The Conformation of Triphenylbismuthine and Tris-(p-chlorophenyl)bismuthine in Benzene Solution

By John W. Hayes, Donald J. Millar, and Donald V. Radford,* University of Sydney, Sydney, New South Wales 2006, Australia

John D. Saxby, C.S.I.R.O. Minerals Research Laboratories, North Ryde, New South Wales, Australia

Molar Kerr constant, dipole moment, and dielectric relaxation measurements of $(\rho-C_6H_4Cl)_3Bi$ in benzene solution indicate a C-Bi-C bond angle of 93° and an average rotation (in the same sense) of each C₆H₄Cl group about its C-Bi bond of 45° from a model in which the aromatic planes intersect along the symmetry axis. A similar configuration in solution is likely in the case of Ph₃Bi, for which a C-Bi-C bond angle of 94° has been reported in the solid state

PREVIOUSLY¹ we reported the dipole moment and molar Kerr constant of triphenylbismuthine in benzene (0 D † and 7.2×10^{-12} respectively) and interpreted the data in terms of a molecular model having the three C-Bi bonds coplanar and each C-Bi-C bond angle equal to 120°. This configuration about the Bi atom was based on a crystal-structure determination by Wetzel² and seemed consistent with the zero dipole moment measured. However more recently Hawley and Ferguson³ have shown from three-dimensional X-ray data that triphenylbismuthine is pyramidal in the solid state with a mean C-Bi-C bond angle of 94°. Hence in order to clarify the conformation in solution we have measured the dielectric loss of triphenylbismuthine in benzene, as well as the dipole moment, Kerr effect, and dielectric loss of tris-(p-chlorophenyl) bismuthine, also in benzene.

EXPERIMENTAL

Materials, Apparatus, etc.-Triphenylbismuthine was recrystallized from benzene. Commercial tris-(p-chlorophenyl)bismuthine was not further purified. Thiophenfree benzene, as solvent, was dried (Na) before use. Static electric dipole moments, electric birefringences, and incremental dielectric loss tangents were measured with apparatus and procedures previously described.4-8

RESULTS

Triphenylbismuthine.-Dielectric relaxation measurements for weight fractions up to 0.05 indicate that $10^{3}\Delta$ tan δ is 0.00 \pm 0.04 (at 3.109 GHz) and 0.00 \pm 0.06 (at 9.400 GHz). These results confirm that Ph₃Bi is nonpolar in benzene solution as reported earlier.¹ If a relaxation time of ca. 50×10^{-12} s is assumed, the maximum probable error in the dipole moment is 0.2 D. The Kerr constant of Ph₃Bi was originally determined with a visual apparatus, so photoelectric techniques were used to check the earlier measurements. B was again found to be indistinguishable from the solvent and the resulting value of δB_1 (0.0 + 0.1) leads to an experimental molar Kerr constant of $(7 \pm 8) \times 10^{-12}$.

Tris-(p-chlorophenyl)bismuthine.—The static dipole moment measurements indicate a polar structure for this

† 1 d = 3.336×10^{-30} C m.

¹ M. J. Aroney, R. J. W. Le Fèvre, and J. D. Saxby, J. Chem. Soc., 1963, 1739.

J. Wetzel, Z. Krist, 1942, 104, 305.

³ D. M. Hawley and G. Ferguson, J. Chem. Soc. (A), 1968, 2059.

⁴ M. J. Aroney, H. Chia, R. J. W. Le Fèvre, and D. V. Radford, *Austral. J. Chem.*, 1970, **23**, 199. ⁵ J. W. Hayes, W. H. Nelson, and D. V. Radford, *Austral. J.*

Chem., in the press.

solute in benzene and this is confirmed by the moment obtained from dielectric loss measurements (Table 1). The

TABLE 1

Incremental dielectric constants, densities, refractive indices, Kerr constants, and loss tangents for solutions of tris-(p-chlorophenyl)bismuthine in benzene at 25 °C

