Crystal and Molecular Structure of Dicaesium μ-(Ethylenediaminetetra-acetato)-di- μ-sulphido-bis[oxomolybdate(v)] Dihydrate

By Bruce Spivack, Department of Chemistry, Temple University of the Commonwealth System of Higher Education, Philadelphia, Pennsylvania 19122
Zvi Dori," Department of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel

Abstract

The crystal and molecular structure of the title compound was determined by Patterson and Fourier methods from X-ray diffraction data collected by counter methods. Crystals are orthorhombic, space group Pnam, with $Z=4$ in a unit cell of dimensions: $a=12 \cdot 385(3), b=7 \cdot 108(3), c=24 \cdot 537(3) \AA$. Full-matrix least-squares refinement of 2196 reflections gave $R 0.059$. The hexadentate ethylenediaminetetra-acetate (edta) ligand co-ordinates to each molybdenum atom through two carboxylato-oxygens and a nitrogen while two bridging sulphur atoms and a terminal oxygen complete the co-ordination sphere around each molybdenum. The short Mo-Mo bond [$2 \cdot 799(1) A$] suggests that the co-ordination geometry around each metal atom may be described as a distorted capped octahedron sharing a common edge determined by the two sulphur atoms. The molecule possesses a mirror plane, passing through the two sulphur atoms, which necessitates disorder in the ethylenic carbon atoms of the bridging edta ligand.

The sulphur atom is an important ligand in certain biological systems, e.g. in some molybdenum-containing enzymes the molybdenum atom is believed to be bound, at least in part, to the sulphur atom of a cysteine residue. ${ }^{1}$ The role of sulphido-ions is exemplified in the non-heme iron proteins, the ferredoxins, where it is known that sulphido-bridges play a vital role in their function. ${ }^{2}$ Thus, complexes of biologically important transitionmetals containing sulphido-bridges or thiol ligands are of considerable interest as possible model compounds for such enzymes, particularly for water-soluble complexes containing simple σ-donor ligands such as α-amino-acids.

Recently, several sulphido-bridged complexes of Mo^{V} have been isolated ${ }^{3,4}$ and the crystal structure analysis for two of these have been reported. ${ }^{5,6}$

As part of our study of the chemical and structural aspects of sulphido-bridged complexes of molybdenum, we now report the structure of the title compound, $\mathrm{Cs}_{2}\left[\mathrm{Mo}_{2} \mathrm{~S}_{2} \mathrm{O}_{2}(\mathrm{edta})\right], 2 \mathrm{H}_{2} \mathrm{O}$.

EXPERIMENTAL

The complex was prepared by slowly bubbling $\mathrm{H}_{2} \mathrm{~S}$ through an aqueous solution of $\mathrm{Cs}_{4}\left[\left(\mathrm{MoO}_{3}\right)_{2}\right.$ (edta)], which was prepared in an analogous manner to the sodium salt. ${ }^{7}$ Filtration and evaporation of the resulting red solution on a hot-plate yielded a red-orange crystalline material \{Found: C, $13.5 ; \mathrm{H}, 1.85 ; \mathrm{N}, 3.2$; S, 7.2. $\mathrm{Cs}_{2}\left[\mathrm{Mo}_{2} \mathrm{~S}_{2} \mathrm{O}_{2}{ }^{-}\right.$ (edta)], $2 \mathrm{H}_{2} \mathrm{O}$ requires $\left.\mathrm{C}, 13 \cdot 65 ; \mathrm{H}, 1 \cdot 8 ; \mathrm{N}, 3 \cdot 2 ; \mathrm{S}, 7 \cdot 3 \%\right\}$. Red-orange prismatic crystals suitable for X-ray structural analysis were obtained by slow evaporation of a water solution of the complex.

Crystal Data.- $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{Cs}_{2} \mathrm{Mo}_{2} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{~S}_{2}, \quad M=879 \cdot 22$, Orthorhombic, $a=12 \cdot 385(3), b=7 \cdot 108(3), c=24 \cdot 537(3) \AA$, $U=2166.7 \AA^{3}, D_{m}=2.70$ (by flotation), $Z=4, D_{\mathrm{c}}=$ 2.70 , Mo- K_{α} (graphite monochrometer) radiation, $\lambda=$ $0.7107 \AA ; \mu\left(\right.$ Mo- $\left.K_{\alpha}\right)=47.3 \mathrm{~cm}^{-1}$. Space group Pnam ($D_{4 h}^{17}$, No. 53) or $P n a 2_{1}\left(C_{2 v}^{9}\right.$, No. 33) from systematic absences: $0 k l$ for $k+l$ odd and $h 0 l$ for h odd; shown to be the former.
${ }^{1}$ R. C. Bray and J. C. Swann, Structure and Bonding, 1972, 11, 107.
${ }_{2}$ J. C. Tsibris and R. W. Woody, Co-ordination Chem. Rev., 1970, 5, 417; L. C. Sieker, E. Adman, and L. H. Jensen, Nature, 1972, 235, 40.
${ }^{3}$ B. Spivack and Z. Dori, Chem. Comm., 1970, 1716.
${ }^{4}$ A. Kay and P. C. H. Mitchell, J. Chem. Soc. (A), 1970, 2421.

