Structural Studies on Co-ordinated Macrocyclic Ligands. Part II. ${ }^{1}$ Crystal and Molecular Structure of Acetylacetonato-C-meso-(5,5,7,12,12,-14-hexamethyl-1,4,8,11-tetra-azacyclotetradecane)nickel(iI) Perchlorate

By Neil F. Curtis, Chemistry Department, Victoria University of Wellington, New Zealand
David A. Swann and T. Neil Waters," Chemistry Department, University of Auckland, New Zealand

Abstract

The title compound and the corresponding cobalt(III) compound have been prepared and the crystal and molecular structure of the former has been determined from X-ray diffractometer data. Crystals are monoclinic, $a=16 \cdot 190$ (8). $b=12 \cdot 678(7)$, and $c=13 \cdot 197(6) \AA, \beta=100 \cdot 52(8)$. Space group Cc. The structure was solved by the heavyatom method and refined to $R 0.0630$ for 1580 independent reflections. The nickel(II) ion is in approximately octahedral co-ordination with the macrocycle folded at $N(4)$ and $N(11)$ to occupy four adjacent co-ordination sites, a symmetrical, planar acetylacetonato-chelate occupying the two remaining sites. In the structure the configuration of the amine is $1 R S, 4 R S, 7 R S, 8 R S, 11 R S, 14 S R$. The five-membered chelate rings adopt unsymmetrical gauche conformations and the six-membered chelate ring including $N(1)$ and $N(11)$ adopts a chair conformation. That containing $N(4)$ and $N(8)$ adopts a twist-boat conformation which minimises non-bonded interactions of the methyl substituents. The strain inherent in this non-optimum geometry is considered to be responsible for the observed low stability of compounds in which the amine has this configuration.

The preparations of nickel(II) complexes of the C-meso and C -rac isomers of the cyclic tetramine $\mathbf{5 , 5 , 7 , 1 2 , 1 2 , 1 4 -}$ hexamethyl-1,4,8,11-tetra-azacyclotetradecane (represented as tet a and tet b respectively) have been reported. ${ }^{2-4}$ With poorly co-ordinating anions such as $\mathrm{ClO}_{4}^{-}, \mathrm{BF}_{4}^{-}$, $\mathrm{ZnCl}_{4}{ }^{2-}$, etc., singlet ground-state, square planar salts are generally formed, but with anions of greater coordinating power triplet ground-state, octahedrally bound compounds result. For the C-meso amine, (teta), reported octahedral compounds all have trans-configurations with the amine in planar (bcde) co-ordination whereas with the C-rac amine, (tetb), most octahedral derivatives have the amine in folded ($a b c d$) co-ordination, often with a chelate occupying the two additional co-ordination sites. ${ }^{3}$ The structure of one such compound, $[\mathrm{Ni}(\mathrm{tet} b)$ (OAc) ClO_{4}, has been determined. ${ }^{5}$ The difference in preferred stereochemistry of these isomeric amines has been attributed to non-bonded interactions involving the methyl substituents. ${ }^{5,6}$ For this amine, in addition to the two chiral carbon centres which produce the noninterconvertible isomers teta and tet b, the four secondary amine groups become chiral centres upon co-ordination.

[^0]These give rise to five possible nitrogen configurations and hence, with the carbon centres, a total of 20 nonenantiomorphic configurations of the co-ordinated macrocycle. Interconversions of the nitrogen configurations can occur in solution, the inversion reaction being pH -dependent, rapid in base, and effectively inhibited in strongly acid solution.
For folded co-ordination of 1,4,8,11-tetra-azacyclotetradecane (cyclam, the macrocycle of tet a and tet b without the methyl substituents) the nitrogen configuration found ${ }^{7}$ for $c i s-\left[\mathrm{Co}(\right.$ cyclam $\left.) \mathrm{Cl}_{2}\right] \mathrm{Cl}$ permits adoption of a relatively strain-free overall conformation, with each of the chelate rings in optimum (chair or gauche) conformation. The same nitrogen configuration and conformation of the macrocycle is present for [$\mathrm{Ni}($ tet $b)$ $(\mathrm{OAc})] \mathrm{ClO}_{4}$, with the single methyl groups in equatorial sites. ${ }^{5}$ Adoption of this configuration and conformation by the teta analogue would place one of the single methyl groups in an axial site, with a very strained 1,3 -diaxially substituted six-membered chelate ring. This strain could be relieved by some distortion from the chair
${ }^{4}$ N. F. Curtis, J. Chem. Soc. (A), 1968, 1584.
${ }^{5}$ P. O. Whimp, M. F. Bailey, and N. F. Curtis, J. Chem. Soc. (A), 1970, 1956.
${ }_{6}$ L. G. Warner and D. H. Busch, J. Amer. Chem. Soc., 1969, 91, 4092.
${ }^{7}$ P. O. Whimp and N. F. Curtis, J. Chem. Soc. (A), 1966, 867, 1827.
conformation, or alternatively, another nitrogen configuration which causes less non-bonded interactions of the methyl groups could be adopted, at the expense of a more strained cyclam framework. Here we report the preparation of some complexes with tet a in folded coordination, and an X-ray structural study of one [Ni (teta) $(\mathrm{acac})] \mathrm{ClO}_{4}$ (acac $=$ acetylacetonate), to establish the configuration and conformation present.

The cation $[\mathrm{Ni}(\text { tet } a)]^{2+}$ has previously resisted attempts to force adoption of the folded co-ordination by reaction with chelates, but cis-[$\mathrm{Ni}(\alpha-\mathrm{tet} a)(\mathrm{acac})] \mathrm{ClO}_{4}{ }^{*}$ has been synthesized by reaction of $[\mathrm{Ni}(\beta-\operatorname{tet} a)]\left(\mathrm{ClO}_{4}\right)_{2}$ with acetylacetone in aprotic solvents (e.g. methyl cyanide, acetone, or dichloromethane) in the presence of base, conveniently potassium carbonate.

The blue-violet, triplet ground-state compound is stable in the solid state, or in solution in aprotic solvents, but in solvents such as methanol it is rapidly converted into an isomeric singlet ground-state compound, [Ni(β-teta)](acac) ClO_{4}, with reversion to the stable β configuration. The same change occurs in water, but is very slow because of the very low solubility of [Ni-$(\alpha$-tet $a)(\mathrm{acac})] \mathrm{ClO}_{4}$.

