. Chemouni, J. Inorg. Nuclear Chem., 1971, 33, 2317.
 ²¹ I. Wharf and D. F. Shriver, Inorg. Chem., 1969, 8, 914.

- ²² J. G. Contreras and D. G. Tuck, Inorg. Chem., 1972, 11, 2967.

salt $(Et_4N)_2[InCl_5]$ by a number of authors. Adams and Smardzewski²³ have carried out a thorough analysis of the vibrational spectrum of this compound, and made assignments in terms of the C_{4v} symmetry of the anion, established by X-ray crystallography.²⁴ Adams and Smardzewski report nine Raman active lines between 300 and 100 cm⁻¹, at 294, 287, 273, 193, 165, 145, 141, 123, and 107 cm⁻¹. For Me₂bipy[InCl₅], we find Raman modes at 294m, 281m, 275m, 194w, 142w, 124m, and 105w cm⁻¹, and we therefore conclude that the latter solid contains the C_{4v} [InCl₅]²⁻ anion.

This conclusion is of some importance in terms of the earlier discussion²⁴ of this anion, whose structure differs from the isoelectronic species $SnCl_5^{2-}$ and $SbCl_5$, which have D_{3h} symmetry.^{25,26} More recently, the $CdCl_5^{2-}$ anion has also been found to have a trigonal bipyramid structure,27 emphasising once again the anomalous structure of $InCl_5^{2-}$. The suggestion ²⁴ was made earlier that the C_{4v} symmetry might have been the result of lattice effects associated with the Et_4N^+ cation, although this proposal was not supported by some incomplete spectral results 10 on salts with the cations Me_4N^+ , $MePh_3N^+$, and $BzPh_3P^+$, for which C_{4v} symmetry also appeared probable. The present data show clearly that a severe change of cation from $2Et_4N^+$ to the large dipositive Me_2bipy^{2+} does not alter the C_{4v} symmetry of InCl₅²⁻, and lattice effects can seemingly therefore be rejected in any discussion of this problem; the explanation for the fact that $InCl_5^{2-}$ is not isostructural with its isoelectronic d^{10} congeners is not apparent at the present time.

Reactions Involving Indium Dihalides .-- The structure of the indium dihalides has been the subject of considerable discussion. The compounds are not simple M^{2+} salts, since they are diamagnetic, and the two formulae most strongly urged have involved either a metal-metal bonded dimer X2M-MX2, or an ionic dimer of mixed oxidation state MI[MIIX₄]. Both spectroscopic and chemical evidence have been advanced in support of each of these formulations.

Unlike the gallium dihalides, for which magnetic, X-ray structural and vibrational spectral $^{28-31}$ evidence has now established that $Ga[GaX_4]$ (X = Cl, Br, or I) is indeed the structure in the solid state, in solution, and in melts, the literature on the indium-chloride system is ²³ D. M. Adams and R. R. Smardzewski, J. Chem. Soc. (A), 1971, 714.

²⁴ D. S. Brown, F. W. B. Einstein, and D. G. Tuck, Inorg.

Chem., 1969, 8, 14. ²⁵ H. H. Freedman and A. E. Young, J. Amer. Chem. Soc., 1964, 86, 733.

- ²⁶ S. M. Ohlberg, J. Amer. Chem. Soc., 1959, 81, 811.
 ²⁷ E. F. Epstein and J. Bernal, J. Chem. Soc. (A), 1971, 3628.
 ²⁸ G. Garton and H. M. Powell, J. Inorg. Nuclear Chem.,

1957, 4, 84.

²⁹ L. A. Woodward, G. Garton, and H. L. Roberts, J. Chem.

Soc., 1956, 3723.
 ³⁰ L. A. Woodward, N. N. Greenwood, J. R. Hall, and I. J. Worrall, J. Chem. Soc., 1958, 1505.
 ³¹ E. Chemouni, J. Inorg. Nuclear Chem., 1971, 33, 2325.
 ³² R. J. Clark, E. Griswold, and J. Kleinberg, J. Amer. Chem.