A crystal of dimensions $0.1 \times 0.1 \times 0.3 \mathrm{~mm}$ was selected and mounted perpendicular to the prismatic axis. Preliminary unit-cell and space-group data were obtained from precession and Weissenberg photographs. Unit-cell dimensions were obtained from back-reflection Weissenberg and inclined beam oscillation photographs with $\mathrm{Cu}-K_{\alpha}$ radiation $(\lambda=1.5418 \AA) .{ }^{8}$

By use of equi-inclination Weissenberg geometry, intensity data were collected for the levels $0-10 k l$ on a Stoe semi-automatic diffractometer by the stationary-background- $\omega / 2 \theta$ scan-stationary-background counting sequence. Data were collected to $\sin \theta \quad 0.82$. Crystal alignment was checked before and after data collection for each level, and crystal stability was monitored by measurement of 2 standard reflections for each level after every 20 reflections. No significant variations from the mean (i.e. $<2.5 \%$) were observed in the intensities of the standards throughout the data collection.

The intensity of the $h k l$ reflection was calculated as: $I(h k l)=\left(C-\frac{B \times T}{T_{1}}\right)$ where C is the total count, B is the total background count, T is the scan time, and T_{1} is the sum of the background times. Data were assigned standard deviations according to $\sigma(I)=\left[C-B\left(T / T_{1}\right)^{2}+\right.$ $\left.B^{2}\left(T / T_{1}\right)^{2}\right]^{\frac{1}{2}}$. Intensities were corrected for absorption (transmission factors ranged from 0.283 to 0.639), Lorentz and polarization effects. The F_{0} values were brought to an approximate scale through a modification of Wilson's procedure.

A statistical analysis of normalized $|E|$ values ${ }^{9}$ suggested that the correct space group is the centrosymmetric one, Pnam (Table 1), and this was confirmed by the subsequent successful refinement.

In addition to the Setting and Data processing programs supplied by Stoe Co., the main programs used in this work were local modifications of the Busing-Levy ORFLS least-squares program, the Zalkin FORDAP Fourier program, and Johnson's ORTEP plotting program. Various other local programs were also used. All computing was performed on the Technion's IBM 370/165 computer.

[^0]Solution and Refinement of Structure.-The positions of the caesium and molybdenum atoms were determined from a three-dimensional Patterson function. After three cycles

Table 1
Statistical distribution of $|E|$ values and comparison with theoretical values for determining space group

			Non-
	Obs.	Centrosymmetric	centrosymmetric
Mean $\|E\|_{2}$	0.7878	0.798	0.886
Mean $\|E\|^{2}$	$\mathbf{1 . 0 0 0 0}$	$\mathbf{1 . 0 0 0}$	$\mathbf{1 . 0 0 0}$
Mean $\left\|E^{2}-1\right\|$	$\mathbf{0 . 9 8 7 3}$	$\mathbf{0 . 9 6 8}$	$\mathbf{0 . 7 3 6}$
$\|E\|>\mathbf{3}$	0.44%	0.27%	0.01%
$\|E\|>2$	$\mathbf{4 . 5 3 \%}$	$\mathbf{4 . 5 5} \%$	$\mathbf{1 . 8 3} \%$
$\|E\|>1$	$\mathbf{3 0 . 1 6 \%}$	$\mathbf{3 1 . 7 3 \%}$	$\mathbf{3 6 . 7 9 \%}$

of refinement (vide infra) of the positional parameters of the two atoms and their isotopic temperature factors, the R was 0.27 and $R^{\prime} 0.33\left\{R^{\prime}=\left[\Sigma \omega\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma \omega F_{0}{ }^{2}\right]^{\frac{1}{2}}\right\}$. A difference-Fourier map based on the phases of the heavy
0.5 , including scale factors, positional and isotropic thermal parameters converged to $R 0.089$ and $R^{\prime} 0 \cdot 102$. An additional three cycles of anisotropic refinement converged to the final discrepancy indices of $R 0.059$ and $R^{\prime} 0.070$. Refinement of the structure in the noncentrosymmetric space group Pna2 2_{1} led to higher discrepancy factors, and the bond angles and the bond distances showed unrealistic deviations from accepted values.

