981

Trifluoroiodosilane and Difluorodi-iodosilane: Their Properties and Use in Preparing Fluorosilicon Derivatives with Si-N, Si-O, and Si-S Bonds

By Bernard J. Aylett,* Ian A. Ellis, and John R. Richmond, Chemistry Department, Westfield College, London **NW3 7ST**

Fluoroiodosilanes SiF_{4-x} I_x (x = 1 or 2) have been prepared by cleavage of the corresponding dimethylaminofluorosilanes with HI; their physical properties are reported. They react respectively with HgO to give $(SiF_3)_2O$ and oligomeric fluorosiloxanes, and with water to give $(SiF_3)_2O$ (initially) and fluorosiloxane polymers. The nature of volatile oligomers formed in these and other reactions is discussed. Trifluorosilokane polymers. The hadre of volatile oligomers formed in these and other reactions is discussed. Trifluorosilyl pseudohalides SiF₃CN and SiF₃NCS are prepared from SiF₃I and corresponding Hg^{II} or Ag^I compounds. With HgS, SiF₃I, and SiF₂I₂ form silathianes, believed to be $(SiF_3)_2S$ and $(SiF_2S)_2$. Trifluoroiodosilane reacts with NMe₃ to give a 1:2 adduct, probably $(SiF_3.2NMe_3)^{+1-}$, with NHMe₂ to give SiF₃NMe₂, and with ammonia to give polymeric fluorosilazanes.

WHILE iodosilanes have proved valuable in the preparation of many SiH₃- and SiH₂= derivatives,¹ little corresponding use has been made of fluoroiodosilanes.² This is probably because of their reputation of being difficult to prepare and of readily disproportionating. It will be shown that this is largely unmerited.

(a) A. G. MacDiarmid, Adv. Inorg. Chem. Radiochem., 1961,
 207; (b) B. J. Aylett, *ibid.*, 1968, 11, 249.
 ² For a recent isolated example, see: R. R. Schrieke and B. O. West, Inorg. Nuclear Chem. Letters, 1969, 5, 141.
 ³ H. H. Anderson, J. Amer. Chem. Soc., 1950, 72, 2091.
 ⁴ M. Schmeisser and H. Jenkner, Z. Naturforsch., 1952, 7B, 101

191

Fluoroiodosilanes were first made³ by redistribution between SiF_4 and SiI_4 at 700 °C; they also resulted ⁴ when aluminium(III) iodide reacted with SiF_4 or Na_2SiF_6 at 300°. More recently the reactive species SiF_2 has been found 5 to combine with iodine yielding SiF₃I and SiF₂I₂.

Since the Si-N bond is readily cleaved by hydrogen halides,6 dialkylaminofluorosilanes are possible starting

⁵ J. L. Margrave, K. G. Sharp, and P. W. Wilson, J. Inorg. Nuclear Chem., 1970, 32, 1813.
⁶ V. Bažant, V. Chvalovský, and J. Rathouský, 'Organo-silicon Compounds,' Czechoslovak Academy of Sciences, Prague, Data 1965.

materials for fluoroiodosilanes.⁷ We report the use of 852vs, 492 this method to prepare SiF₃I and SiF₂I₂, and a number those rece

EXPERIMENTAL

of their reactions.

General.—Normal high-vacuum and dry-box techniques were used, together with a 5-ft low-temperature column for difficult separations.⁸ Halocarbon grease (Kel-F) was essential for taps, *etc.*, when handling fluorosilicon-sulphur and -pseudohalide compounds. I.r. spectra were obtained with Perkin-Elmer 337 or 521 instruments.

N-Dimethylaminotrifluorosilane and bis(dimethylamino)difluorosilane were prepared ⁹ by heating dimethylamine, an excess of tetrafluorosilane, and lithium tetrahydroaluminate in a sealed tube at 475 K for 10 h. Amines were dried (CaH₂) and repeatedly fractionated *in vacuo*. Mercury(II) and silver(I) salts were dried by long pumping (and heating if necessary), then by treatment with a little SiF₃I; silver compounds were protected from light.

Preparation of SiF_3I .—(a) Dimethylaminotrifluorosilane (4·46 mmol) and HI (10·50 mmol) were sealed together and allowed to warm from 77 K to room temperature (10 min).

852vs, 492sh, 481s, 477s, and 472s cm⁻¹) agreed closely with those recently reported,⁵ although the intensities appeared different.

Preparation of $\operatorname{SiF}_2 I_2$.—Bisdimethylaminodifluorosilane (4.0 mmol) and HI (17.4 mmol) were allowed to warm from 77 K to room temperature and then remain together for 10 min. Fractionation yielded an excess of HI, a trace of SiF_4 , $\operatorname{SiF}_3 I$ (0.4 mmol), $\operatorname{SiF}_2 I_2$ [3.2 mmol, 80%, passes 227 K, held at 177 K (Found: M, 317. $\operatorname{SiF}_2 I_2$ requires M, 320)], and SiFI_3 (0.4 mmol).

Physical properties of SiF_2I_2 . V.p. data in the range 250—296 K (limited by decomposition) suggested an extrapolated b.p. of ca. 360 K. The m.p. was $191\cdot0 \pm 0.5$ K (lit.,³ 190 K); the i.r. absorptions (971sh, 967s, 961sh, 886s, 881s, 877sh, 597w, 492vs, 485vs, and 443m cm⁻¹) agreed reasonably well with published values ⁵ apart from relative intensities and the very strong doublet reported here at 485 cm⁻¹. All the bands appeared markedly asymmetric.