$10^5 w_2$	702	1149	1644	2021	2684
$10^4 \Delta \tilde{\epsilon}$	128	195	262	343	465
$10^{5}\Delta d$	319	515	758	951	1243
$10^4\Delta n$	5	8	15	20	26
$-10^{10}\Delta B$	121	156	206	212	251
$10^5 w_2$	702	1149	1497	1644	2021
10 ³ Δ tan δ (3·109 GHz)	1.319	1.851	2.574	2.638	$3 \cdot 276$
10³Δ tan δ (9·400 GHz)	0.703	1.250	1.407	1.563	1.798
$10^{5}w_{2}$	2072	2684	2770	3952	
10 ³ Δ tan δ (3·109 GHz)	3.531	4.552	4.722	6.806	
10³Δ tan δ (9·400 GHz)	1.719	$2 \cdot 032$	2.188	3.126	
whence $\Sigma \Delta \varepsilon / \Sigma w_2 = 1.70$;	$\Sigma \Delta a$	$l/\Sigma w_{*} =$	0.462;	$\Sigma \Delta n$	$\Sigma w_{o} =$
0.090; $\Sigma \Delta B / \Sigma w_2 = -0.115$	5; $\psi^{3\cdot 109}$	$= \Sigma \Delta$ 1	tan δ ³⁻¹⁰	$\frac{19}{\Sigma w_{0}} =$	= 0·169;
$\psi^{9\cdot400} = \Sigma\Delta \tan \delta^{9\cdot400}/\Sigma w_2 =$	= 0.085	αει	= 1.70	; β [°] =	0.529
$\gamma = 0.060; \ \delta = -0.280;$	$= e^{q_{\infty}}$	261.0 c	m^3 ; R_1	$_{\rm D} = 113$	·8 cm ³
$\mu(\text{static}) = 2.63 \text{ D} (\text{assumin})$	$g_D \tilde{P} =$	$1.05R_{D}$); $\infty(_{\rm m}H)$	$(x_{2}) = -$	$-27 \cdot 6 \times$
10 ⁻¹² ; $\mu(\text{loss}) = 2.0 \text{ D}; \tau =$	=72 $ imes$	10 ⁻¹² s.		-/	

difference between μ (static) and μ (loss) is equivalent to *ca*. 60 cm³ and could arise from experimental error and/or high atomic polarization. The apparent absence of such atomic polarization in Ph₃Bi may not be significant since the higher polarity of the C₆H₄Cl group than Ph could lead to a greater atomic contribution to the polarization if 'flapping' occurs about the Bi-C bond. There is also the possibility of significant solute-benzene interactions in these molecules and the true molecular moments may differ somewhat from the measured values. Consideration of probable errors leads to a molar Kerr constant of (27 ± 10) \times 10⁻¹² for (p-C₆H₄Cl)₃Bi in benzene.

DISCUSSION

The zero moment of Ph₃Bi may be due either to a planar C₃B1 nucleus or to each Ph-Bi group being effectively non-polar. The latter possibility is strongly favoured by the experimental moment of 2.6 D for $(p-C_{g}H_{d}Cl)_{3}Bi$. Further, nuclear quadrupole resonance spectra of ²⁰⁹Bi have shown ⁹ that there is little change in configuration about the bismuth atom in the series Ph₃Bi,

⁶ C. G. Le Fèvre and R. J. W. Le Fèvre, in ' Physical Methods of Organic Chemistry, ed. A. Weissberger, Interscience, New York, 3rd edn., 1960, vol. 1, ch. 26, p. 2459. ⁷ R. J. W. Le Fèvre, 'Dipole Moments,' Methuen, London,

3rd edn., 1953.

⁸ R. J. W. Le Fèvre and D. J. Millar, Chem. and Ind., 1971, 399.

⁹ L. N. Petrov, I. A. Kyuntsel, and V. S. Grechiskhin, Vestn. Leningrad. Univ. Fiz. Khim., 1969, (1), 167.