The parameters obtained from this refinement are considered as the final parameters of this structure determination. The largest parameter shifts were $<0 \cdot 1 \sigma$. The estimated standard deviation of an observation of unit weight is 0.82 electrons and the final difference Fourier map shows peak heights $c a .10 \%$ of those found for a carbon atom in this structure. The parameters obtained from the final refinement are presented in Table 2 along with their estimated standard deviations. Final observed and calculated structure factors are listed in Supplementary Publication No. SUP 20667 (3 pp., 1 microfiche).*

Table 2

Atom	X	Y	Z	$\beta_{11}{ }^{\text {b }}$	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Cs	1615(1)	1307(1)	313(0)	45(1)	146(1)	$11(0)$	- 11 (1)	$-2(0)$	-3(0)
Mo	2065(1)	3246(1)	1930(0)	14(1)	$65(1)$	$11(0)$	-6(1)	-2(0)	-6(0)
S(1)	3411 (3)	2248(4)	2500	21(3)	68(4)	14(1)	10(2)	0	0
S (2)	1023(3)	5056(4)	2500	6(3)	90(5)	13(1)	7(2)	0	0
$\mathrm{O}(1)$	1394(7)	4748(9)	1265(3)	$72(8)$	118(12)	13(1)	0 (7)	11(2)	$2(3)$
$\mathrm{O}(2)$	3112 (6)	2649(12)	1277(3)	41 (6)	260(2)	10(1)	2 (8)	$3(2)$	-24(4)
$\mathrm{O}(3)$	1404(9)	7074(14)	671(4)	76(10)	295(24)	27(2)	-12(1)	$-10(3)$	48(6)
$\mathrm{O}(4)$	4213(9)	3598(17)	$638(3)$	61 (9)	535(37)	14(1)	95 (13)	17(3)	19(6)
$\mathrm{O}(5)$	1341(7)	1295(9)	1805(3)	42(7)	103(11)	$21(2)$	-20(6)	$-6(2)$	-13(3)
$\mathrm{H}_{2} \mathrm{O}$	4238 (8)	-662(13)	489(4)	481(8)	$255(20)$	$22(2)$	-29(10)	$59(3)$	$21(5)$
N^{2}	3164 (8)	6064(11)	1793(3)	51 (8)	139(14)	8(1)	-44(8)	$3(2)$	-4(3)
C(1)	2497(10)	7357(13)	1482(5)	$35(10)$	86(14)	27(2)	$-1(9)$	$11(4)$	6 (5)
$\mathrm{C}(2)$	1704(9)	6332(13)	1108(5)	15(9)	143(8)	$20(2)$	$14(8)$	$0(30)$	$14(5)$
C(3)	4060(11)	5464(16)	1456(44)	55(12)	212(23)	15(2)	-27(12)	$8(3)$	19(5)
C(4)	3813(11)	3815(18)	1094(4)	41(11)	286(29)	11 (2)	58(1)	2 (3)	6 (5)
C(5)	3897(14)	6764(23)	2259 (6)	-31(14)	125(29)	128(2)	-2(14)	$-1(4)$	$5(6)$
$\mathrm{C}(\mathrm{5})$ *	3275(15)	7521 (20)	2241 (6)	26(15)	$52(22)$	$8(2)$	-6(14)	$-0(4)$	-4(6)

${ }^{a}$ Estimated standard deviations in the least significant figure in this and following Tables are given in parentheses. b The form of the anisotropic thermal ellipsoid is: $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+2 \beta_{12} h k+2 \beta_{13} k l+2 \beta_{23} k l\right)\right]$. carbon atom of the second conformer.
atoms revealed the positional parameters of all other atoms except for the water molecule and the ethylenic carbon atoms, which must be disordered if our choice of the centric space group is correct. The sulphur atoms were found to lie on the mirror plane at $Z=1 / 4$ and each was assigned an occupancy factor of 0.5 in the least-squares refinement.

The trial structure was refined by a least-squares procedure, the function minimized being $\Sigma \omega\left(\left|F_{0}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$; the weights were arbitarily assigned as $\omega=1 / 7$ for $\left|F_{\mathrm{o}}\right|<49$ and $\omega=\left(1 / F_{\mathrm{o}}\right)^{\frac{1}{2}}$ for $\left|F_{\mathrm{o}}\right|>49$. Refinement of the structure was based only on those reflections for which $F_{0}{ }^{2}>3 \sigma\left(F_{0}\right)^{2}$. In these calculations, neutral atomic scattering factors were taken from ref. 10. The anomalous dispersion effects were included in the calculation with the values of Δf^{\prime} and $\Delta f^{\prime \prime}$ for Cs, Mo, and S taken from ref. 11. This refinement of positional and isotropic thermal parameters converged to discrepancy factors $R 0 \cdot 132$ and $R^{\prime} 0 \cdot 157$. A differenceFourier map based upon this refinement clearly revealed two orientations for the ethylenic group and the position of the water molecule. Three cycles of full-matrix leastsquares refinement of the complete structure, in which the ethylenic carbon atoms were assigned occupancy factors of

* For details see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20.

DISCUSSION

Description of the Structure.-A drawing of the $\left[\mathrm{Mo}_{2} \mathrm{~S}_{2} \mathrm{O}_{2} \text { (edta) }\right]^{2-}$ anion showing the atom numbering is presented in Figure 1, and the important bond lengths and bond angles are listed in Table 3. The sexadentate edta ligand co-ordinates to each molybdenum atom through two carboxylato-oxygens and one nitrogen (Figure 1). Two sulphur atoms and a terminal oxygen atom complete the co-ordination sphere around each molybdenum. By taking the Mo^{-}Mo bond into consideration, the co-ordination geometry around each metal atom can be described as a distorted capped octahedron (vide infra), in which the two octahedra share a common edge determined by the two sulphur atoms.