Although the $\mathrm{Ni}^{\amalg I}$ (teta) moiety is inert to substitution reactions, 'additional' ligands such as the acetyl-acetonato-group are labile. Because acetylacetone is also a very weak acid, reaction of $[\mathrm{Ni}(\alpha$-tet $a)(\mathrm{acac})] \mathrm{ClO}_{4}$ with stronger acids leads to its displacement with the α-configuration being retained in acid medium. With coordinating anions, triplet ground-state 'octahedral' compounds are formed (e.g. $[\mathrm{Ni}(\alpha-$ tet $a)(\mathrm{OAc})] \mathrm{ClO}_{4}[\{\mathrm{Ni}(\alpha-$ tet $\left.a)\}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}, \quad\left[\mathrm{Ni}(\alpha-\operatorname{tet} a)\left(\mathrm{NO}_{3}\right)\right] \mathrm{ClO}_{4}, \quad[\{\mathrm{Ni}(\alpha-$ tet $\left.a)\}_{2} \mathrm{Cl}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}, \quad\left[\{\mathrm{Ni}(\alpha-\operatorname{tet} a)\}_{2}(\mathrm{NCS})_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}, \quad$ etc. $)$ whereas with acids with poorly co-ordinating anions, singlet ground state, square planar, salts are formed $\left\{\right.$ e.g. $[\mathrm{Ni}(\alpha-\mathrm{tet} a)]\left(\mathrm{ClO}_{4}\right)_{2},[\mathrm{Ni}(\alpha-\operatorname{tet} a)]\left(\mathrm{BF}_{4}\right)_{2}$, etc. $\}$. These compounds usually have properties similar to their tetb analogues except that they are stable only under conditions which inhibit inversion at the nitrogen centres (i.e. in solids, aprotic solvents, or acidic protic solvents).

The stereochemistry of the cobalt(III) complexes of tet a and tet b is similar to that with triplet ground-state nickel(II), i.e. cis-folded macrocycle derivatives have been reported only with tet $b .{ }^{7}$ However, reaction of acetylacetone with trans- $\left[\mathrm{Co}(\text { teta } a) \mathrm{Cl}_{2}\right]^{+}$under basic conditions gave $c i s-[\operatorname{Co}(\alpha-\mathrm{tet} a)(\mathrm{acac})]^{2+}$, analogous to the previously reported tetb cation. The cation is resistant to acid hydrolysis and hence could not be used to prepare other derivatives with retention of the α-configuration.

The amines C-meso- and C-rac-5,5,7,12,14,14-hexa-methyl-1,4,8,11-tetra-azacyclotetradecane (tetc and tetd respectively) which are geometrical isomers of tet a and tet b have stereochemical properties similar to theirs. Derivatives of tet d with the amine in folded co-ordination are readily prepared, but none have been reported for tetc. ${ }^{8}$ Procedures analogous to those described for teta

* The configuration of these amines stable in planar coordination has been represented as ' β ' and the configuration stable in folded co-ordination as ' α,' and this symbolism will be retained. 2,5
enable preparation of $[\mathrm{Ni}(\alpha-\mathrm{tet} c)(\mathrm{acac})] \mathrm{ClO}_{4}$, from which a range of compounds with the amine in the α-configuration have been prepared, and of $[\operatorname{Co}(\alpha-$ tetc $)(\mathrm{acac})]-$ $\left(\mathrm{ClO}_{4}\right)_{2}$.

EXPERIMENTAL

Acetylacetonato-C-rac-(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetra-azacyclotetradecane)nickel(II) Perchlorate, $\quad[\mathrm{Ni}(\alpha-\mathrm{tet} b)$ (acac) $] \mathrm{ClO}_{4}$.-Acetylacetone was added to a hot aqueous solution of $[\mathrm{Ni}($ tet $b)]\left(\mathrm{ClO}_{4}\right)_{2}$, followed by dilute ammonia. The blue violet solid was filtered from the cold solution and recrystallised from methyl cyanide by the addition of water (Found: C, 46.7; H, 8.0; Ni, 10.7. $\mathrm{C}_{21} \mathrm{H}_{43} \mathrm{ClN}_{4} \mathrm{NiO}_{6}$ requires $\mathrm{C}, 46.5 ; \mathrm{H}, 8 \cdot 2 ; \mathrm{Ni}, 10.8 \%$).

The precipitation of this compound as a means of separating $[\mathrm{Ni}(\text { tet } a)]^{2+}$ and $[\mathrm{Ni}(\text { tet } b)]^{2+}$ formed by the reduction of (5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraaza-cyclotetradeca-7,14-diene)nickel(II) has advantages over the previously reported ${ }^{2}$ procedure involving the precipitation of [$\{\mathrm{Ni}$ (tetb) $\left.\}_{2}\left(\mathrm{C}_{2} \mathrm{O}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)_{2}$, since acetylacetone is a very much weaker acid than is oxalic. Thus other derivatives of $[\mathrm{Ni}(\text { tet } b)]^{2+}$ have to be prepared from the oxalate via $[\mathrm{Ni}(\alpha-\mathrm{tet} b)]\left(\mathrm{ClO}_{4}\right)_{2}$, which is formed from the oxalatocompound only in concentrated perchloric acid. However, treatment of $[\mathrm{Ni}(\alpha-$ tet $b)(\mathrm{acac})] \mathrm{ClO}_{4}$ with dilute perchloric acid yields $[\mathrm{Ni}(\alpha-$ tet $b)]\left(\mathrm{ClO}_{4}\right)_{2}$, and a wide range of compounds, e.g. $[\mathrm{Ni}(\alpha-\operatorname{tet} b)(\mathrm{OAc})] \mathrm{ClO}_{4},\left[\mathrm{Ni}(\alpha-\operatorname{tet} b)\left(\mathrm{NO}_{3}\right)\right] \mathrm{ClO}_{4}$, $\left[\{\mathrm{Ni}(\alpha-\mathrm{tet} b)\}_{2} \mathrm{Cl}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$, etc. can be prepared by treatment with the appropriate acid. Salts of $[\mathrm{Ni}(\alpha-\operatorname{tet} b)(\mathrm{acac})]^{+}$with other large anions are also insoluble in water and can be used for separation of the tet a and tet b isomers formed, for example, by reduction of the bromide salt of the diene complex.

Acetylacetonato-C-meso-(5,5,7,12,12,14-hexamethyl-
1,4,8,11-tetra-azacyclotetradecane)cobalt(III) Perchlorate, [Co-$(\alpha$-teta) $(\mathrm{acac})]\left(\mathrm{ClO}_{4}\right)_{2}$. -Ammonia solution was added to a suspension of trans- $\left[\mathrm{Co}(\beta\right.$-teta $\left.) \mathrm{Cl}_{2}\right] \mathrm{ClO}_{4}(5 \mathrm{~g})$ in hot methanol (30 ml) until the solid dissolved. Acetylacetone (1 g) was added, and the solution heated for 30 m . The red product was filtered from the cold solution, and recrystallized from hot methyl cyanide-propan-2-ol (Found: C, 39.2; H, 6.8; $\mathrm{Co}, \mathbf{9 . 3} . \quad \mathrm{C}_{21} \mathrm{H}_{43} \mathrm{Cl}_{2} \mathrm{CoN}_{4} \mathrm{O}_{10}$ requires $\mathrm{C}, 39 \cdot 3 ; \mathrm{H}, 6.7$; Co , 9.2\%).

Acetylacetonato-C-meso-(5,5,7,12,12,14-hexamethyl-
1,4,8,11-tetra-azacyclotetradecane)nickel(II) Perchlorate, [Ni-$(\alpha$-tet $a)(\mathrm{acac})] \mathrm{ClO}_{4}$. -A suspension of $[\mathrm{Ni}(\beta$-tet $a)]\left(\mathrm{ClO}_{4}\right)_{2}(5$ g), anhydrous potassium carbonate (5 g), acetylacetone $(1.5 \mathrm{~g})$, and methyl cyanide (50 ml) in a stoppered flask was gently stirred magnetically (or occasionally agitated) until all the orange perchlorate salt dissolved ($1-3$ days). The blue solution was filtered from the potassium carbonate and evaporated to half volume. Diethyl ether was added dropwise until the solution became turbid, and the solution set aside for a period of days while the blue-violet product crystallised. This was filtered off and recrystallised from methyl cyanide-diethyl ether by a repetition of the foregoing procedure. Further product was obtained by evaporation of the filtrates (Found: C, 46.8; H, 8.2; Ni, 10.7. $\mathrm{C}_{21} \mathrm{H}_{43} \mathrm{ClN}_{4} \mathrm{NiO}_{6}$ requires C, $46.5 ; \mathrm{H}, 8.2 ; \mathrm{Ni}, 10.8 \%$).