Reactions with Water.—SiF₃I (0.02 mmol) and water (0.01 mmol), both in the vapour phase, were mixed in a 10-cm i.r. gas cell; the course of the reaction was monitored by rapid scanning of the range 1600—800 cm⁻¹. Immediate formation of (SiF₃)₂O was observed, a little white solid

	Gas-phas	e i.r. spectra (cm ⁻¹)	o f fluorosilox	anes (4 000	400 cm ⁻¹)		
$)_{2}O$	$(SiF_3O)_2SiF_2$ "	SiF ₃ OSiF ₂ SiF ₃ ^b	A °	B¢	C ¢	D¢	E c
Ref. 16							
1268m	1309m				1005	1000	
1242m	1290m				1235w	1232w	
1205s	(1205)		1202s	1200s,br	1182s,br	1180s,br	1170s,br
1040w	1192s	1172s	1162 s. br	1160sh.br	1015vs	1013vs	1020sh
1032m	(1032)		$1125 \mathrm{m}$		986w	985m	990vs.br
984m	(984)	983s	1020vs	1020 vs	936m	935m	881)
913w		884m	945m	945m	870m	870m	875 \m
839s	(839)	842m	865m	865m	654w	652w	870
672w	782m	663w	665w	665w	470m.br	470w.br	,
		-	430s,br	430s, br	400m,br	400m,br	$425 \mathrm{w}$
) ₂ O Ref. 16 1268m 1242m 1205s 1040w 1032m 984m 913w 839s 672w	$\begin{array}{c} {\rm Gas-phas} \\ {\rm Gas-phas} \\ {\rm N}_2{\rm O} & ({\rm SiF_3O})_2{\rm SiF_2}\ ^a \\ {\rm Ref.}\ 16 \\ 1268{\rm m} & 1309{\rm m} \\ 1242{\rm m} & 1290{\rm m} \\ 1205{\rm s} & (1205) \\ 1040{\rm w} & 1192{\rm s} \\ 1032{\rm m} & (1032) \\ 984{\rm m} & (984) \\ 913{\rm w} \\ 839{\rm s} & (839) \\ 672{\rm w} & 782{\rm m} \end{array}$	$\begin{array}{c} {\rm Gas-phase~i.r.~spectra~(cm^{-1})}\\ {\rm Gas-phase~i.r.~spectra~(cm^{-1})}\\ {\rm Ref.~16}\\ 1268m&1309m\\ 1242m&1290m\\ 1205s&(1205)\\ 1040w&1192s&1172s\\ 1032m&(1032)\\ 984m&(984)&983s\\ 913w&884m\\ 839s&(839)&842m\\ 672w&782m&663w\\ \end{array}$	$\begin{array}{c c} & Gas-phase i.r. \ spectra \ (cm^{-1}) \ of \ fluorosilox\\ Gas-phase i.r. \ spectra \ (cm^{-1}) \ of \ fluorosilox\\ Gas-phase i.r. \ spectra \ (cm^{-1}) \ of \ fluorosilox\\ Gas-phase i.r. \ spectra \ (cm^{-1}) \ of \ fluorosilox\\ Gas-phase i.r. \ spectra \ (cm^{-1}) \ of \ fluorosilox\\ Gas-phase i.r. \ spectra \ (cm^{-1}) \ of \ fluorosilox\\ Gas-phase i.r. \ spectra \ (cm^{-1}) \ of \ fluorosilox\\ Gas-phase i.r. \ spectra \ (cm^{-1}) \ of \ fluorosilox\\ Gas-phase i.r. \ spectra \ (cm^{-1}) \ of \ fluorosilox\\ Gas-phase i.r. \ spectra \ (cm^{-1}) \ of \ fluorosilox\\ Gas-phase i.r. \ spectra \ (cm^{-1}) \ of \ fluorosilox\\ Gas-phase i.r. \ spectra \ (cm^{-1}) \ of \ fluorosilox\\ Gas-phase i.r. \ spectra \ (cm^{-1}) \ of \ fluorosilox\\ Gas-phase i.r. \ spectra \ (cm^{-1}) \ of \ fluorosilox\\ Gas-phase i.r. \ spectra \ (cm^{-1}) \ of \ fluorosilox\\ Gas-phase i.r. \ spectra \ (cm^{-1}) \ of \ fluorosilox\\ Gas-phase i.r. \ spectra \ (cm^{-1}) \ of \ fluorosilox\\ Gas-phase i.r. \ spectra \ (cm^{-1}) \ of \ fluorosilox\\ Gas-phase i.r. \ spectra \ (cm^{-1}) \ sp$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

TABLE 1

• Ref. 16. ^b Ref. 20. ^c KEY. A *ex* SiF₂I₂ + HgO, more volatile fraction, decomposed to solid + SiF₄. B *ex* SiF₂I₂ + HgO, less volatile fraction, decomposed to solid + SiF₄. C *ex* SiF₂(NMe₂)₂ + H₂O, held at 135 K, passed 177 K, decomposed to solid but essentially no SiF₄. D *ex* (SiF₃)₂O + SiF₃I on storage, held at 153 K, passed 177 K, decomposed to solid but essentially no SiF₄. E *ex* SiF₃I + NO (*kv*), pumped from column at 145 K, decomposed to solid but essentially no SiF₄.

The products were: excess of HI, trifluoroiodosilane [3.70 mmol, 71%, held at 133 K, passes through 153 K baths (Found: M, 207. SiF₃I requires M, 212)], small amounts of SiF₄, SiF₂I₂, and SiFI₃, also dimethylammonium iodide (i.r.).

(b) Aluminium powder (3 mmol), iodine (2 mmol), and SiF_4 (50 mmol) were heated together in a thick-walled tube for 65 h at 620 K. The tube was then allowed to cool slowly to room temperature (2 h) and the contents were fractionated to yield excess of SiF_4 , $(\operatorname{SiF}_3)_2O$, SiF_3I (*ca.* 0.1 mmol), and SiF_2I_2 (*ca.* 0.1 mmol). The major silicon-containing product was SiI_4 .

Physical Properties of SiF₃I.—Values of the saturated v.p. in the range T = 139-227 K determined the equation: $\log_{10} p(\text{mm}) = 7.593-1110/T$. Only a trace of SiF₄ was detected at the end of the experiment. Thus the b.p. (extrap.) = 236 K (lit.,³ 245-253 K), $\Delta H_{\text{vap}} = 21.2 \text{ kJ}$ mol⁻¹, and $\Delta S_{\text{vap}} = 89.7 \text{ J}$ K⁻¹ mol⁻¹. The m.p. (Stock method) was 199.5 ± 0.5 K (lit.,³ ca. 181 K). Band positions in the i.r. spectrum (1000sh, 996vs, 862vs, 857vs, ⁷ J. J. Moscony and A. G. MacDiarmid, Chem. Comm., 1965, 307.