The six atoms $\mathrm{O}(1), \mathrm{O}(2), \mathrm{S}(1), \mathrm{S}(2), \mathrm{O}\left(1^{\prime}\right)$, and $\mathrm{O}\left(2^{\prime}\right)$ (primed atoms are related by a mirror plane) define a plane (Table 4) from which the molybdenum atoms are displaced by $0.37 \AA$ towards the molybdenyl oxygens.

[^1]Similar behaviour occurs in the complexes $\left[\mathrm{Mo}_{2} \mathrm{~S}_{2} \mathrm{O}_{2}\right.$ (histidine) $)_{2}$ and $\left[\mathrm{Mo}_{2} \mathrm{O}_{4} \text { (cysteine) }{ }_{2}\right]^{2-}$, where the molybdenum displacement was found to be 0.32 and $0.38 \AA$ respectively. ${ }^{5,12}$ It is reasonable to suggest that this tetragonal distortion is due to the multiple bonding

Figure 1 The anion $\left[\mathrm{Mo}_{2} \mathrm{~S}_{2} \mathrm{O}_{2} \text { (edta) }\right]^{2-}$
between the molybdenum and the molybdenyl oxygen atom, resulting in a short Mo-O distance of $1 \cdot 682(1) \AA$. This short bond length is by no means unusual; in fact, in all complexes of Mo^{∇} and $\mathrm{Mo}^{\text {VI }}$ containing molybdenyl oxygens, the $\mathrm{Mo}-\mathrm{O}$ bond length was found to lie between 1.67 and $1.74 \AA$. The out-of-plane displacement of the molybdenum and the large trans-effect imposed by the oxygen atom are undoubtedly responsible for the long

Table 3
Significant intramolecular distances (\AA) and angles (${ }^{\circ}$) (a) Distances

$\mathrm{Mo}-\mathrm{Mo}^{\prime}$	2.799(1)	$\mathrm{C}(2)-\mathrm{C}(1)$	1.53(2)
$\mathrm{Mo}-\mathrm{S}(1)$	2.289(1)	$\mathrm{C}(1)-\mathrm{N}$	1-45(1)
$\mathrm{Mo}-\mathrm{S}(2)$	2.298(1)	$\mathrm{O}(2)-\mathrm{C}(4)$	1-29(2)
$\mathrm{S}(1)-\mathrm{S}(2)$	3.568(4)	$\mathrm{O}(4)-\mathrm{C}(4)$	1.23(1)
$\mathrm{Mo}-\mathrm{O}(5)$	1-683(6)	$\mathrm{C}(4)-\mathrm{C}(3)$	1.50 (2)
$\mathrm{Mo}-\mathrm{O}(1)$	$2 \cdot 120(6)$	$\mathrm{C}(3)-\mathrm{N}$	$1 \cdot 45$ (1)
$\mathrm{Mo}-\mathrm{O}(2)$	2-102(7)	$\mathrm{N}-\mathrm{C}(5)$	1.53(2)
$\mathrm{Mo}-\mathrm{N}$	2.448(8)	$\mathrm{N}-\mathrm{C}(5) *$	1.52(2)
$\mathrm{O}(1)-\mathrm{C}(2)$	1.25(2)	$\mathrm{C}(5)-\mathrm{C}(5)^{* \prime}$	1.54
$\mathrm{O}(3)-\mathrm{C}(2)$	$1 \cdot 25(2)$		
(b) Angles			
$\mathrm{S}(1)-\mathrm{Mo}-\mathrm{S}(2)$	102.1(1)	$\mathrm{O}(1)-\mathrm{Mo}-\mathrm{O}(2)$	75.9(5)
$\mathrm{Mo}-\mathrm{S}(1)-\mathrm{Mo}^{\prime}$	75.4(1)	$\mathrm{O}(2)-\mathrm{Mo}-\mathrm{N}$	73.6(4)
$\mathrm{Mo}-\mathrm{S}(2)-\mathrm{Mo}^{\prime}$	75.0(1)	$\mathrm{O}(2)-\mathrm{Mo}-\mathrm{O}(5)$	91-5(5)
(1)-Mo-N	86.1(2)	$\mathrm{O}(5)-\mathrm{Mo}-\mathrm{N}$	161.6(6)
$\mathrm{S}(1)-\mathrm{Mo}-\mathrm{O}(5)$	104.3(2)	$\mathrm{Mo}-\mathrm{O}(1)-\mathrm{C}(2)$	$124.7(8)$
C(1) $-\mathrm{N}-\mathrm{C}(5)^{*}$	89.8(8)	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{O}(3)$	123.6(1.0)
$\mathrm{C}(3)-\mathrm{N}-\mathrm{C}(5)$	94.6(9)	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	116.2(1.0)
$\mathrm{C}(3)-\mathrm{N}-\mathrm{C}(5) *$	123.4(9)	$\mathrm{O}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	120.2(1.0)
$\mathrm{N}-\mathrm{C}(5)-\mathrm{C}(5)^{* \prime}$	$115 \cdot 1(1 \cdot 1)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}$	$112.4(8)$
$\mathrm{N}-\mathrm{C}(5)^{*}-\mathrm{C}\left(5^{\prime}\right)$	112.4(1.0)	$\mathrm{C}(1)-\mathrm{N}-\mathrm{Mo}$	$105 \cdot 7(6)$
$\mathrm{S}(1)-\mathrm{Mo}-\mathrm{O}(1)$	139.6(2)	$\mathrm{Mo}-\mathrm{O}(2)-\mathrm{C}(4)$	123.7(7)
(1)-Mo-O(2)	87-4(2)	$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{O}(4)$	120.4(1.2)
(2) $-\mathrm{Mo}-\mathrm{N}$	86.4(2)	$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	$115 \cdot 6(9)$
$\mathrm{S}(2)-\mathrm{Mo}-\mathrm{O}(5)$	105.7(2)	$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(3)$	124.0 (9)
$\mathrm{S}(2)-\mathrm{Mo}-\mathrm{O}(1)$	82.0 (2)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{N}$	$114 \cdot 6(1 \cdot 0)$
$\mathrm{S}(2)-\mathrm{Mo}-\mathrm{O}(2)$	$157.3(2)$	$\mathrm{C}(3)-\mathrm{N}-\mathrm{Mo}$	$105 \cdot 2(6)$
$\mathrm{O}(1)-\mathrm{Mo}-\mathrm{N}$	72.6(4)	$\mathrm{C}(3)-\mathrm{N}-\mathrm{C}(1)$	108.9(8)
$\mathrm{O}(1)-\mathrm{Mo}-\mathrm{O}(5)$	93.7(4)	$\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(5)$	121.2(8)