Soc., 1958, 80, 4764. ³³ J. R. Chadwick, A. W. Atkinson, and B. G. Huckstepp, J. Inorg. Nuclear Chem., 1966, 28, 1021.

extensive and confusing. There are disagreements as to the details of the indium-chloride phase diagram, and as to the stable solid state species; InCl₂, In₂Cl₃, In₄Cl₇, and In₅Cl₉ have all been reported.³²⁻³⁶ The interpretation of the vibrational spectra is equally a matter of discussion. Molten InCl₂ is shown by Raman spectroscopy to contain InCl₄⁻ anions,³⁷ but the room temperature spectrum is variously claimed to show the presence 37 or the absence, 31,35 of this anion in solid InCl₂. Six-co-ordination of indium(III) by chloride ions has been reported 35,36 for both In₂Cl₃ and In₅Cl₉, and again ionic formulations have been proposed for these compounds. In addition, evidence of chemical reactions has been interpreted as supporting both neutral and ionic dimeric formulae for indium dihalides.4,38-40 Much less attention has been given to indium dibromide and di-iodide than to the dichloride. The Raman spectra now reported clearly demonstrate the presence of the InX_4^- anion (X = Br or I) in the solid state.

Phase studies of the indium-iodine system 41,42 show that only three compounds exist: InI₃, InI₂, and InI. The Raman spectrum of solid indium di-iodide shows five emissions, readily correlated with the spectrum of the tetrahedral InI_4^- anion: ^{10,43}

138vs 47w 191m, 177mw 72w, 62 mw cm⁻¹

It is clear therefore that indium di-iodide can be most simply formulated as $In^{I}[In^{III}I_{4}]$, with the InI_{4}^{-} anion having a symmetry lower than T_d . This structure is in agreement with previous results, which have demonstrated that the high stability of the InI_{4} ion leads to ionic structures in such varying compounds as $[InI_2(dmso)_4][InI_4]$ [=InI₃,2dmso (dmso = dimethyl sulphoxide)]⁴⁴ and $[Me_2In][InI_4]$ ($\equiv MeInI_2$).⁸ The InBr-InBr₃ phase diagram⁴⁵ requires the existence of $InBr_2,\ In_2Br_3$ and $In_4Br_7,\ and\ In_5Br_9$ has also been reported; all these species are diamagnetic.46 The Raman spectrum of InBr₂ again correlates well with that ^{10,47} of InBr₄-:

InBr₄(T_d) 197(v_1) 55(v_2) 239(v_3) $79(v_{A})$

InBr₂ 196vs 59m 237w, 227w 97, 85mw cm⁻¹.

³⁴ A. W. Atkinson, J. R. Chadwick, and E. Kinsello, J. Inorg. Nuclear Chem., 1968, **30**, 401.

³⁵ F. J. Brinkmann and H. Gerding, Rec. Trav. chim., 1969,

88, 275. ³⁶ F. J. Brinkmann and H. Gerding, *Rec. Trav. chim.*, 1971,

 J. H. R. Clark and R. E. Hester, Inorg. Chem., 1969, 8, 1113.
 V. N. Fadeev and P. I. Federov, Russ. J. Inorg. Chem., 1965, 10, 788.

³⁹ A. P. Kotchetkova, V. G. Tronov, and O. N. Gilyarov, Doklady Akal. Nauk. S.S.S.R., 1962, 147, 1086, 1373.
 ⁴⁰ A. P. Kotchetkova and O. N. Gilyarov, Russ. J. Inorg.

Chem., 1966, 11, 662

⁴¹ A. Thiel and H. Koelsch, Z. anorg. Chem., 1910, 66, 288.

A. Iniel and H. Koelsch, Z. anorg. Chem., 1910, 00, 200.
 E. A. Peretti, J. Amer. Chem. Soc., 1956, 78, 5745.
 L. A. Woodward and G. H. Singer, J. Chem. Soc., 1958, 716.
 F. W. B. Einstein and D. G. Tuck, Chem. Comm., 1970, 1182.
 P. H. L. Walker, J. Kleinberg, and E. Griswold, J. Inorg. Nuclear Chem., 1961, 19, 223.
 G. Brauer and H. Morawietz, Z. anorg. Chem., 1965, 340, 133.
 J. Woodward and P. T. Bill, J. Chem. Soc., 1955, 1699.

47 L. A. Woodward and P. T. Bill, J. Chem. Soc., 1955, 1699.

TABLE 3 Raman spectra (in cm⁻¹) of compounds Me_2bipy , InX₄

$\mathbf{X} = Cl$	InCl ₃ ² InCl ₅ ² not assigned	98w	102vw	104w	128w	148w	185m	196m	284m	321m
$\mathbf{X} = \mathbf{Br}$	InBr ₃ ^{2–} InBr ₄ –	72w		106w	148w		199w		237w	
$\mathbf{X} = \mathbf{I}$	InI ₃ ² InI ₄	74w, 79sh			106w	{	136s 136s	181s		196s

In one experiment, the spectrum showed doubling of the very strong v_1 emission at 196 cm⁻¹, and broadening of the other bands. This could be due to the co-existence of two solid phases; such a phenomenon might explain some of the apparently contradictory results obtained in phase studies of indium–chloride systems. Spectra similar to those given above have recently been reported for InBr₂ in the range 190–250 cm⁻¹ by Waterworth and Worrall.⁴⁸