307.
 ⁸ D. F. Shriver, 'The Manipulation of Air-sensitive Compounds,' McGraw-Hill, New York, 1969.

began to deposit after 2 min, and all the water was consumed after 4 min.

In a similar reaction, vapour of SiF_2I_2 and of water produced an immediate deposit of white solid; SiF_4 was formed and SiF_2I_2 disappeared during 5 min. No $(SiF_3)_2O$ or appreciably volatile fluorosiloxane oligomers were found, but a product that at first could just be transferred *in vacuo* later lost SiF_4 and became involatile. Heating of the solid residues to *ca.* 475 K yielded a little SiF_4 as the only volatile product.

Reactions with Mercury(II) Oxide.—(a) A mixture of SiF_3I vapour (0.09 mmol) and nitrogen was twice passed over mercury(II) oxide (80 mmol) supported on glass wool. The sole volatile product was $(SiF_3)_2O$ (0.04 mmol, >80%), while the mercury compound's colour changed from orange to deep red.

(b) $\operatorname{SiF}_2 I_2$ vapour (0.22 mmol) was passed several times over HgO (75 mmol). The volatile products comprised $(\operatorname{SiF}_3)_2 O$, $\operatorname{SiF}_x I_{4-x}$ (x = 2—4), and also two fluorosiloxane fractions A (passed 209 K, held at 177 K) and B (held at 209 K). Their i.r. spectra are given in Table 1.

⁹ M. Allan, B. J. Aylett, and I. A. Ellis, Inorg. Nuclear Chem. Letters, 1966, 2, 261. Photolysis of SiF₃I and NO.—SiF₃I (2·2 mmol) and NO (2·2 mmol) were irradiated in the gas phase (quartz tube, Hg-sensitized, 1 atm) for 15 min with a 1 kW source. The products were fractionated to yield: N₂ (0·4 mmol), N₂O, NO, SiF₄, SiF₃I, SiF₂I₂ (trace), (SiF₃)₂O, HgI₂, and a volatile fluorosiloxane E (see Table 1; M, 170 \pm 20), slightly less volatile than (SiF₃)₂O.

Reactions with Mercury(II) Sulphide.—(a) SiF₃I vapour (4 mmol) was passed several times at *ca*. 5-cm pressure over mercury(II) sulphide (100 mmol). The mercury compound developed dark red and greenish yellow regions, and the volatile products were excess of SiF₃I, SiF₄, (SiF₃)₂O (trace), and presumed hexafluorodisilathiane F₃Si·S·SiF₃(I) [mainly held at 153 K (Found: M, 200. Si₂F₆S requires M, 202)].

(b) SiF₃I (6 mmol) and HgS (40 mmol) were sealed together and allowed to react for 18 h at 278 K; a liquid phase was always present. The products were SiF₄, (SiF₃)₂O (trace), and presumed tetrafluorocyclodisilathiane $F_2Si\cdot S\cdot SiF_2\cdot S$ (II) [held at 153 K (Found: *M*, 198. Si₂F₄S₂

requires M, 196)]. (c) When SiF₂I₂ (1.2 mmol) vapour was passed over HgS (80 mmol), there was negligible reaction. The two compounds were then sealed together for 18 h at 298 K: the major volatile product was compound (II), although some SiF₄, (SiF₃)₂O, and compound (I) were also present. When the solid residue was warmed and pumped, further amounts of (I) and (II) were produced.

I.r. spectra of compounds (I) and (II) are given in Table 2.

TABLE 2

Gas-phase i.r. spectra of fluorosilathianes (4000-400 cm⁻¹)

(

SiF ₃) ₂ S		$(SiF_2S)_2$	
		1108vw	2 imes 554?
995sh	l	1008vs	$v_{as}(SiF)$
990vs	Ş	888m	
881)		850)	
873 > vs		846 ≽s	v _s (SiF)
866)		842)	• •
568sh)	•	
561s	Y	554s	$v_{as}(SiSSi)$
554sh			

These samples had been purified by distillation by fractionation on the low-temperature column; attempts at purification by g.l.c. (silicone oil) at 298 K led to decomposition.

Into gaseous (presumed) $(SiF_3)_2S$ (I, 0.09 mmol) in a 10-cm i.r. cell were injected successive aliquots (ca. 0.03 mmol) of pyridine vapour carried in nitrogen. After the first and second, white solid was formed, and i.r. bands due to (I) diminished in intensity, while a band at 1032 cm⁻¹ (SiF₄) increased. After the third, no bands due to (I) were visible, and that due to SiF₄ had weakened.

Reaction of SiF₃I and Mercury(II) Cyanide.—Vapour of SiF₃I (1·2 mmol) was passed over Hg(CN)₂ (100 mmol); red HgI₂ was immediately formed. The volatile products were SiF₄, (SiF₃)₂O (trace), unused SiF₃I, and presumed trifluorosilyl cyanide (III) [mainly held at 139 K (Found: M, 108. CNSiF₃ requires M, 111), i.r. (gas phase, cm⁻¹): 1010vs (ν_{as} SiF); 890ms, 881s, 875ms (RQP, ν_{s} SiF); 602sh, 597m, 588sh (RQP, ν SiC)]. Compound (III) rapidly reacted with Apiezon grease to give HCN; alone, it decomposed to form a yellow involatile solid and traces of SiF₄ when condensed at 77 K or when stored in the gas phase at more than *ca*. 5 cmHg. The solid absorbed (i.r., mull) at 3325m, 3110s, 3070s, 1680s, 1585m, 1510m, 1300w, 1274m, 1260sh, 1092m, 1064m, 1008m, 951m, 664sh, 649s cm⁻¹, with an additional band (KBr disc) at 1405 cm⁻¹. It slowly turned brown *in vacuo*, and its alkaline hydrolysate gave a positive test for CN⁻.

A similar reaction between SiF_3I vapour and AgCN also yielded compound (III), while treatment of either $\text{Hg}(CN)_2$ or AgCN with liquid SiF_3I produced only the yellow solid referred to above. Gaseous HCl slowly reacted with the yellow solid; after 20 h, some HCN and fluorochlorosilanes were present (i.r.).