$\mathrm{Mo}-\mathrm{N}$ distance of $2 \cdot 448(1) \AA$. This lengthening of the bond trans to a molybdenyl oxygen has been observed previously. ${ }^{12,13}$ The $\mathrm{Mo}-\mathrm{O}(1)$ and $\mathrm{Mo}-\mathrm{O}(2)$ distances of $2 \cdot 120(6)$ and $2 \cdot 102(7) \AA$ are within the expected values

[^2]for σ bonded oxygens to $\mathrm{Mo}^{\nabla, 14}$ and the difference between the two bond lengths is not chemically significant.

Table 4
Equations of least-squares planes ${ }^{a}$ for several bridged molybdenum structures, with distances (\AA) of atoms from the planes in square brackets
(a) $\mathrm{Cs}_{2}\left[\mathrm{Mo}_{2} \mathrm{~S}_{2} \mathrm{O}_{2}\right.$ (edta) $], 2 \mathrm{H}_{2} \mathrm{O}$

Plane (1):
$\mathrm{S}(1), \mathrm{S}(2), \mathrm{O}(1), \quad 0.5607 X+0.8282 Y+0.0 Z-3.7149=0$
$\mathrm{O}\left(1^{\prime}\right), \mathrm{O}(2)$,
$\mathrm{O}\left(2^{\prime}\right)$

$$
\begin{aligned}
& {\left[\mathrm{S}(1)-0.02, \mathrm{~S}(2)-0.03, \mathrm{O}(1) 0.05, \mathrm{O}\left(1^{\prime}\right) 0.05, \mathrm{O}(2) 0.01,\right.} \\
& \left.\mathrm{O}\left(2^{\prime}\right) 0.01, \mathrm{Mo}-0.37, \mathrm{Mo}^{\prime}-0.37\right]
\end{aligned}
$$

Plane (2):
Мо, $\mathrm{O}(2), \mathrm{C}(4), \quad 0.6525 X-0.3870 Y+0.6514 Z-3.8613=0$ C(3), N
[Mo $0.0, \mathrm{O}(2)-0.04, \mathrm{C}(4)-0.08, \mathrm{C}(3) 0.24, \mathrm{~N}-0.10]$
Plane (3):
Mo, $\mathrm{O}(1), \mathrm{C}(2),-0.6144 X+0.4522 Y+0.6455 Z-2.5327=0$ C(1), N
[Mo $0.0, \mathrm{O}(1)-0.06, \mathrm{C}(1) 0.28, \mathrm{C}(4)-0.04, \mathrm{~N}-0.15]$
Plane (4):
Mo, $\mathrm{Mo}^{\prime}, \mathrm{O}(5), \quad 0.8282 X-0.5604 Y+0.0 Z-0.8303=0$ $\mathrm{O}\left(5^{\prime}\right), \mathrm{N}, \mathrm{N}^{\prime}$ $\left[\mathrm{Mo}-0.01, \mathrm{Mo}^{\prime}-0.01, \mathrm{O}(5) 0.03, \mathrm{O}\left(5^{\prime}\right) 0.03, \mathrm{~N}-0.0\right.$, $\mathrm{N}^{\prime} 0.0$]
(b) $\mathrm{Mo}_{2} \mathrm{~S}_{2} \mathrm{O}_{2}$ (histidine) ${ }_{2}{ }^{\boldsymbol{b}}$