Crystal Data for $\left[\mathrm{Ni}(\alpha\right.$-teta) (acac) $] \mathrm{ClO}_{4} .-\mathrm{C}_{21} \mathrm{H}_{43} \mathrm{ClN}_{4} \mathrm{NiO}_{6}$, $M=541$, Monoclinic, $a=16 \cdot 190(8), b=12 \cdot 678(8), c=$ $13 \cdot 197(6) \AA, \beta=100 \cdot 52(8)^{\circ}$ (standard deviations from a
${ }^{8}$ N. F. Curtis, J. Chem. Soc. (C), 1967, 1979; P. O. Whimp and N. F. Curtis, J. Chem. Soc. (A), 1968, 188.
least squares fit to diffractometer co-ordinates of 12 reflexions), $D_{\mathrm{m}}=1.33, Z=4, D_{\mathrm{c}}=1.35, U=8.6 \mathrm{~cm}^{-1}$. Mo- K_{α} radiation, $\lambda=0.7107 \AA ; \mu\left(\right.$ Mo- $\left.K_{\alpha}\right)=8.6 \mathrm{~cm}^{-1}$. Space group Cc.
Intensity data were collected by four-circle diffractometry, a total of 1591 reflexions being observed at the $2 \sigma\left(F^{2}\right)$ level. Absorption corrections were applied. ${ }^{9 a}$
Structure solution was by the conventional heavy-atom method, all non-hydrogen atoms being located when R was $0 \cdot 214$. Atomic scattering factors were taken from ref. $9(b)$ and the weighting scheme for subsequent blockdiagonal least squares refinement was of the form $w=$ $4 F_{0}{ }^{2} / \sigma^{2}\left(F^{2}\right)$. The initial molecular model was relaxed in stages to allow increasingly for anisotropic thermal vibrations and for the inclusion of hydrogen atoms. Difference syntheses were computed during this process to check the course of the refinement, particularly with regard to the perchlorate ion, to verify hydrogen atom positions and to

Figure 1 Crystallographic numbering scheme and ORTEP diagram of the complex cation [the perchlorate anion contains $O(3)-(6)]$
locate those belonging to methyl groups. As parameters were added to the refinement significance tests ${ }^{\mathbf{1 0}}$ were applied to check the validity of their inclusion. The final refinement cycles assumed anisotropic vibrations for all non-hydrogen atoms and allowed adjustments to the positions of the hydrogens (but not to their temperature factors which were fixed at $5 \cdot 0 \AA^{2}$ throughout). The R index converged to $0 \cdot 062$.

Final atom co-ordinates and anisotropic thermal parameters are listed in Tables 1 and 2.* Bond lengths and angles computed from the data of Table 1 are in Tables 3 and 4.* The crystallographic numbering system is shown in Figure 1. In the subsequent discussion of the analysis this system is used exclusively. Structure factor data are listed in Supplementary Publication No. SUP 20678 (5 pp., 1 microfiche). \dagger

* The standard deviation quoted in Tables 1-4 are those obtained from the block-diagonal least-squares approximation and it is expected that they will be under-estimated. A check of internal consistency between bonds of known equality is not possible but experience suggests that the standard deviations in length and angles are ca. 1-3 times those computed.
\dagger For details see Notice to Authors No. 7 in J.C.S. Dalton, 1972, Index issue. Items less than 10 pp . are supplied as fullsized copies.
${ }^{9}$ (a) W. R. Busing and H. A. Levy, Acta Cryst., 1957, 10, 180; (b) 'International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962.
${ }_{10}$ W. C. Hamilton, Acta Cryst., 1965, 18, 502.