Reaction of SiF₃I and HCN.—Equimolar amounts of SiF₃I and HCN reacted in a 10-cm gas cell (total pressure, ca. 5 cm). After 15 h at room temperature, a yellow solid (i.r.: 3030sh, 2980sh, 2910vs, 2840sh, 2760m, 2660mw, 2590m, 2525m, 1900w, 1550m, 1530w, 1475m, 1287m, 1133s, 1050w,br, 948m cm⁻¹) had formed, although most (>75%) of the reactants were intact; no volatile Si-CN product was detected. When treated with water vapour, the solid evolved a little HCN.

Reaction of SiF₃I and Mercury(II) Thiocyanate.—SiF₃I (0.9 mmol) was condensed on to Hg(NCS)₂ (30 mmol) and the mixture allowed to warm slowly to room temperature. The volatile products were: SiF₄, (SiF₃)₂O (trace), and trifluorosilyl thiocyanate (0.2 mmol, 20%; Found: M, 142; calc. for SiF₃NCS, 143); its i.r. absorptions were generally as in ref. 10, except that the bands there reported near 3540 cm⁻¹ are probably due to HNCS. With Apiezon grease, SiF₃NCS yielded HNCS, while as a liquid or a gas at high pressures, it changed into a yellow-brown solid without simultaneous formation of volatile products. The solid evolved HNCS on treatment with water vapour, and the residue contained fluorosiloxanes and SiF₆²⁻ (i.r.).

Reaction of SiF₃I and Trimethylamine.—Gaseous SiF₃I (3.04 mmol) was injected into NMe₃ (6.21 mmol) contained in a 2 l flask attached to an i.r. cell. A pale yellow solid formed in the vessel, while the only volatile product was NMe₃ (0.13 mmol; combining ratio, 1:2.00). The solid's i.r. spectrum (3000m, 2950s, 2735s, 1470vs, 1405m, 1388w, 1252w, 1239m, 1120w, 1028w, 972vs, 964s, 951vs, 940vs, 925sh, 819s, 761m, 585s,br, 463vs,br cm⁻¹) remained unchanged after pumping for 1 h; after 30 min without pumping a trace of SiF₄ was apparent. There was no indication that the adduct dissolved in NMe₃, even with the latter in large excess.

When exposed to water vapour, the adduct immediately became white, and the i.r. spectrum showed bands assigned to NHMe_3^+ , $\text{SiF}_6^{2^-}$, and fluorosiloxane polymers.

Another sample of adduct (2.20 mmol) reacted with chlorine (3.06 mmol) at room temperature. Iodine was immediately formed, and the more volatile products comprised SiF₄ (trace) and excess of chlorine (2.03 mmol). The combining mole ratio of adduct to Cl₂ is thus 1:0.47.

Reaction of SiF₃I and Dimethylamine.—(a) Gaseous SiF₃I (0·1 mmol) and NHMe₂ (0·8 mmol) were mixed in an i.r. cell. White solid immediately formed, some being on the windows. An i.r. spectrum run at once showed a complex mixture of products including SiF₂(NMe₂)₂ (diagnostic bands at 1315, 915, and 880 cm⁻¹, but no SiF₃NMe₂ (diagnostic bands at 980, 958, and 879 cm⁻¹). Volatile products were then removed by pumping for 10 min; during their fractionation, solids were deposited and the only final volatile product was NHMe₂. The solid left in the cell at this stage showed bands attributable to Me₂NH₂I, together with others at 3260s, 1325m, 1108m, 1028s,

¹⁰ W. Airey and G. M. Sheldrick, J. Chem. Soc. (A), 1969, 2865.

912m, 798vs, 775vs, and 560s cm⁻¹. On further pumping, these additional bands disappeared.

(b) Gaseous SiF₃I (1.8 mmol) and NHMe₂ (0.9 mmol) were similarly mixed. Volatile products were removed and shown to include SiF_3NMe_2 and a little $SiF_2(NMe_2)_2$, while the solid residue was solely Me₂NH₂I.

Reaction of SiF_3I with Ammonia.—(a) SiF_3I vapour (2.26) mmol) was led into a 2 l flask containing ammonia (3.41 mmol). White solid was deposited, leaving unchanged $SiF_{3}I$ (0.25 mmol), SiF_{4} , and a small amount of a substance held at 153 K [i.r. (cm⁻¹): 3400w, 1380w, 1232m, 1138s, 1008vs, 975m, 885w, 822m, 749w] which could not be completely separated from SiF₃I and rapidly decomposed during attempted fractionation. The white solid showed i.r. bands attributed to NH_4^+ and a little SiF_6^{2-} ; it smelt slightly of ammonia, and dissolved in water to give initially a clear solution, which later became turbid. When treated with conc. H_2SO_4 , the solid frothed and yielded iodine.

(b) Ammonia (3.64 mmol) entered an i.r. cell containing $SiF_{3}I$ vapour (0.22 mmol). A white solid formed over the walls and windows of the cell, and the sole volatile product was ammonia (3.21 mmol). The solid gave i.r. bands attributed to NH₄I, with additional broad bands at 1600m, 930s, 890s, 730s, and 610m cm⁻¹. When the solid was exposed to water vapour, ammonia was evolved, and broad bands at 690s and 480s appeared, while that at 730 cm^{-1} (SiF_6^{2-}) intensified.

The combining ratios of $SiF_{3}I$ to NH_{3} in (a) and (b) were 1: 1.70 and 1: 1.95 respectively.

RESULTS AND DISCUSSION

Dimethylaminotrifluoro- and bisdimethylaminodifluoro-silane reacted readily with a slight excess of hydrogen iodide below room temperature to give the corresponding fluoroiodosilanes in good yield [equation (1)]; the case where x = 1 has been briefly mentioned

$$\begin{aligned} \operatorname{SiF}_{4-x}(\operatorname{NMe}_2)_x + 2x\operatorname{HI} &\longrightarrow \\ & \operatorname{SiF}_{4-x}I_x + x\operatorname{NH}_2\operatorname{Me}_2I \quad (1) \\ & (x = 1, 71\%; \ x = 2, 80\%) \end{aligned}$$

by Moscony and MacDiarmid.⁷ This reaction, formally the reverse of that often used to make Si-N bonds,¹¹ now appears to offer the best route to pure fluoroiodosilanes.