Plane:
$\mathrm{S}(1), \mathrm{S}(2), \mathrm{N}(1), \quad 0.5207 X+0.5078 Y+0.6863 Z-1.4734=0$ $\mathrm{N}(2), \mathrm{N}\left(1^{\prime}\right)$,
$\mathrm{N}\left(\mathbf{2}^{\prime}\right)$
$[\mathrm{S}(1) 0.04, \mathrm{~S}(2) 0.03, \mathrm{~N}(1)-0.12, \mathrm{~N}(2) 0.04, \mathrm{~N}(1)-0.09$, $\left.\mathrm{N}\left(2^{\prime}\right) 0.01, \mathrm{Mo}(1) 0.32, \mathrm{Mo}(2) 0.24\right]$
(c) $\mathrm{Na}_{2}\left[\mathrm{Mo}_{2} \mathrm{O}_{4}\right.$ (cysteine) ${ }_{2}{ }^{c}$

Plane :
$\mathrm{S}(1), \mathrm{S}(2), \quad-0.0496 X-0.9982 Y+0.0327 Z+13.3159=0$
$\mathrm{N}(1), \mathrm{N}(2)$,
$\mathrm{O}(1), \mathrm{O}(2)$

$$
\begin{aligned}
& {[\mathrm{S}(1) 0.03, \mathrm{~S}(2) 0.03, \mathrm{~N}(1) 0.03, \mathrm{~N}(2) 0.04, \mathrm{O}(1)-0.07, \mathrm{O}(2)} \\
& -0.10, \mathrm{Mo}(1)-0.42, \mathrm{Mo}(2)-0.41]
\end{aligned}
$$

${ }^{a}$ Given in directional cosines. ${ }^{b}$ Unpublished results.

- Parameters taken from ref. 12.

The two crystallographic independent glycinato-rings [ring (I): Mo, O(2), C(4), C(3), N; ring (II): $\mathrm{Mo}, \mathrm{O}(1)$, $\mathrm{C}(2), \mathrm{C}(1), \mathrm{N}]$ are not planar (Table 4), and the sums of their internal angles are 532.7 and 531.6°, which, according to the criteria established by Hoard, ${ }^{15}$ indicates that some strain exists in the two rings. Chemically equivalent bond distances and bond angles in the crystallographically independent glycinato-rings are nearly the same and similar to those found in other complexes containing the edta ligand (Table 3).

The presence of the crystallographic mirror plane in the molecule requires the ethylenic carbon atoms to be disordered. The appearance of two distinct peaks on the difference-Fourier map and the reasonable temperature factors obtained for these carbon atoms, when ${ }^{14}$ F. A. Cotton and S. M. Morehouse, Inorg. Chem., 1965, 4, 1377.
${ }^{15}$ J. J. Park, M. D. Glick, and J. L. Hoard, J. Amer. Chem. Soc., 1969, 91, 301, and references therein.
assigned a multiplicity of 0.5 ，suggests that the disorder is two－fold，resulting in equal amounts of two conformers which are related to one another by flipping of the two carbon atoms．This flipping，which involves rotation about the $\mathrm{C}-\mathrm{N}$ and the $\mathrm{Mo}-\mathrm{N}$ bonds，necessitates move－ ment of the glycinato－rings．However，the crystal structure analysis clearly indicates that the molecule is rigid and without any disorder except for the ethylenic carbon atoms．This rigid configuration imposes con－ siderable amount of strain on the ethylenic bridge which manifests itself in the angles subtended by the two nitrogen atoms．Thus，for one of the conformations， the angles $\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(5)$ and $\mathrm{C}(3)-\mathrm{N}-\mathrm{C}(5)$ are $121 \cdot 2(8)$ and $94 \cdot 6(9)^{\circ}$ respectively，while for the other conformer，the respective angles at $89 \cdot 8(8)$ and $123 \cdot 4(9)^{\circ}$ ．

The rigidity of the complex appears to be maintained in solution as is evident from its complicated n．m．r．
as depicted in Figure 2 （the atoms O, S ，and O^{\prime} are projected on this plane）．The $O(5) \cdots O\left(5^{\prime}\right)$ non－ bonded distance $[3 \cdot 411(7) \AA]$ is considerably larger than the sum of the van der Waal＇s radii ${ }^{17}(2.80 \AA)$ for two oxygen atoms．This coupled with the Mo－Mo distance of $2.799(1) \AA$ results in an obtuse $\mathrm{Mo}-\mathrm{Mo}-\mathrm{O}$ bond angle of 100.5° which can be thought to arise from non－bonded repulsions between the Mo^{-}Mo and the $\mathrm{Mo}-\mathrm{O}$ bonds as predicted by the Nyholm－Gillespie model．${ }^{18}$ Similarly， the obtuse $\mathrm{Mo}-\mathrm{Mo}-\mathrm{N}$ bond angle of 97.9° ，leads to an $\mathrm{N}-\mathrm{N}$ distance of $3 \cdot 47(3) \AA$ ，which is intermediate between values for those complexes having the edta ligand bound to one metal atom（i．e． $\mathrm{N}-\mathrm{N} c a .2 .88 \AA$ ）and the maximum distance of $3.87 \AA$ found in $\left[\left(\mathrm{MoO}_{3}\right)_{2}(\mathrm{edta})\right]^{4-} .{ }^{15}$ In the related complexes $\left[\mathrm{Mo}_{2} \mathrm{~S}_{2} \mathrm{O}_{2}(\text { histidine })_{2}\right]$ and $\left[\mathrm{MoO}_{4}{ }^{-}\right.$ （cysteine） $\left.2_{2}\right]^{2-}$ ，the $\mathrm{Mo}^{-}-\mathrm{Mo}^{-} \mathrm{Y}$ angles（where Y is trans to the molybdenyl oxygen）are also larger than 90°（Table 5）．