Table 1
Atom co-ordinates

Atom	x / a	y / b	z / c
Ni	$0 \cdot 50000$	$0 \cdot 26671$ (9)	0.50000
Cl	$0 \cdot 00000(36)$	$0 \cdot 36701(24)$	$0 \cdot 50000$ (24)
$\mathrm{O}(3)$	0.0427(17)	$0 \cdot 4390$ (12)	0.4422(12)
$\mathrm{O}(4)$	$-0.0565(11)$	$0 \cdot 4376) 14)$	$0 \cdot 5417(18)$
$\mathrm{O}(5)$	-0.0351(27)	$0 \cdot 3082(18)$	$0 \cdot 4255(14)$
O (6)	$0 \cdot 0558(12)$	$0 \cdot 3160$ (25)	$0 \cdot 5711(16)$
N(1)	$0 \cdot 4074$ (8)	0.2571 (9)	$0.5924(7)$
N(4)	0.5614(7)	$0 \cdot 1474$ (9)	$0 \cdot 6006$ (7)
N(8)	$0 \cdot 5978$ (7)	$0 \cdot 2552(9)$	$0 \cdot 4134$ (8)
$\mathrm{N}(11)$	$0 \cdot 4393$ (9)	$0 \cdot 1534(9)$	$0 \cdot 3972$ (8)
C(2)	$0 \cdot 4354(11)$	$0 \cdot 1752(13)$	$0 \cdot 6690$ (13)
C(3)	$0.5321(11)$	$0 \cdot 1664(15)$	$0 \cdot 6957(12)$
C(5)	$0 \cdot 6533(11)$	$0 \cdot 1255(13)$	$0 \cdot 6016(14)$
C(6)	0.6973 (9)	0.2266(14)	$0 \cdot 5826(12)$
C(7)	$0 \cdot 6875(11)$	$0 \cdot 2544$ (16)	$0 \cdot 4699$ (16)
C(9)	$0 \cdot 5747(11)$	$0 \cdot 1641(14)$	$0 \cdot 4301(10)$
$\mathrm{C}(10)$	$0 \cdot 4820$ (10)	$0 \cdot 1687(10)$	$0 \cdot 3054(8)$
C(12)	0.3482 (9)	$0 \cdot 1672(14)$	$0 \cdot 3713(11)$
C(13)	$0 \cdot 3076$ (10)	$0 \cdot 1591(13)$	$0 \cdot 4618$ (13)
C(14)	$0 \cdot 3152(9)$	$0 \cdot 2534(11)$	$0 \cdot 5395(11)$
C(15)	$0 \cdot 6925(12)$	$0 \cdot 0796(18)$	$0 \cdot 7068(14)$
C(16)	$0 \cdot 7509(15)$	$0 \cdot 1916$ (19)	$0 \cdot 4169(21)$
C(17)	$0 \cdot 7121(12)$	$0 \cdot 3735(19)$	$0 \cdot 4704(18)$
C(18)	0.3060(12)	$0 \cdot 0837(16)$	$0 \cdot 2887(15)$
C(19)	$0 \cdot 2594(14)$	$0 \cdot 2188(23)$	$0 \cdot 6175(24)$
C(20)	$0 \cdot 2862(12)$	$0 \cdot 3591$ (16)	$0 \cdot 4953$ (18)
$\mathrm{O}(1)$	0.5481 (6)	$0 \cdot 3833$ (7)	0.6012 (7)
$\mathrm{O}(2)$	0.4513 (6)	$0 \cdot 3837(7)$	$0 \cdot 3995$ (6)
C(21)	0.5421 (9)	$0 \cdot 4814(10)$	$0 \cdot 5907(10)$
$\mathrm{C}(22)$	0-4967(9)	$0 \cdot 5311(10)$	$0 \cdot 5060$ (9)
C(23)	$0 \cdot 4609(10)$	$0 \cdot 4832(10)$	$0.4142(11)$
$\mathrm{C}(24)$	0.5860(12)	$0.5473(14)$	$0 \cdot 6799(15)$
$\mathrm{C}(25)$	$0.4222(9)$	$0 \cdot 5500$ (12)	$0 \cdot 3233(11)$
$\mathrm{H}(1)$	0.40(1)	$0 \cdot 32(1)$	0.61 (1)
$\mathrm{H}(2)$	0.41 (1)	$0 \cdot 18(1)$	$0 \cdot 73$ (1)
$\mathrm{H}(3)$	0.42 (1)	$0 \cdot 11(1)$	$0 \cdot 64$ (1)
H(4)	0.56(1)	$0 \cdot 24(1)$	$0 \cdot 72(1)$
H(5)	0.55(1)	$0 \cdot 10(1)$	$0 \cdot 74$ (1)
$\mathrm{H}(6)$	0.54(1)	0.08(1)	$0.59(1)$
H(7)	0.67(1)	$0 \cdot 08(1)$	$0 \cdot 54(1)$
$\mathrm{H}(8)$	$0.67(1)$	$0 \cdot 29(1)$	$0.63(1)$
$\mathrm{H}(9)$	0.76(1)	$0 \cdot 21(1)$	$0 \cdot 61$ (1)
$\mathrm{H}(10)$	0.60(1)	$0 \cdot 32(1)$	0.38 (1)
$\mathrm{H}(11)$	$0 \cdot 61$ (1)	$0 \cdot 16$ (1)	$0 \cdot 29(1)$
$\mathrm{H}(12)$	$0.59(1)$	0.10(1)	$0.38(1)$
$\mathrm{H}(13)$	0.46(1)	$0 \cdot 24(1)$	$0 \cdot 27(1)$
H(14)	0.47(1)	$0 \cdot 11(1)$	0.25(1)
$\mathrm{H}(15)$	$0 \cdot 44$ (1)	$0 \cdot 09(1)$	0.42(1)
$\mathrm{H}(16)$	$0 \cdot 34(1)$	$0 \cdot 25$ (1)	$0 \cdot 34(1)$
$\mathrm{H}(17)$	$0 \cdot 25$ (1)	$0 \cdot 15$ (1)	$0 \cdot 43$ (1)
$\mathrm{H}(18)$	0.33(1)	$0 \cdot 09(1)$	0.49 (1)
$\mathrm{H}(19)$	$0 \cdot 75$ (1)	0.10(1)	0.71 (1)
$\mathrm{H}(20)$	$0 \cdot 67(1)$	0.01 (1)	$0 \cdot 70$ (1)
$\mathrm{H}(21)$	0.66(1)	$0 \cdot 11(1)$	$0 \cdot 76$ (1)
H (22)	$0 \cdot 81$ (1)	$0 \cdot 20(1)$	0.43(1)
$\mathrm{H}(23)$	$0 \cdot 73$ (1)	$0 \cdot 24(1)$	$0 \cdot 36(1)$
H (24)	0.73(1)	$0 \cdot 12(1)$	$0 \cdot 40$ (1)
H (25)	0.76(1)	$0 \cdot 41$ (1)	$0 \cdot 50$ (1)
$\mathrm{H}(26)$	0.72(1)	$0 \cdot 36(1)$	0.40(1)
H (27)	0.66(1)	$0 \cdot 41$ (1)	0.47(1)
$\mathrm{H}(28)$	0.33(1)	$0 \cdot 02(1)$	$0 \cdot 30$ (1)
$\mathrm{H}(29)$	0.31(1)	$0 \cdot 11(1)$	0.22(1)
$\mathrm{H}(30)$	$0 \cdot 25$ (1)	$0 \cdot 06(1)$	$0 \cdot 29(1)$
$\mathrm{H}(31)$	0.29(1)	$0 \cdot 17(1)$	$0 \cdot 67(1)$
$\mathrm{H}(32)$	0.27(1)	$0 \cdot 29(1)$	$0 \cdot 63$ (1)
H(33)	0.20(1)	$0 \cdot 21(1)$	0.63(1)
$\mathrm{H}(34)$	0.28(1)	$0 \cdot 37(1)$	0.56 (1)
$\mathrm{H}(35)$	$0 \cdot 33(1)$	$0 \cdot 40$ (1)	0.47(1)
$\mathrm{H}(36)$	0.23(1)	$0 \cdot 37(1)$	$0 \cdot 45(1)$
$\mathrm{H}(37)$	0.60(1)	0.51(1)	0.74(1)
$\mathrm{H}(38)$	0.64(1)	$0 \cdot 56(1)$	$0 \cdot 66$ (1)
$\mathrm{H}(39)$	0.55(1)	$0 \cdot 60$ (1)	$0 \cdot 70$ (1)
$\mathrm{H}(40)$	$0.50(1)$	0.61 (1)	$0 \cdot 50(1)$
H (41)	0.45(1)	$0 \cdot 55(1)$	0.27(1)
H(42)	0.37(1)	$0 \cdot 54(1)$	$0 \cdot 30$ (1)
H(43)	0.42(1)	0.63(1)	$0 \cdot 34(1)$