Experiments using a larger excess of HI led to more highly iodinated products. Thus SiF₃NMe₂ and a twofold excess of HI over that demanded by equation (1)gave only a 25% yield of SiF₃I but a mol ratio (SiF₄: $SiFI_3$) of ca. 1:5. This shows that simple disproportionation of SiF_3I (which would produce more SiF_4 than SiFI₃) cannot be the only way in which SiFI₃ is formed; possibly species such as NH2Me2+HI2 can act as iodinating agents.* Similar effects were shown by SiF₂(NMe₂)₂ and HI in excess; with this system, deficit of HI was also undesirable, since it led to the formation of a poorly volatile liquid, believed to be SiF₂(NMe₂)I, that caused rapid disproportionation of SiF_2I_2 during fractionation.[†]

Attempts to prepare fluoroiodosilanes from aluminium, iodine, and SiF_4 by a modification of Schmeisser's method⁴ met with only limited success. Slow reaction did occur above 200°, but the chief iodinated product was always SiI_4 , even with a large excess of SiF_4 . Also $(SiF_3)_2O_1$, always formed when SiF_3I_2 (or SiF_4) is heated in glass, was difficult to separate completely from SiF₃I. This criticism must apply to any high-temperature route to fluoroiodosilanes.

Both $\mathrm{SiF}_3\mathrm{I}$ and $\mathrm{SiF}_2\mathrm{I}_2$ appear to be normal unassociated liquids. While SiF_3I is thermally stable up to its b.p. (236 K), SiF_2I_2 begins to disproportionate in the liquid phase above ca. 270 K. Liquid samples of SiF₃I at 298 K in small sealed tubes suffered less than 10%decomposition after 2 weeks, no doubt because of the high pressure of SiF_4 in the tube.

With water, in the vapour phase, SiF₃I is converted completely and within a few minutes into hexafluorodisiloxane, which itself slowly undergoes base-catalysed disproportionation 12-14 to give solid fluorosiloxanes [equation (2)]. Analogously, SiF_2I_2 is hydrolysed

$$2\mathrm{SiF}_{3}\mathrm{I} + \mathrm{H}_{2}\mathrm{O} \longrightarrow (\mathrm{SiF}_{3})_{2}\mathrm{O} + 2\mathrm{HI} \xrightarrow{[\mathrm{H}_{2}\mathrm{O}]} \\ \frac{1}{x}(\mathrm{SiF}_{2}\mathrm{O})_{x} + \mathrm{SiF}_{4} \quad (2)$$

directly to oligomeric and polymeric fluorosiloxanes; the SiF₄ also produced may arise from water-promoted disproportionation of either SiF_2I_2 directly or intermediates such as $SiF_3O(SiF_2O)_nSiF_3$ (derived from SiF_2I_2 and some SiF_3I). These reactions parallel those long known for mono- and di-halogenosilanes.¹⁵

Reactions of Fluoroiodosilanes with Heavy-metal Com*pounds.*—Reaction (3), with X = H, has proved a valuable route to new silvl derivatives.¹ Generally the reaction proceeds if Y is more electronegative than I; Ag^I behaves similarly to Hg^{II}. In the present study, reaction (3) with X = F has been investigated; some

$$2\mathrm{SiX}_{3}\mathrm{I} + \mathrm{HgY}_{2} \longrightarrow 2\mathrm{SiX}_{3}\mathrm{Y} + \mathrm{HgI}_{2} \qquad (3)$$

parallel studies have recently been reported.¹⁰ We find that SiF₃I and SiF₂I₂ react readily with mercury (and in some cases silver) compounds to yield SiF_3 - or SiF_2 = derivatives, but that these are often of limited thermal stability.

Fluorosilicon-oxygen Compounds.—Mercury(II) oxide reacted vigorously with SiF₃I alone to give SiF₄ and white solids. However, when SiF₃I vapour was diluted with nitrogen, reaction (3) (X = F, Y = O/2) gave

¹² M. Allan, B. J. Aylett, and I. A. Ellis, Chem. and Ind., 1966,

1417. ¹³ J. Goubeau and H. Grosse-Ruyken, Z. anorg. Chem., 1951,

264, 230. ¹⁴ H. S. Booth and R. S. Osten, J. Amer. Chem. Soc., 1945, 67, 1092.

^{*} SiF₃I and HI alone do not react.

[†] No doubt because Si–NMe₂ derivatives can act as Lewis bases, albeit feebly.10

¹¹ B. J. Aylett, in 'Preparative Inorganic Reactions,' ed. W. L. Jolly, Interscience, New York, 1965, vol. II.

¹⁵ A. Stock, 'Hydrides of Boron and Silicon,' Cornell University Press, Ithaca, N.Y., 1933; H. J. Campbell-Ferguson, J. Inorg. Nuclear Chem., 1965, **27**, 2121.

 $({\rm SiF}_3)_2{\rm O}$ as the sole volatile product. A similar reaction with ${\rm SiF}_2I_2$ was more complex. Disproportionation evidently occurred, since $(SiF_3)_2O$ and a mixture of fluoroiodosilanes were detected. Two presumed fluorosiloxane fractions A (more volatile) and B (less volatile) could be isolated: it is possible these were mixtures, although their i.r. spectra were reproducibly and distinctly different (Table 1).

Although (SiF₃)₂O is reasonably well documented, much less is known of other fluorosiloxanes. Margrave ct al.16 have isolated impure (SiF₃O)₂SiF₂ as well as $(SiF_3)_2O$ from the hydrolysis of SiF_4 , thus confirming and amplifying earlier reports.^{13,14,17} Oxidation of SiF_4 in a glow discharge ¹⁸ yields $(SiFO_{3/2})_x$, while a microwave discharge acting on SiF_4 in a silica tube leads to linear and cyclic fluorosiloxanes.¹⁹ Recent studies ²⁰ on the reactive species SiF, have show that, with SOF, it forms (SiF₃)₂O, (SiF₃O)₂SiF₂, and Si₂F₅OSiF₃, while the presence of SiF₃SiF₂SiF₂OSiF₃ and cyclic (SiF₂O)_n (n = 2 or 3) was inferred from mass spectra.* Oxygen and SiF₂ gave similar products,²⁰ also polymeric $(SiF_2O)_x$; the polymer gave oligomers $(SiF_2O)_n$ (n = 2-5) on heating. It was suggested that cyclic fluorosiloxanes are more stable thermally than the linear species. In all these studies, however, only (SiF₃)₂O could be isolated in a pure state, underlining the practical difficulties involved.