Table 5
Structural parameters of several oxo－and sulphido－bridged complexes of molybdenum

	dral	parameter		硅	边	－	－	兂	相	
	Mo－Mo	Mo－S	$\mathrm{Mo}-\mathrm{O}^{\text {a }}$	Mo－N	Mo－X－Mo	$\mathrm{X}-\mathrm{Mo}-\mathrm{X}$	Dih．Ang．	Mo－Mo－O	$\mathrm{Mo}-\mathrm{Mo}-\mathrm{Y}$＊	displace－ ment
$\begin{aligned} & \mathrm{Cs}_{2}\left[\mathrm{Mo}_{2} \mathrm{~S}_{2} \mathrm{O}_{2}(\text { edta })\right],- \\ & 2 \mathrm{H}_{2} \mathrm{O} \end{aligned}$	$2 \cdot 779$	$2 \cdot 289$	$1.682(t)$	$2 \cdot 448$	$X=S$	$\mathrm{X}=\mathrm{S}$	152－3	100．5	$\underset{97 \cdot 9}{=} \mathrm{N}$	0.37
			$2 \cdot 120(\mathrm{c})$		$75 \cdot 0$	$102 \cdot 1$				
			$2 \cdot 102(\mathrm{c})$							
$\mathrm{Mo}_{2} \mathrm{~S}_{2} \mathrm{O}_{2^{-}}$	$2 \cdot 82$	$2 \cdot 32$	$1.72(\mathrm{t})$	$2 \cdot 24$	$\mathrm{X}=\mathrm{S}$	$\mathbf{X}=\mathrm{S}$	$153 \cdot 0$	$99 \cdot 9$	$\mathrm{Y}=\mathrm{O}$	$0 \cdot 32$
$\text { (histidine) }_{2}{ }^{b}$			$2 \cdot 23$（c）		$\quad 74 \cdot 8$	103.5			$98 \cdot 0$	
$\mathrm{Mo}_{2} \mathrm{~S}_{2} \mathrm{O}_{2}{ }^{-}$	$2 \cdot 804$	$2 \cdot 31$（b）	$1 \cdot 65$	$2 \cdot 23$	$X=S$	$\mathrm{X}=\mathrm{S}$				
$\left(\right.$ cyst－Me－ester）${ }_{2}{ }^{\text {c }}$		2．37（c）			$75 \cdot 0$	$102 \cdot 2$				
$\mathrm{Mo}_{2} \mathrm{O}_{4}$（cyst－Et－	$2 \cdot 562$	2．38（c）	$1.67(\mathrm{t})$	$2 \cdot 23$	$X=\mathrm{O}$	$\mathbf{X}=\mathrm{O}$				
ester）${ }_{2}{ }^{\text {d }}$			1.93 （b）		$83 \cdot 0$	$93 \cdot 0$				
$\mathrm{Na}_{2}\left[\mathrm{MO}_{2} \mathrm{O}_{4}-\right.$	$2 \cdot 569$	2.490 （c）		$2 \cdot 33$		$\mathrm{X}=\mathrm{O}$	$151 \cdot 0$	$99 \cdot 7$		$0 \cdot 38$
$\left.(\text { cysteine })_{2}\right]^{6}$			$\mathrm{l} \cdot 93(\mathrm{~b})$		$83 \cdot 0$	$93 \cdot 0$			$96 \cdot 2$	
			2．30（c）							
$\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}_{2} \mathrm{O}_{2}\right] \mathrm{S}_{2}$	$2 \cdot 894$	2.32	$1.68(\mathrm{t})$		$\mathrm{X}=\mathrm{S}$	$X=S$				
					$77 \cdot 3$	103．0				
$\mathrm{MoS}_{2}{ }^{\text {g }}$		$2 \cdot 35$								