Table 2
Anisotropic thermal parameters * $\left(\times 10^{4}\right)$

Atom	b_{11}	b_{22}	b_{33}	b_{12}	b_{13}	b_{23}
Ni	37.9(4)	40.9(5)	36-2(5)	32-6(9)	$12 \cdot 4(7)$	2.7(10)
Cl	85(2)	61(2)	77(2)	36(4)	$5(3)$	$-33(4)$
$\mathrm{O}(3)$	290(24)	100(13)	120(13)	-12(29)	269 (30)	47(22)
$\mathrm{O}(4)$	$69(9)$	152(18)	329 (30)	57(22)	$95(27)$	49(38)
$O(5)$	610(60)	178(23)	108(15)	-434(64)	299(50)	-166(32)
O(6)	75(10)	430(41)	174(19)	138(34)	$-105(22)$	76(47)
$\mathrm{N}(1)$	57(6)	58(8)	39(6)	3(11)	39(9)	-18(11)
N(4)	$37(5)$	70 (8)	33(6)	17(10)	-6(8)	39(11)
N(8)	36(5)	69(9)	$69(8)$	-3(11)	33(10)	$-10(14)$
N(11)	72(7)	39(7)	58(8)	11(12)	27(12)	$5(12)$
C(2)	64(10)	83(13)	88(12)	-39(18)	95(18)	48(21)
C(3)	56(9)	108(15)	66(11)	-28(19)	$9(15)$	$34(21)$
C(5)	60(9)	73(12)	100(14)	30(17)	47(18)	43(20)
C(6)	26 (6)	106(14)	88(11)	$-16(16)$	$-11(12)$	28(22)
C(7)	41 (8)	128(19)	130(17)	41(21)	45(18)	$81(30)$
C(9)	67(9)	100(14)	41 (8)	-54(19)	26(13)	-36(18)
$\mathrm{C}(10)$	66 (8)	54(10)	24(6)	-9(14)	$15(11)$	-27(13)
C(12)	35(7)	116(15)	64(9)	-62(17)	22(13)	-41(20)
C(13)	$36(7)$	79(12)	104(14)	$9(16)$	-10 (15)	9(21)
C(14)	42(6)	62(11)	71 (9)	$-13(13)$	49(13)	1(16)
C(15)	58(10)	135(20)	$96(14)$	$41(23)$	-47(18)	$35(28)$
C(16)	73(13)	126(20)	199(27)	80(27)	105(31)	$-34(39)$
C(17)	$44(9)$	138(22)	156(22)	-9(22)	12(23)	-77(34)
C(18)	56(10)	113(17)	123(16)	-67(22)	13(20)	$-91(28)$
C(19)	$49(10)$	195(29)	$229(31)$	26(29)	100(24)	174(51)
C(20)	46(9)	93(16)	180(24)	11(19)	52(23)	26(30)
$\mathrm{O}(1)$	47(5)	48(6)	71 (7)	-17(9)	6(9)	-5(10)
$\mathrm{O}(2)$	50(5)	46(6)	$50(6)$	-8(8)	27(8)	$23(9)$
$\mathrm{C}(21)$	39(7)	48(8)	61 (9)	4(12)	$29(12)$	-21(14)
C(22)	62(8)	63(9)	97(11)	44(16)	30(14)	21 (16)
C(23)	$53(8)$	42 (8)	$72(10)$	27(13)	46(14)	28(15)
C(24)	60(10)	77(14)	121(17)	-23(18)	$34(20)$	$-36(23)$
C(25)	41 (7)	76(12)	66(10)	$15(14)$	0(13)	44(17)

* The scattering factor for an atom is expressed by: $f=f_{0}$ $\exp -\left(b_{11} h^{2}+b_{22} k^{2}+b_{33} l^{2}+b_{12} h k+b_{13} h l+b_{23} k l\right)$.

DISCUSSION

The principal interest in the structure lies in the stereochemistry of the complex cation (Figure 1). As discussed later, hydrogen bonding interactions are thought to be relatively weak so that the geometry of this ion is due to intramolecular forces. This cation contains nickel(II) octahedrally co-ordinated to the four secondary amino-groups of the cyclic tetra-amine in folded ($a b c d$) co-ordination, and to the two oxygen atoms of the acetylacetonato-ligand present as a planar symmetrical chelate. The configuration of the amine is $1 R S, 4 R S, 5 R S, 8 R S, 11 R S, 12 S R, \dagger$ i.e. configuration $20 f$ of ref. 5 , with mirror-related pairs of chiral cations in the unit cell, the same nitrogen configurations as found for $c i s-\left[\mathrm{Co}(\right.$ cyclam $\left.) \mathrm{Cl}_{2}\right] \mathrm{Cl}^{11}$ and $[\mathrm{Ni}($ tet $b)(\mathrm{OAc})] \mathrm{ClO}_{4} .{ }^{5}$ The fold-line of the macrocycle is $\mathrm{N}(1)-\mathrm{N}(8)$, i.e. adjacent to the gem-dimethyl groups, with the axial components of the gem-dimethyl groups folded away from the
\dagger

The configuration at asymmetric centres is shown by indicating whether or not the hydrogen atom of the centre is above $(+)$ or below (-) the plane of the (flattened) macrocycle. The numbering scheme here is that of the IUPAC convention so that the configuration can be designated as $1 R S, 4 R S, 7 R S, 8 R S$, $11 R S, 14 S R$.
acetylacetonato chelate. The $\mathrm{Ni}, \mathrm{O}(1), \mathrm{O}(2)$ plane is slightly twisted relative to the plane of $\mathrm{Ni}, \mathrm{N}(1), \mathrm{N}(8)$, the distortion having the effect of moving the acetyl-acetonato-methyl groups closer to the five-membered

Table 3

Bond lengths (\AA) *			
$\mathrm{Ni}-\mathrm{N}(1)$	2.10(1)	$\mathrm{C}(12)-\mathrm{C}(18)$	1-58(3)
$\mathrm{Ni}-\mathrm{N}$ (4)	2.13(1)	$\mathrm{C}(12)-\mathrm{C}(13)$	1-47(2)
$\mathrm{Ni}-\mathrm{N}$ (8)	2.12(1)	C(13)-C(14)	$1 \cdot 56(2)$
$\mathrm{Ni}-\mathrm{N}(11)$	2.09(1)	$\mathrm{C}(14)-\mathrm{C}(19)$	$1-55(3)$
$\mathrm{N}(1)-\mathrm{C}(2)$	1-46(2)	$\mathrm{C}(14)-\mathrm{C}(20)$	$1 \cdot 50(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.54(3)$	$\mathrm{C}(14)-\mathrm{N}(1)$	1-53(2)
$\mathrm{C}(3)-\mathrm{N}(4)$	1.44(2)	$\mathrm{Ni}-\mathrm{O}(1)$	2.05(1)
$\mathrm{N}(4)-\mathrm{C}(5)$	$1 \cdot 51(2)$	$\mathrm{O}(1)-\mathrm{C}(21)$	$1.25(2)$
$\mathrm{C}(5)-\mathrm{C}(15)$	$1.53(3)$	$\mathrm{C}(21)-\mathrm{C}(24)$	1.51 (2)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.51(2)	$\mathrm{C}(21)-\mathrm{C}(22)$	1-37(2)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.51(3)	$\mathrm{C}(22)-\mathrm{C}(23)$	1-38(2)
$\mathrm{C}(7)-\mathrm{C}(16)$	$1.56(3)$	$\mathrm{C}(23)-\mathrm{C}(25)$	1.51 (2)
$\mathrm{C}(7)-\mathrm{C}(17)$	1.56(3)	$\mathrm{C}(23)-\mathrm{O}(2)$	1-28(2)
$\mathrm{C}(7)-\mathrm{N}(8)$	$1.51(2)$	$\mathrm{O}(2)-\mathrm{Ni}$	$2 \cdot 05(1)$
$\mathrm{N}(8)-\mathrm{C}(9)$	1.51 (2)	$\mathrm{Cl}-\mathrm{O}(3)$	1-44(2)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.49(2)	$\mathrm{Cl}-\mathrm{O}(4)$	1-46(2)
$\mathrm{C}(10)-\mathrm{N}(11)$	1.51 (2)	$\mathrm{Cl}-\mathrm{O}(5)$	1-28(3)
$\mathrm{N}(11)-\mathrm{C}(12)$	$1 \cdot 46(2)$	$\mathrm{Cl}-\mathrm{O}(6)$	1-34(3)

* $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ bond lengths are $0 \cdot 9(1)-1 \cdot 0(1) \AA$.