Table 1 lists available i.r. data for $(SiF_3)_2O$ and the fluorosiloxanes reported in refs. 16 and 20, this work, and some related studies. The strong band for $(SiF_3)_2O$ found in this study at 1020 cm⁻¹ is considered to be genuine, whereas ref. 16 lists only a moderate band at 1032 cm⁻¹, attributed 'probably to SiF_4 '. We assign the bands at 1020 and 837 cm⁻¹ to asymmetric and symmetric Si-F stretching modes respectively, noting the resemblance to $(SiF_3)_2NH$ (1005 and 825 cm⁻¹)²¹ and $(SiF_3)_2$ NMe (1016 and 822 cm⁻¹).²¹

It appears that while fluorosiloxanes C and D are identical, there are four volatile species distinct from (SiF₃)₂O, (SiF₃O)₂SiF₂, and Si₂F₅OSiF₃, viz. A, B, (C + D), and E. We propose that those species giving SiF_4 on decomposition have SiF_3O groups, while the others do not; either class may also possess -SiF₂Oand -SiFO- groups.⁺ Taking also the volatilities and methods of preparation of fractions A-E into account, it seems likely that A and B are predominantly cyclic compounds with some pendant SiF₃O- groups, and have

the general formula $[SiF_x(OSiF_3)_{2-x}O]_n$ [e.g. (i)], while (C + D) and E are cyclic $(SiF_2O)_n$ species. The mole-* It seems possible, however, that ions of cyclic species may arise thus: $SiF_3OSiF_2OSiF_3 + e^- \longrightarrow SiF_4 + (SiF_2O)_2^+ +$

cular weight of E [which is of similar volatility to $(SiF_3)_2O$ corresponds to n = 2 (ii), hence for (C + D)probably n = 3. The fall in $v_{as}(SiOSi)$ observed in

passing from $(SiF_3)_2O$ to (C + D) to E is then reasonably interpreted in terms of increasing ring strain as the

SiOSi angle decreases from its ' free ' value 23 of at least 155° in (SiF₃)₂O. Moreover both A and B show two bands in this region, at about 1200 and 1160 cm⁻¹, which may be assigned to SiF₃-O-Si_{ring} and Si_{ring}-O-Si_{ring} stretching vibrations respectively.

Fluorosilicon-Sulphur Species .- In a gas-solid reaction, $SiF_{3}I$ reacted rapidly with mercury(11) sulphide to give a volatile product (I) presumed to be hexafluorodisilathiane, $(SiF_3)_3S$ [equation (3), X = F, Y = S/2].[‡] In contrast, liquid-solid reactions between SiF₃I or SiF₂I₂ and HgS gave a product (II) of similar volatility and molecular weight, § but with a distinctly different i.r. spectrum, believed to be tetrafluorocyclodisilathiane, $(SiF_2S)_2$. This compound has already been reported ²⁵ from the reaction of SiF_4 and SiS_2 at 1000°; it was said to decompose slowly (14% in 14 days at room temperature), but no i.r. spectrum or chemical properties were given.¶

Both (I) and (II) were unchanged after 20 h in the gas phase at 25° , in glass vessels at *ca*. 5 cm Hg. When (I) was heated at 150° or kept in the liquid phase at room temperature, it gave SiF_4 , (II), and a white solid. Under the same conditions, (II) gave a little SiF_4 and white solid only. When (I) was stored in the gas phase in contact with Apiezon grease, about 25% decomposed after 17 h at 25°, yielding H_2S ; (II) behaved similarly. These facts are consistent with the earlier conclusions as

¹⁷ M. Chaigneau, *Compt. rend.*, 1968, **266C**, 1053. ¹⁸ D. R. Secrist and J. D. Mackenzie, *J. Polymer Sci.*, *Part B*, *Polymer Letters*, 1966, **4**, 537.

¹⁹ F. E. Brinckman and G. Gordon, Proceedings International Symposium, Decomposition of Organometallic Compounds to Refractory Ceramics, Metals, and Metal Alloys, Dayton, Ohio, U.S.A., Nov. 1967. ²⁰ K. G. Sharp and J. L. Margrave, J. Inorg. Nuclear Chem.,

1971, **33**, 2813.

²¹ M. Allan, B. J. Aylett, and I. A. Ellis, unpublished work.

²² W. Airey, G. M. Sheldrick, B. J. Aylett, and I. A. Ellis, Spectrochim. Acta, 1971, 27A, 1505.

²³ W. Airey, C. Glidewell, D. W. H. Rankin, A. G. Robiette, G. M. Sheldrick, and D. W. J. Cruickshank, Trans. Faraday Soc., 1970, **66**, 551.

²⁴ W. C. Schumb and W. J. Bernard, J. Amer. Chem. Soc.,

1955, 77, 862. ²⁵ V. Gutmann, P. Heilmayer, and K. Utvary, Monatsh., 1961, 92, 942.

[†] Fluorosilazanes are known to behave similarly: $(SiF_3)_2$ NMe and SiF₃NMe₂ readily lose SiF₄,¹² but cyclic $(SiF_2NMe)_n$ does not ^{21,22}

[‡] Much more vigorous conditions were needed for the corresponding reaction ²⁴ between SiCl₃I and Ag₂S. § Calculated mol. wts. for $(SiF_3)_2S$ and $(SiF_2S)_2$ are very similar

to each other and to the experimental values.

[¶] The only other previously-reported fluorosilicon-sulphur compounds are SiHF₃SH and SiF₂HSiF₂SH, made from SiF₂ and H_2S ; n.m.r. but not i.r. spectra were recorded: K. G. Sharp and J. L. Margrave, Inorg. Chem., 1969, 8, 2655.