 $(p-C_6H_4Cl)_3Bi$, and $(p-C_6H_4Br)_3Bi$. In terms of electron pair moments the resultant of the three Bi–C bonding electron pairs is equal in magnitude but opposite in direction to that of the bismuth lone pair. Thus, if it is assumed that the C–Bi–C bond angle is the same in both molecules and that μ (Bi–C₆H₄–Cl) is 1.59 D (the experimental value for chlorobenzene ¹⁰), then the calculated value of the C–Bi–C angle from dipole moment data alone is 93°. This is in good agreement with the crystal structure of Ph₃Bi in which this angle lies between 92 and 96°, the mean being 94°.³

Using a C-Bi-C angle of 93° and previously reported polarisability data \dagger for chlorobenzene $(b_1 = 14.78, b_2 = 12.55, b_3 = 8.21)$,¹⁰ the C-H bond $(b_L = b_T = b_V = 0.65)$,¹¹ and the C-Bi bond $(b_L = 1.87, b_T = b_V = 2.99)$,¹ we can calculate ⁶ $_{\rm m}K_2$ for various average angles of rotation of the C₆H₄Cl groups in $(p\text{-C}_6\text{H}_4\text{Cl})_3\text{Bi}$. In each calculated structure the C₆H₄Cl groups are rotated (in the same sense to preserve C₃ symmetry) through angles ϕ from a model having $\phi = 0^\circ$, in which the C₆H₄Cl planes intersect along the symmetry axis. The calculated $_{\rm m}K_2$ values (Table 2) are sensitively dependent upon ϕ and agreement between observed and calculated $_{\rm m}K_2$ is achieved only for $\phi = 45 \pm 1^\circ$. In Table 2 polarisabilities of the C-Bi bond derived from the empirical rule of Le Fèvre ^{1,12} have been used, but if this bond is assumed to be isotropic ($b_L = b_T = b_V = 2.62$), the mean rotation

[†] The polarisability semi-axis of bonds or groups $b_{\rm L}$, $b_{\rm T}$, or $b_{\rm V}$ or of molecules b_1 , b_2 , or b_3 are quoted throughout in 10^{-24} cm³ units.

¹⁰ R. J. W. Le Fèvre and B. Purnachandra Rao, J. Chem. Soc., 1958, 1465. ϕ emerges as $44 \pm 1^{\circ}$. Thus for $(p-C_6H_4Cl)_3Bi$ in benzene solution we may conclude that on average the C_6H_4Cl rings are rotated through $45 \pm 2^{\circ}$.

Table 2 also shows values of ${}_{m}K_{2}$ calculated for Ph₃Bi in a similar way. Because this molecule is non-polar

		IABLE Z			
Calculated	molecular	polarisabilities	and	molar	Kerr
constar	nts for trip	henylbismuthine	and	tris-(p-c	hloro-
phenyl)bismuthine				

Ph ₃ Bi			$(p-C_6H_4Cl)_3Bi$			
¢°	<i>b</i> ₁	$b_2 = b_3$	$10^{12} M_2$	$\overline{b_1}$	$b_2 = b_3$	$10^{12} M_2$
0	39.66	33.71	17.7	45.68	39.32	506
15	39.12	$33 \cdot 98$	$13 \cdot 2$	45.06	39.63	429
30	37.64	34.72	3.7	43.39	40.47	227
45	35.62	35.73	0.0	41.11	41.61	- 38
60	33.60	36.74	$4 \cdot 9$	38.82	42.75	-292
75	$32 \cdot 12$	$37 \cdot 48$	14.4	37.15	43.59	-471
90	31.58	37.75	19.0	36.54	43.89	-534

 ${}_{m}K_{2}$ is much less sensitive to changes in ϕ and comparison with the experimental value only allows us to exclude structures in which ϕ is smaller than 9° or greater than 77°. In the solid state Ph₃Bi possesses no overall symmetry owing to unequal rotations of the phenyl rings about the C-Bi bonds.³ Such a distortion, attributable to crystal packing, seems unlikely in dilute solution where C_{3} symmetry is to be expected. On this basis and from use of $(p-C_{6}H_{4}Cl)_{3}Bi$ as a guide it appears probable that ϕ for Ph₃Bi would be close to 45°.

[2/2307 Received, 9th October, 1972]

 R. J. W. Le Fèvre, B. J. Orr, and G. L. D. Ritchie, J. Chem. Soc. (B), 1966, 273.
R. J. W. Le Fèvre, Proc. Chem. Soc., 1958, 283.