Table 4

Bond angles (deg.)			
$\mathrm{N}(1)-\mathrm{Ni}-\mathrm{N}(4)$	$84 \cdot 2(7)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(17)$	$104 \cdot 0(12)$
$\mathrm{N}(1)-\mathrm{Ni}-\mathrm{N}(8)$	$172 \cdot 2(7)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(8)$	$114 \cdot 1(12)$
$\mathrm{N}(1)-\mathrm{Ni}-\mathrm{N}(11)$	$92 \cdot 0(7)$	$\mathrm{C}(16)-\mathrm{C}(7)-\mathrm{C}(17)$	$107 \cdot 9(13)$
$\mathrm{N}(1)-\mathrm{Ni}-\mathrm{O}(1)$	$83 \cdot 7(7)$	$\mathrm{C}(7)-\mathrm{N}(8)-\mathrm{C}(9)$	$114 \cdot 5(11)$
$\mathrm{N}(1)-\mathrm{Ni}-\mathrm{O}(2)$	$100 \cdot 7(6)$	$\mathrm{N}(8)-\mathrm{C}(7)-\mathrm{C}(16)$	$115 \cdot 7(13)$
$\mathrm{N}(4)-\mathrm{Ni}-\mathrm{N}(8)$	$88 \cdot 8(7)$	$\mathrm{N}(8)-\mathrm{C}(7)-\mathrm{C}(17)$	$102 \cdot 5(12)$
$\mathrm{N}(4)-\mathrm{Ni}-\mathrm{N}(11)$	$91 \cdot 5(7)$	$\mathrm{N}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$106 \cdot 6(11)$
$\mathrm{N}(4)-\mathrm{Ni}-\mathrm{O}(1)$	$91 \cdot 6(6)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(11)$	$109 \cdot 4(11)$
$\mathrm{N}(4)-\mathrm{Ni}-\mathrm{O}(2)$	$174 \cdot 8(7)$	$\mathrm{C}(10)-\mathrm{N}(11)-\mathrm{C}(12)$	$112 \cdot 7(11)$
$\mathrm{N}(8)-\mathrm{Ni}-\mathrm{N}(11)$	$85 \cdot 0(7)$	$\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{C}(18)$	$111 \cdot 8(11)$
$\mathrm{N}(8)-\mathrm{Ni}-\mathrm{O}(1)$	$99 \cdot 7(7)$	$\mathrm{N}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$112 \cdot 5(11)$
$\mathrm{N}(8)-\mathrm{Ni}-\mathrm{O}(2)$	$86 \cdot 4(6)$	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(18)$	$108 \cdot 3(12)$
$\mathrm{N}(11)-\mathrm{Ni}-\mathrm{O}(1)$	$174 \cdot 4(7)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$119 \cdot 1(12)$
$\mathrm{N}(11)-\mathrm{Ni}-\mathrm{O}(2)$	$90 \cdot 0(7)$	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(19)$	$103 \cdot 5(12)$
$\mathrm{O}(1)-\mathrm{Ni}-\mathrm{O}(2)$	$87 \cdot 4(6)$	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(20)$	$116 \cdot 4(12)$
$\mathrm{Ni}-\mathrm{N}(1)-\mathrm{C}(2)$	$106 \cdot 2(9)$	$\mathrm{C}(19)-\mathrm{C}(14)-\mathrm{C}(20)$	$109 \cdot 4(13)$
$\mathrm{Ni}-\mathrm{N}(1)-\mathrm{C}(14)$	$118 \cdot 5(9)$	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{N}(1)$	$105 \cdot 6(11)$
$\mathrm{Ni}-\mathrm{N}(4)-\mathrm{C}(3)$	$103 \cdot 5(9)$	$\mathrm{C}(14)-\mathrm{N}(1)-\mathrm{C}(2)$	$116 \cdot 6(11)$
$\mathrm{Ni}-\mathrm{N}(4)-\mathrm{C}(5)$	$118 \cdot 8(10)$	$\mathrm{N}(1)-\mathrm{C}(14)-\mathrm{C}(19)$	$110 \cdot 1(12)$
$\mathrm{Ni}-\mathrm{N}(8)-\mathrm{C}(7)$	$118 \cdot 7(10)$	$\mathrm{N}(1)-\mathrm{C}(14)-\mathrm{C}(20)$	$111 \cdot 0(11)$
$\mathrm{Ni}-\mathrm{N}(8)-\mathrm{C}(9)$	$106 \cdot 0(9)$	$\mathrm{O}(1)-\mathrm{C}(21)-\mathrm{C}(24)$	$116 \cdot 5(11)$
$\mathrm{Ni}-\mathrm{N}(11)-\mathrm{C}(10)$	$101 \cdot 6(9)$	$\mathrm{O}(1)-\mathrm{C}(21)-\mathrm{C}(22)$	$124 \cdot 4(12)$
$\mathrm{Ni}-\mathrm{N}(11)-\mathrm{C}(12)$	$113 \cdot 8(10)$	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(24)$	$119 \cdot 1(12)$
$\mathrm{Ni}-\mathrm{O}(1)-\mathrm{C}(21)$	$129 \cdot 2(9)$	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$125 \cdot 9(12)$
$\mathrm{Ni}-\mathrm{O}(2)-\mathrm{C}(23)$	$126 \cdot 3(9)$	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(25)$	$119 \cdot 7(12)$
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$112 \cdot 5(12)$	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{O}(2)$	$125 \cdot 8(12)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(4)$	$107 \cdot 1(12)$	$\mathrm{O}(2)-\mathrm{C}(23)-\mathrm{C}(25)$	$114 \cdot 2(11)$
$\mathrm{C}(3)-\mathrm{N}(4)-\mathrm{C}(5)$	$120 \cdot 2(11)$	$\mathrm{O}(3)-\mathrm{Cl}-\mathrm{O}(4)$	$101 \cdot 9(11)$
$\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{C}(15)$	$108 \cdot 8(12)$	$\mathrm{O}(3)-\mathrm{Cl}-\mathrm{O}(5)$	$98 \cdot 7(13)$
$\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$109 \cdot 6(12)$	$\mathrm{O}(3)-\mathrm{Cl}-\mathrm{O}(6)$	$110 \cdot 3(12)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$113 \cdot 3(12)$	$\mathrm{O}(4)-\mathrm{Cl}-\mathrm{O}(5)$	$115 \cdot 2(13)$
$\mathrm{C}(6-\mathrm{C}(5)-\mathrm{C}(15)$	$110 \cdot 1(12)$	$\mathrm{O}(4)-\mathrm{Cl}-\mathrm{O}(6)$	$114 \cdot 8(12)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(16)$	$111 \cdot 3(13)$	$\mathrm{O}(5)-\mathrm{Cl}-\mathrm{O}(6)$	$113 \cdot 8(14)$

chelate rings of the macrocycle and away from the methyl substituents on the six-membered chelate rings. Details of these distortions, and of the configurations
${ }^{11}$ G. B. Robertson and P. O. Whimp, personal communication.
adopted by sections of the complex, can be deduced from Table 5 which lists planes of best fit through selected regions of the cation and deviations therefrom.