¹⁶ J. L. Margrave, K. G. Sharp, and P. W. Wilson, J. Amer. Chem. Soc., 1970, **92**, 1530.

to the nature of (I) and (II). We may therefore write provisional equations (4) and (5).

$$2HgS + 2SiF_2I_2 \longrightarrow 2HgI + (SiF_2S)_2$$
(4)
(SiF_2)_S \longrightarrow (SiF_aS)_2 + SiF_4 (5a)

$$(I) \qquad \qquad (S_1F_2S)_2 + S_1F_4 \qquad (5a)$$

$$(SiF_2S)_x$$
 (5b)

Reaction (5), which also evidently occurred during the liquid-solid reaction of SiF_3I and HgS, is analogous to the disproportionation of $(SiH_3)_2S$,²⁶ $(SiF_3)_2O$,¹²⁻¹⁴ and (SiF₃)₂NMe.¹² There is some evidence that reaction (5b) is reversible on heating, reminiscent of the ringchain equilibria of organosiloxanes and organosilathianes; ²⁷ (SiF₂O)_x (ref. 20 and this work) and (SiCl₂S)_x (ref. 28) appeared to behave similarly. Both presumed $(SiF_3)_2S$ and $(SiF_2S)_2$ were strongly held by mercury(II) residues from their preparation, in keeping with the wellknown Lewis-base behaviour of sulphur(II) compounds towards Hg^{II}.

The Lewis-acid nature of presumed (SiF₃)₂S was shown by adding to its vapour in an i.r. gas-cell successive amounts of pyridine vapour. White solid formed immediately; SiF_4 appeared in the gas phase, and increased in concentration while the amount of $(SiF_3)_2S$ diminished. Only when all (SiF₃)₂S had disappeared was SiF_4 removed (as SiF_4 , 2NC₅H₅). A parallel exists in the reaction of (SiH₃)₂S with trimethylamine [approximate equation (6)],²⁶ but it seems surprising in the present

$$(\text{SiH}_3)_2\text{S} + 0.75 \text{ NMe}_3 \longrightarrow \\ \text{SiH}_4 + \frac{1}{n}(\text{SiH}_2\text{S}, 0.75\text{NMe}_3)_n \quad (6)$$

case that $(SiF_2S)_x$ is apparently a stronger acid than SiF_4 towards pyridine.

Other, unsuccessful, routes to $(SiF_3)_2S$ were explored. SiF₃I and H₂S in the gas phase did not react, while SiF_3NR_2 (R = Me or Et) or $SiF_4, 2NC_5H_5$ when heated with H₂S yielded only polymeric Si-S compounds.

Apart from bands in the expected positions for v_{as} and $v_s(SiF)$ (Table 2), the main feature of the i.r. spectra of $(SiF_3)_2S$ and $(SiF_3S)_2$ was a strong band at 561 and 554 cm⁻¹ respectively [cf. (SiH₃)₂S, 515 (ref. 29), 517 (ref. 30); $(SiMe_3)_2S$, 488 (ref. 31); $(SiMe_2S)_2$, 528 cm⁻¹ (ref. 32)] assigned in each case to v_{as} (SiSSi).* The symmetrical mode is expected to be weak, and has not been observed. For $(SiH_3)_2S$, the *P*-*R* branch separation for $v_{as}(SiSSi)$ to be about 100° (subsequently confirmed ³³ by electron diffraction). The corresponding separation in (SiF₃)₂S is also 14 cm⁻¹, but it seems unlikely that the pseudotriatomic approximation used in ref. 29 will be applicable here.

Fluorosilicon Pseudohalides.—SiF₃I readily reacted with mercury(II) cyanide and thiocyanate according to equation (3) (X = F; Y = CN or NCS); the silver(I) salts were also effective, and SiF₃NCS has been independently prepared ¹⁰ from AgNCS and SiF₃Br. I.r. absorptions and molecular weights of the products were consistent with those expected for trifluorosilyl cyanide and isothiocyanate. Both compounds appeared to polymerize in the liquid phase or in the gas phase at all but low pressures; \dagger the former compound also lost some SiF₄. It has been reported ³⁵ that SiH₃CN also forms a brown solid on storage, with some loss of SiH₄, while SiH₃NCS shows evidence of association ³⁵ in the liquid phase but does not seem to form a solid polymer (although HNCS does).

The solid derived from SiF₃CN showed i.r. absorptions at 1680 and 1405 cm⁻¹ similar to those reported ³⁶ for triazine in-plane ring vibrations, suggesting that tris-(trifluorosilyl)triazine had been formed. Reaction with HCl gave the products expected for SiF_a-ring cleavage, accompanied by some depolymerization. In the case of the solid from SiF₃NCS, it seems likely that selfinsertion involving Si-N and N=C bonds (similar to the well-known reaction of PhNCS with Si-N compounds 37) has led to linear or cyclic $-N(SiF_3)C(S)$ - derivatives. Hydrolysis of both solids $(SiF_3Y)_x$ gave HY and the expected mixture of fluorosiloxanes and SiF_6^{2-} . A different solid, identified as polymeric $(HCN)_x$, resulted from the reaction of SiF₃I and HCN in the gas phase.

Reaction of SiF₃I with Nitrogen Bases.—A slight excess of trimethylamine reacted rapidly with SiF₃I in the gas phase to give the adduct $SiF_{a}I_{a}NMe_{a}$. This was almost involatile at room temperature, but very slowly lost SiF_4 . As usual, the adduct was more readily hydrolysed than the parent compound. With an excess of chlorine, the adduct underwent rapid displacement of iodine (but not NMe₃) with presumed formation of the corresponding adduct of SiF₃Cl [equation (7)]. Fergus-

is 14.5 cm⁻¹, and hence the bond angle SiSSi was inferred ²⁹

^{*} The authors of ref. 32 assigned the spectrum of $(SiMe_2S)_2$ In the basis of D_{2h} symmetry (*i.e.* with a planar ring) and hence labelled the band at 528 cm⁻¹ as B_{3u} . Additional bands in this region would be expected if the ring were non-planar; in their absence, we tentatively assign (SiF₂S)₂ in a similar way.