${ }^{a} \mathrm{~b}, \mathrm{c}$ and t Refer to bridging，complexed，and terminal atoms respectively．${ }^{b}$ Ref．5．© A five－co－ordinate sulphido－bridged complex of Mo^{\vee} ；M．G．B．Drew and A．Kay，J．Chem．Soc．（A），1971，1851．a A five－co－ordinate oxo－bridged complex of Mov； footnote（c），p．1846．\quad Ref．12．${ }^{f}$ This structure has trans－molybdenyl oxygen atoms；D．L．Stevenson and L．F．Dahl，J．Amer． Chem．Soc．，1967，89，3720．R．G．Dickinson and L．Pauling，J．Amer．Chem．Soc．，1923，45， 1466.
＊Y is the atom trans to the molybdenyl oxygen．
spectra which suggests that the two conformers are not interconverted at room temperature．${ }^{3}$ In contrast，the analogous oxo－bridged complex $\left[\mathrm{MO}_{2} \mathrm{O}_{4}(\mathrm{edta})\right]^{2-}$ ，whose solid－state structure has been shown to be similar to that of $\left[\mathrm{MO}_{2} \mathrm{~S}_{2} \mathrm{O}_{2}(\mathrm{edta})\right]^{2-}$ ，exhibits an n．m．r．spectra consisting of an AB quartet and a singlet at a higher field，${ }^{16}$ suggesting that rapid interconversion of the two conformers occurs in solution．The different behaviour exhibited by these two complexes is undoubtedly related to the larger dimensions of the $\mathrm{Mo}_{2} \mathrm{~S}_{2}$ bridge and particu－ larly the longer Mo^{-}Mo distance．

The dimensions of the $\mathrm{Mo}_{2} \mathrm{~S}_{2}$ bridge are similar to those found in other sulphur bridged molybdenum com－ plexes（Table 5）．The six atoms Mo， Mo^{\prime} ， $\mathrm{O}(5)$ ， $\mathrm{O}\left(5^{\prime}\right), \mathrm{N}$ ，and N^{\prime} lie on a plane which is perpendicular to the $\mathrm{S}(1) \cdots \mathrm{S}(2)$ vector and having an arrangement

[^3]The strong Mo－Mo bond，which results in the diamag－ netism of the complex，coupled with the displacement of the molybdenum atom towards the molybdenyl

Figure 2
oxygen（vide supra）is undoubtedly responsible for the dihedral angle of $152 \cdot 3(2) \AA$ ，between the planes Mo， $\mathrm{S}(1), \mathrm{S}(2)$ and $\mathrm{Mo}^{\prime}, \mathrm{S}(\mathbf{1}), \mathrm{S}(2)$ ．Thus it is reasonable to

[^4]consider each molybdenum atom as being seven-coordinate with a distorted capped octahedral geometry.

Unit cell.-A stereoscopic drawing of the unit cell is
crystal is confined to only two weak interactions between the water molecule and the uncomplexed carboxylatooxygens $O(3)$ and $O(4)$ of different molecules. The bond

Figure 3 Stereoscopic drawing of the unit cell
presented in Figure 3. Each caesium atom is surrounded by six oxygen atoms in a distorted octahedral geometry at distances ranging from 3.07 to $3 \cdot 36 \AA$. The mean $\mathrm{Cs}-\mathrm{O}$ distance of $3 \cdot 17 \AA$ is $0 \cdot 10 \AA$ larger than that predicated by Pauling. ${ }^{19}$ Hydrogen bonding in the
${ }^{19}$ Ref. 7, p. 257.
distances found are 2.91 and $3.05 \AA$ with a bond angle of $109 \cdot 5^{\circ}$ between $\mathrm{O}(3) \cdots \mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right) \cdots \mathrm{O}(4)$.

We thank M. Kaftory and M. Kapon for helpful discussions, and the Technion Computer Center for Assistance.

[^0]: ${ }_{5}$ B. Spivack, A. P. Gaughan, and Z. Dori, J. Amer. Chem. Soc., 1971, 93, 5265.
 ${ }^{6}$ M. G. B. Drew and A. Kay, J. Chem. Soc. (A), 1971, 1851.
 ${ }^{7}$ R. L. Pecsok and D. T. Sawyer, J. Amer. Chem. Soc., 1956, 78, 5696.
 ${ }^{8}$ F. H. Herbstein, Acta Cryst., 1963, 16, 255.
 ${ }^{9}$ P. T. Beurskens and J. H. Noordik, Acta Cryst., 1971, A2\%, 187.

[^1]: ${ }^{10}$ H. P. Hanson, F. Herman, J. D. Lea, and S. Skillman, Acta Cryst., 1964, 17, 1040.
 11 'International Tables for X-Ray Crystallography,' vol. 3, Kynoch Press, Birmingham, 1962, Table 3.3.2.

[^2]: ${ }^{12}$ J. R. Knox and C. K. Prout, Acta Cryst., 1969, B25, 1857.
 ${ }^{13}$ A. B. Blake, F. A. Cotton, and J. S. Wood, J. Amer. Chem. Soc., 1964, 86, 3024.

[^3]: ${ }^{16}$ L．V．Haynes and D．T．Sawyer，Inorg．Chem．，1967，6， 2146. ${ }^{17}$ L．Pauling，＇The Nature of the Chemical Bond，＇3rd edn．， Cornell University Press，Ithaca，New York，p． 260.

[^4]: ${ }_{18}$ R．J．Gillespie and R．S．Nyholm，Quart．Rev．，1957，11， 339 ；R．J．Gillespie，Angew．Chem．Internat．Edn．，1967，6， 819.