Table 5

Equations of planes of best fit in the form $A X+B Y+$ $C Z+D=0$, where X, Y, and Z are orthogonal coordinates in \AA, related to the crystallographic axes by: $X=x+z \cos \beta, Y=y, Z=z \sin \beta$
Plane (1):
$\mathrm{Ni}, \mathrm{O}(1), \mathrm{O}(2), \quad 0.9307 X-0.0043 Y-0.3657 Z-4.0169=0$ $\mathrm{C}(21)$-(25)
$[\mathrm{Ni} 0.009, \mathrm{~N}(1)-2.03, \mathrm{~N}(4) 0.24, \mathrm{~N}(8) 2.09, \mathrm{~N}(11)-0.18$, $\mathrm{O}(1) 0.02, \mathrm{C}(21) 0.00, \mathrm{C}(22)-0 \cdot 10, \mathrm{C}(23) 0.01, \mathrm{C}(24) 0.03$, $\mathrm{C}(25) 0.06, \mathrm{O}(2)-0.03]$
Plane (2):
$\mathrm{Ni}, \mathrm{N}(4), \mathrm{N}(11),-0.8975 X+0.0075 Y+0 \cdot 4409 Z+3.3519=0$
$\mathrm{O}(1), \mathrm{O}(2)$
$[\mathrm{Ni} 0.023, \mathrm{~N}(1) 2.78, \mathrm{~N}(4)-0.08, \mathrm{~N}(8)-2 \cdot 10, \mathrm{~N}(11) 0.09$, $\mathrm{O}(1) 0.09, \mathrm{O}(2)-0.09]$
Plane (3):
$\mathrm{Ni}, \mathrm{N}(1), \mathrm{N}(8),-0.3858 X+0.7060 Y-0.5939 Z+4.1518=0$
$\mathrm{N}(11), \mathrm{O}(1)$
$[\mathrm{Ni} 0.030, \mathrm{~N}(1)-0.11, \mathrm{~N}(4)-2 \cdot 10, \mathrm{~N}(8)-0.10, \mathrm{~N}(11) 0.09$, $\mathrm{O}(1) 0.09, \mathrm{O}(2) 2.06]$

Plane (4):
Ni, $\mathrm{N}(1), \mathrm{N}(4), \quad 0.3997 X+0.6938 Y+0.5991 Z-8.9761=0$ $\mathrm{N}(8), \mathrm{O}(2)$

$$
[\mathrm{Ni} 0.01, \mathrm{~N}(1)-0.05, \mathrm{~N}(4) 0.04, \mathrm{~N}(8)-0.05, \mathrm{~N}(11)-2.08 \text {, }
$$

$$
O(1) 2.04, O(2) 0.04]
$$

Plane (5):
Ni, $\mathrm{N}(1), \mathrm{N}(4) \quad 0.3703 X+0.7055 Y+0.6043 Z-8.8574=0$ $[\mathrm{C}(2)-0.03, \mathrm{C}(3) 0.65]$

Plane (6):
Ni, $\mathrm{N}(4), \mathrm{N}(8) \quad 0.4177 X+0.7036 Y+0.5749 Z-8.9867=0$ $[\mathrm{C}(6) 1 \cdot 51, \mathrm{C}(16) 0.49, \mathrm{C}(7) 0.96, \mathrm{C}(15) 0.97, \mathrm{C}(17) 2 \cdot 20, \mathrm{C}(5)$ $0 \cdot 43$]
Plane (7):
$\mathrm{Ni}, \mathrm{N}(8), \mathrm{N}(11)-0.3214 X+0.7273 Y-0.6064 Z+3.6898=0$ $[C(9)-0.20, C(10) 0.57]$
Plane (8):
Ni, $\mathrm{N}(11), \mathrm{N}(1)-0.4286 X+0.7226 Y-0.5423 Z+4.0277=0$ $[\mathrm{C}(12) 0.91, \mathrm{C}(13) 0.58, \mathrm{C}(14) 0.92, \mathrm{C}(18) 0.94 \mathrm{C}(19) 0.52$, C(20) $2 \cdot 36]$

Plane (9):
$\mathrm{N}(11), \mathrm{C}(12), \quad 0.1837 X+0.9035 Y-0.3871 Z-0.9060=0$
$\mathrm{C}(14), \mathrm{N}(1)$
$[\mathrm{Ni} 0.904, \mathrm{~N}(11)-0.01, \mathrm{C}(12) 0.02, \mathrm{C}(13)-0.69, \mathrm{C}(14)-0.01$, $\mathrm{N}(1){ }^{0.01]}$

The conformation of the co-ordinated macrocycle is similar to that found for $[\mathrm{Ni}(\alpha-\operatorname{tet} b)(\mathrm{OAc})] \mathrm{ClO}_{4}$ with one notable exception. (Compare Figure 1 with the [Ni-$(\alpha-$ tet $b)(\mathrm{OAc})]^{+}$cation shown in Figure 1 of ref. 5.) The five-membered chelate rings are in asymmetrical gauche conformations ($\delta \delta$ or $\lambda \lambda$ configuration), see Table 5 and Figure 2. The six-membered chelate ring including $\mathrm{N}(\mathbf{1})$ and $N(11)$ is in a chair conformation, similar to the conformation found in $[\mathrm{Ni}(\operatorname{tet} b)(\mathrm{OAc})] \mathrm{ClO}_{4}$, but more puckered, an effect presumably arising from interaction with the bulkier acetylacetonato-chelate. However the
second six-membered chelate ring, including $N(4)$ and $N(8)$, has quite different conformations in the two structures, adopting a chair conformation similar to the first

Figure 2 The conformation of the five-membered chelate rings: the ring atoms are projected on a plane perpendicular to that through the nickel and two nitrogen atoms and are shown on separate ions in correct relative positions.
in the tet b acetate compound and a 'twist-boat' conformation in the tet a acetylacetonato-compound (Table 5 and Figure 3). For tet a in the α-configuration with

Figure 3 The conformation of the six-membered chelate rings: the ring atoms are projected on a plane perpendicular to that through the nickel and two nitrogen atoms (see caption to Figure 2).
folded co-ordination a chair conformation for this chelate ring would have 1,3 -diaxial methyl substituents (as well as a 3 -equatorial methyl and 4 -equatorial and 6 -axial methylene groups). The strain inherent in this situation
is partially relieved by the adoption of the twist-boat conformation, which can be considered to arise by a counter rotation of $C(5)$ and $C(6)$ about an axis $\mathrm{N}(4)-\mathrm{C}(7)$, which pivots the methyl substituent on $C(5)$ into a site very similar to that found for the methyl substituent on $\mathrm{C}(12)$.

The primary co-ordination sphere of the nickel(II) ion of $[\mathrm{Ni}(\alpha-$ tet $a)(\mathrm{acad})] \mathrm{ClO}_{4}$ is closer to a regular octahedron than found for $[\mathrm{Ni}(\alpha-\operatorname{tet} b)(\mathrm{OAc})] \mathrm{ClO}_{4}$. This arises from the opening of the $\mathrm{O}-\mathrm{Ni}-\mathrm{O}$ chelate angle from $62 \cdot 4$ for the acetate to $87 \cdot 4^{\circ}$ for the acetylacetonate, with a compensating reduction in the 'opposite' bond angle $\mathrm{N}(4)-\mathrm{Ni}-\mathrm{N}(\mathrm{ll})$ from $103 \cdot 3$ to $91 \cdot 5^{\circ}$.