[†] This probably explains why no $\sqrt{(\Xi N)}$ band was observed at the low pressures necessarily used with SiF₃CN; the band is weak in gas-phase spectra of HCN and SiH₃CN.³⁴

 ²⁶ A. G. MacDiarmid, J. Inorg. Nuclear Chem., 1963, 25, 1534.
 ²⁷ K. Moedritzer, J. R. Van Wazer, and C. H. Dungan, J. Chem. Phys., 1965, 42, 2478.

 ²⁸ D. J. Panckhurst, C. J. Wilkins, and P. W. Craighead, J. Chem. Soc., 1955, 3395.
 ²⁹ H. R. Linton and E. R. Nixon, J. Chem. Phys., 1958, 29,

^{921.}

³⁰ E. A. V. Ebsworth, R. Taylor, and L. A. Woodward, Trans. Faraday Soc., 1959, **55**, 211. ³¹ H. Kriegsmann, Z. Elektrochem., 1957, **61**, 1088.

³² H. Kriegsmann and H. Clauss, Z. anorg. Chem., 1959, 300, 210.

³³ A. Almenningen, K. Hedberg, and R. Seip, Acta Chem. Scand., 1963, 17, 2264.

³⁴ H. R. Linton and E. R. Nixon, Spectrochim. Acta, 1958, 10, 299.

 ³⁵ A. G. MacDiarmid, J. Inorg. Nuclear Chem., 1956, 2, 88.
 ³⁶ D. A. Long, J. Y. H. Chau, and R. B. Gravenor, Trans. Faraday Soc., 1962, 58, 2316; H. K. Rheimschuessel and N. T. McDevitt, J. Amer. Chem. Soc., 1960, 82, 3757.
 ³⁷ M. F. Lappert and B. Prokai, Adv. Organometallic Chem., 1067, 5 205

^{1967, 5, 225.}

son et $al.^{38}$ have shown that SiF₃Cl can form both 1:1 and 1:2 adducts with trimethylamine; another report 39

$$2\mathrm{SiF}_{3}\mathrm{I}_{2}\mathrm{NMe}_{3} + \mathrm{Cl}_{2} \longrightarrow 2\mathrm{SiF}_{3}\mathrm{Cl}_{2}\mathrm{NMe}_{3} + \mathrm{I}_{2} \quad (7)$$

suggests that SiF₃Br and NMe₃ initially form a 1:1 adduct, but it seems likely in this case that disproportionation was complete before an excess of amine had been added.

The i.r. spectrum of SiF₃I,2NMe₃ is complex and not readily correlated with that ⁴⁰ of SiH₃I,2NMe₃ (no doubt because of mixing);⁴¹ the only clear feature is that bands in the Si-F stretching region are generally lowered in frequency compared with SiF₃I itself. However, it seems very likely by analogy with the SiH_3I adduct [formulated 42 as (SiH₃,2NMe₃)+I-] and with (SiCl₃,- $2NMe_3$)+ClO₄-43 that SiF_3I ,2NMe₃ is also ionic, with five-co-ordinate silicon.

A deficit of dimethylamine reacted with SiF₃I in the same way as that reported ³⁹ for SiF_3Br [equation (8)]. With an excess of dimethylamine, the reaction proceeded

$$SiF_{3}I + 2NHMe_{2} \longrightarrow SiF_{3}NMe_{2} + NH_{2}Me_{2}I$$
 (8)

differently: base-catalysed disproportionation removed any free SiF_3NMe_2 , and only a little $SiF_2(NMe_2)_2$ was initially detected $[SiF_2(NMe_2)_2$ is a weaker Lewis acid, and less susceptible to disproportionation,12,39 than SiF₃NMe₂]. The solid product, besides NH₂Me₂I, contained a compound identified by its i.r. spectrum and

* (SiCl_a)₂NSiF_a is known,⁴⁵ so there is no steric limitation.

- ³⁸ J. E. Fergusson, D. K. Grant, R. H. Hickford, and C. J. Wilkins, J. Chem. Soc., 1959, 99. ³⁹ H. Grosse-Ruyken and R. Kleesaat, Z. anorg. Chem., 1961,
- 308, 122.
- ⁴⁰ H. J. Campbell-Ferguson and E. A. V. Ebsworth, J. Chem. Soc. (A), 1967, 705.
 ⁴¹ I. R. Beattie and F. W. Parrett, J. Chem. Soc. (A), 1966, 1784.

volatility as SiF_4 , 2NHMe₂.⁴⁴ Thus reaction (9) is indicated, followed by further disproportionation of SiF₂(NMe₂)₂ during fractionation. Grosse-Ruyken and

$$2\text{SiF}_{3}\text{NMe}_{2} + 2\text{NHMe}_{2} \longrightarrow \\ \text{SiF}_{4}, 2\text{NHMe}_{2} + \text{SiF}_{2}(\text{NMe}_{2})_{2} \quad (9)$$

Kleesaat³⁹ interpreted results of gas titrations in terms of a rather weak 1:1 adduct between SiF₃NMe₂ and NHMe₂; this is not necessarily inconsistent with the present work, since such an adduct would have been removed by pumping before the i.r. spectrum of the solid was recorded. However, we obtained no evidence for such an adduct (or for any solid adduct from SiF₃NMe₂ and trimethylamine).

Reaction of SiF_aI with ammonia was harder to elucidate, since the chief products were ammonium salts and polymers containing Si, N, F, and H. Only with an excess of SiF_aI was there evidence for a volatile product, with an i.r. spectrum consistent with that expected for SiF₃NH₂. This compound always decomposed during attempted separation and it seems clear that SiF_aanalogues of di- and tri-silylamine, if they exist, will be extremely labile.*

We thank the S.R.C. for a studentship (to J. R. R.), and are grateful to Drs. G. M. Sheldrick and W. Airey for helpful discussions and information.

[2/2489 Received, 3rd November, 1972]

- 42 B. J. Aylett and J. M. Campbell, J. Chem. Soc. (A), 1969, 1920.
- 43 I. R. Beattie, T. Gilson, and G. A. Ozin, J. Chem. Soc. (A), 1968, 1092. 44 B. J. Aylett, I. A. Ellis, and C. J. Porritt, J.C.S. Dalton,
- 1972, 1953. ⁴⁵ U. Wannagat, P. Schmidt, and M. Schulze, Angew. Chem., 1967, 79, 409.