The reaction of Me_2bipy, X_2 with InX_2 (X = Cl, Br, or I) gave in each case a crystalline material of stoicheiometry Me_2bipy, InX_4 . Table 3 shows the Raman spectra of these compounds. It is clear that in the case of both the bromide and iodide, the spectra can be assigned on the assumption that the solid is an equimolar mixture of $2Me_2bipy^{2+} + In^TX_3^{2-} + X^- + InX_4^-$, taking into account the relative intensities of the emissions in question. For the chloride system, the spectrum is made up of the spectra of $InCl_3^{2-}$ and $InCl_5^{2-}$, leaving only one band, that at 321 cm⁻¹, unassigned. Again, not all the Raman bands of the two species can be seen because of intensity problems.

These results show that the anionic halide complexes derived from the indium dihalides are, in each case, a diamagnetic mixture of indium(I) and indium(III) species (molar susceptibilities -290 (Cl), -120 (Br), and -445 (I) $\times 10^{-6}$ (c.g.s.u.). These conclusions are in keeping with the formulation of the dihalides as mixed oxidation state compounds, but beyond that can give no information as to the detailed structure. A similar restriction should be applied to all structural conclusions derived from studies of the reactions of indium dihalides, such as leaching experiments with organic solvents. Indium(III) complexes readily undergo rearrangement reactions in non-aqueous solution, and deductions as to structures based only on solution equilibria, conductivity, etc., are therefore often unreliable.⁴⁹ It follows that strong reservations must be applied in interpreting the results of studies of nonequilibrium phenomena such as leaching, or chemical reactions in terms of structures in the solid state.

EXPERIMENTAL

General.—Analytical and spectroscopic methods were as in previous work, except that indium analysis was by atomic absorption spectrometry using a Perkin-Elmer 305

⁴⁸ L. Waterworth and I. J. Worrall, Inorg. Nuclear Chem. Letters, 1972, 8, 123. instrument. Magnetic measurements were carried out by a conventional Faraday balance method.

Preparations.—Indium(III) halides were prepared by the direct reaction of indium metal and the appropriate halogen. The lower halides were obtained by heating a mixture of trihalide and the calculated amount of indium metal for 12-24 h at $250-350^{\circ}$ in a sealed tube. In view of the problems encountered by some authors in the identification of the lower halides of indium, the composition of all of these substances were confirmed analytic-ally (Table 4).

NN'-Dimethyl-4,4'-bipyridinium halides were prepared following the method described by Michaelis and Hill.¹¹ After methylation of 4,4'-bipyridyl and isolation of the picrate, the appropriate hydrohalogenic acid was added; the final halide salt was recrystallised from aqueous solution.

TABLE 4

Analytical results for lower indium halides

	Fou	.nd (%)	Required (%)		
	In	Halogen	In	Halogen	
InCl	76.6	23.4	76.4	23.6	
InBr	58.7	$41 \cdot 2$	59.0	41 ·0	
InI	47.3	$52 \cdot 5$	47.5	52.5	
InCl ₂	61.7	38.6	61.8	$38 \cdot 2$	
$InBr_2$	$42 \cdot 2$	58.3	41 ·8	58.2	
InI ₂	31.3	68.9	$31 \cdot 1$	68.9	

To prepare the indium halide complexes listed in Table 1, a solution of Me_2bipy, X_2 in methanol was treated with either a suspension (In^I, In^{II}), or a solution (In^{III}) of the indium halide in the same solvent under nitrogen. The mixture was stirred for 2—3 h; removal of solvent *in vacuo* gave the required product.

Unless a trace of halogen was added to the final reaction mixture, the products from the indium(I) and (II) halides were dark blue because of the indicator properties of the cation (see above). The 'bleached' compounds were generally colourless, pale yellow (bromides), or orange-red (iodides).

Raman Spectroscopy.—The Raman emission from powdered solids was recorded at room temperature with a Cary 81 spectrometer, using He–Ne excitation.

This work was supported by Operating Grants from the National Research Council of Canada. One of us (J. G. C.) acknowledges leave of absence from the Universidad de Concepción, Chile. Dr. D. Sutton is thanked for valuable discussions.

[2/2274 Received, 2nd October, 1972]

⁴⁹ D. G. Tuck, Proceedings of C.N.R.S. Conference No. 191, 'La Nature et Les Propriétés des Liaisons de Co-ordination,' Editions du C.N.R.S., Paris, 1970, p. 159.