The nickel-donor atom bond lengths are normal for secondary amine and acetylacetonate compounds of triplet ground-state nickel(II). Dimensions within the five-membered chelate rings and the chair conformation six-membered chelate ring are similar to those for $[\mathrm{Ni}(\alpha-\operatorname{tet} b)(\mathrm{OAc})] \mathrm{ClO}_{4}$. The $\mathrm{N}-\mathrm{Ni}-\mathrm{N}$ bond angle in the 'twist-boat' six-membered chelate ring is 88.7°, less than the 92.0° observed for the ' chair' ring. A related effect occurs with two compounds of dipropylenetriamine which have one six-membered chelate ring in a chair and the other in a distorted boat conformation, the $\mathrm{N}-\mathrm{M}-\mathrm{N}$ chelate bond angle being greatest for the ring with the chair conformation. ${ }^{12}$ The large internal angle at the central methylene group of the 'chair' six-membered chelate ring, $119 \cdot 1^{\circ}$ similar to the values found for $[\mathrm{Ni}(\alpha-\operatorname{tet} b)(\mathrm{OAc})] \mathrm{ClO}_{4}$, is reduced to 113.8° for the 'twist-boat' ring. The large value of this angle seems to be a feature of chelate rings in the chair conformation which also have these three methyl substituents. It does not occur in the cyclam compounds, ${ }^{11,13}$ or in a related macrocyclic complex with different substituents. ${ }^{14}$ The mean internal ring angle at the ' tetrahedral ' atoms is 113.8 for the chair and 115.5° for the twist boat rings, suggesting that the latter has greater bond-angle strain. It also suffers greater torsional strain arising from the partial eclipsing of the $\mathrm{C}-\mathrm{H}$ and substituent C-C bonds. The observed lower stability of the compounds with the folded tet a configuration, compared with the equivalent folded tet b configuration, is considered to arise predominantly from the greater strain energy of this chelate ring. The $\mathrm{Ni}^{\mathrm{II}}(\mathrm{acac})$ moiety
is planar (Table 5) and with dimensions similar to those reported for trans $-\mathrm{Ni}(\mathrm{acac})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2},{ }^{15}$ the principle difference being a closing of the $\mathrm{O}-\mathrm{Ni}-\mathrm{O}$ bond angle from $\mathbf{9 2 . 4}{ }^{\circ}$ for the simple acetylacetonate to 87.4° for the teta compound, with a compensating opening of the $\mathrm{Ni}-\mathrm{O}-\mathrm{C}$ angles by $c a .5^{\circ}$, an effect presumably arising from the more crowded co-ordination sphere of the teta compound.

Several short interactions involving methyl groups must be important in determining details of the cation conformation $[\mathrm{C}(2) \cdots \mathrm{C}(19) 2 \cdot 87, \mathrm{C}(5) \cdots \mathrm{C}(16) 3 \cdot 25$, $\mathrm{C}(9) \cdots \mathrm{C}(16) 2 \cdot 87$, and $\mathrm{C}(12) \cdots \mathrm{C}(20) 3 \cdot 19 \AA]$.

Two of the bond lengths of the perchlorate ion indicate that its atom positions do not attain the level of accuracy found elsewhere $[\mathrm{Cl} \cdots \mathrm{O}(5) 1 \cdot 28$ and $\mathrm{Cl} \cdots \mathrm{O}(6) 1 \cdot 34 \AA]$. Evidence from the difference syntheses suggested large thermal oscillations, or equivalent static disorder, for the oxygen atoms, but there was no indication that a fractional weighting over more than one site would have been a better model for the refinement of the ion.

There are three possible hydrogen bonds in the structure, involving the 'fold-line ' nitrogen atoms $\mathrm{N}(4)$ and (equivocably) $\mathrm{N}(8)$, and the oxygen atoms $\mathrm{O}(3)$ and $\mathrm{O}(4)$ of a perchlorate ion (Table 6). These oxygen

Table 6
Hydrogen bond geometries

(a) $\mathrm{N}(4)-\mathrm{H}(6) \cdots \mathrm{O}\left(3^{\prime}\right)$				
$\mathrm{N}(4) \cdots \mathrm{O}\left(3^{\prime}\right)$	$3 \cdot 28 \AA$	$\mathrm{H}(6) \cdots \mathrm{O}\left(3^{\prime}\right)$	$2 \cdot 32$	
$\mathrm{~N}(4)-\mathrm{H}(6)$	$1 \cdot 0$	$\mathrm{~N}(4)-\mathrm{H}(6) \cdots \mathrm{O}\left(3^{\prime}\right)$	163°	
(b) $\mathrm{N}(11)-\mathrm{H}(15) \cdots$	$\mathrm{O}\left(3^{\prime}\right)$			
$\mathrm{N}(11) \cdots \mathrm{O}\left(3^{\prime}\right)$	$3 \cdot 19 \AA$	$\mathrm{H}(15) \cdots \mathrm{O}\left(3^{\prime}\right)$	$2 \cdot 51 \AA$	
$\mathrm{~N}(11)-\mathrm{H}(15)$	$0 \cdot 9$	$\mathrm{~N}(11)-\mathrm{H}(15) \cdots \mathrm{O}\left(3^{\prime}\right)$	137°	
(c) $\mathrm{N}(11)-\mathrm{H}(15) \cdots \mathrm{O}\left(4^{\prime}\right)$				
$\mathrm{N}(11) \cdots \mathrm{O}\left(4^{\prime}\right)$	$3 \cdot 33 \AA$	$\mathrm{H}(15) \cdots \mathrm{O}\left(4^{\prime}\right)$	$2 \cdot 51 \AA$	
$\mathrm{~N}(11)-\mathrm{H}(15)$	$0 \cdot 9$	$\mathrm{~N}(11)-\mathrm{H}(15)-\mathrm{O}\left(4^{\prime}\right)$	160°	

atoms seem reasonably placed, as judged by their bond lengths of 1.44 and $1.46 \AA$, \dagger so the geometry of the hydrogen bonds listed in Table 6 can be assumed basically correct. There is no hydrogen bonded network, and the crystal structure is the result of the packing of weakly hydrogen-bonded anion-cation pairs.
[2/2037 Received, 30th August, 1972]

[^1]
[^0]: ${ }^{1}$ D. A. Swann, T. N. Waters, and N. F. Curtis, J.C.S. Dalton, 1972, 1115.
 ${ }^{2}$ N. F. Curtis, J. Chem. Soc., 1964, 2644.
 ${ }^{3}$ N. F. Curtis, J. Chem. Soc., 1965, 924; J. Chem. Soc. (A), 1968, 1579 ; N. F. Curtis and Y. M. Curtis, Inorg. Chem., 1965, 4, 804; Austral. J. Chem., 1966, 19, pp. 609, 1423.

[^1]: 14 J. M. Waters and K. R. Whittle, J. Inorg. Nuclear Chem., 1972, 34, 155.
 ${ }^{15}$ H. Montgomery and E. C. Lingafelter, Acta Cryst., 1964, 17, 1481.
 ${ }_{16}$ W. R. Busing and H. A. Levy, Acta Cryst., 1964, 17, 142.

