Vibrational Spectra of some Octahedral Trimethylphosphine Complexes of Rhodium and Iridium

By Peter L. Goggin • and John R. Knight, Department of Inorganic Chemistry, The University, Bristol BS8 1TS

Infrared and Raman spectra below 800 cm⁻¹ of complexes trans-[IrX₄(PMe₃)₂]⁻, mer- and fac-[MX₃(PMe₃)₃], trans-[MX₂(PMe₃)₂]+ (X = Cl or Br; M = Rh or Ir) and the i.r. spectrum of trans-[IrCl₄(PMe₃)₂] are reported and vibrational assignments proposed. Metal-chlorine and metal-phosphorus stretching frequencies are discussed.

WE have previously studied the vibrational spectra of linear and square-planar complexes containing trimethylphosphine.¹ In this paper, we extend the measurements to octahedral complexes, IrCl₄(PMe₃)₂, $[MX_4(PMe_3)_2]^-$, mer- and fac- $[MX_3(PMe_3)_3]$ and $[MX_2^-]$ $(PMe_3)_4]^+$, so as to increase the range of comparisons of metal-neutral ligand stretching frequencies. As trimethylphosphine is a less complex ligand than those used previously in vibrational studies of rhodium and iridium complexes of these types,²⁻⁵ it should also permit more definite assignments of the MX stretching frequencies.

FREQUENCIES AND ASSIGNMENTS

Since rhodium(III) and iridium(III) octahedral complexes will have a d^6 -low spin electronic configuration, it is safe to assume that isomerisation processes will be slow. The structures and isomeric purity of the complexes reported here [except $IrCl_4(PMe_a)_2$ which is d^5 and paramagnetic] have been established by ¹H n.m.r. spectroscopy details of which will be reported elsewhere.⁶ Complexes trans-[IrX₄(PMe₃)₂]^{-1 or 0}.—The results for

¹ D. A. Duddell, P. L. Goggin, R. J. Goodfellow, M. G. Norton, and J. G. Smith, *J. Chem. Soc.* (A), 1970, 545. ² J. M. Jenkins and B. L. Shaw, *J. Chem. Soc.*, 1965, 6789.

the anions trans- $[IrX_4(PMe_3)_2]^-$ (X = Cl or Br) are listed in Table 1 together with those for IrCl₄(PMe₃)₂. Unfortunately, information on the depolarisation ratio of the Raman bands could not be obtained because the iridium(III) solutions showed photochemically induced change in the laser beam and the very intense violet colour of the iridium(IV) complex precluded any Raman measurements.

The only previous Raman study of this type appears to be $[PHPr_{3}^{n}][IrCl_{4}(PPr_{3}^{n})_{2}]^{5}$; whilst there is more i.r. data,^{2,4} the isostructural $PtX_4(PR_3)_2$ have been more extensively investigated ^{5,7} and provide a better guide to assignment. Assuming D_{4h} symmetry in the assignment of skeletal vibrations, we expect three halide stretching vibrations, A_{1q} , B_{1g} , and E_u which are easily identified. The frequencies agree with previous assignments and are all about 30 cm⁻¹ lower than in trans- $PtCl_4(PEt_3)_2$ if the A_{1g} and B_{1g} are in the same order in both cases. The $E_u(MCl_4)$ vibration has a shoulder in the solid state i.r. spectra of the IrIII complexes, and for the Ir^{IV} compound is two bands which reduce to a single feature for benzene solution. It is unlikely that the

³ P. R. Brookes and B. L. Shaw, J. Chem. Soc. (A), 1967,

^{1079.} J. Chatt, G. J. Leigh, and D. M. P. Mingos, J. Chem. Soc.

⁽A), 1969, 1674.

⁵ J. Chatt, G. J. Leigh, and D. M. P. Mingos, J. Chem. Soc.

 ⁽A), 1969, 2972.
 P. L. Goggin, R. J. Goodfellow, J. R. Knight, M. G. Norton, and B. F. Taylor, *J.C.S. Dalton*, 1973, in the press.

⁷ D. M. Adams and P. J. Chandler, J. Chem. Soc. (A), 1967, 1009.

solid is the cis isomer as the PC₃ stretching region indicates the trans configuration and has previously been shown to be useful for such differentiation.8 The two Ir-P stretching frequencies can be assigned from the bromo-derivative except that the usual ambiguity and

is C_{3v} with A_1 and E representations for the MP₃ and MX₃ stretching vibrations. The Raman studies in solution show the higher MP₃ stretching frequencies to be A_1 . Previous workers ^{4,5} have assigned the two RhCl₃ stretching vibrations of facial isomers to bands

TABLE 1

Vibr	ational spe	ectra * (below a	800 cm ⁻¹) of	trans-[IrX ₄ (PM	$[e_3)_2]^- (X = 0)$	Cl or Br) and	trans-IrCl ₄ (PM	(e ₃) ₂	
	$[\Pr_4 N][IrCl_4(PMe_3)_2]$		[PMe ₃ H][]	$[rCl_4(PMe_3)_2]$	[Prn ₄ N][Ir]	Br ₄ (PMe ₃) ₂]	$IrCl_4(PMe_3)_2$		
	I.r.	Raman	I.r.	Raman	I.r.	Raman	I.r.	I.r.	
	(mull)	(solid)	(mull)	(solid)	(mull)	(solid)	(mull)	(benzene)	
IrP. str A.	· · /	3655	· · /	363m	(<i>)</i>	365s	· ·	. ,	
A au	337m	0000	339m	000000	342m		344m.sh	342sh	
IrX. str A.		<i>311</i> vs		<i>311</i> vs		195vs	,		
B ₁₀		295s		29 3 vs		185vs	303vw,sh		
E_{u}^{iv}	309vs		<i>309</i> vs		206vs		335s	$329 \mathrm{vs}$	
-	<i>304</i> sh		$304 \mathrm{sh}$				<i>323</i> s		
PC, asym str	750m		745 sh		753s		743 m	t	
• •	740 vs	741m,bd	737vs	741m,bd	738vs	738m	740sh		
PC _a sym str	67 4 s	683s	674s	681s	675s	684s	673s	t	
PC _a asym def	276s	264 m	277s	269m	286m		278w,bd	273w,bd	
PC _s sym def	227m	212s	227 m	213s	242m	215m	227w,bd	221w,bd	
PC ₃ rock		197m		197w					
Skeletal def	170m	150s		143vs	130m				
and lattice	127w	137w			114s				
modes	96ms				86s				
	92ms				60 m				
	68w								
Cation and	516w	522w		789m	516w	34 2m			
other bands		232m			302w	313m			
Limit of Study	(40)	(110)	(200)	(110)	(40)	(160)	(200)	(200)	

* Except for skeletal stretching stretching vibrations, i.r. and Raman features are arranged side by side in spite of mutual exclusion for a centrosymmetric system. † Not investigated.

TABLE 2

Vibrational spectra (below 800 cm⁻¹) of fac-MX₃(PMe₃)₃ (M = Rh or Ir; X = Cl or Br)

		RhCl ₃ (PM	1e ₃) ₃	$RhBr_{3}(PMe_{3})_{3}$		IrCl ₃ (PMe ₃) ₃			$\mathrm{IrBr_{3}(PMe_{3})_{3}}$		
	I.r. (mull)	Raman (solid)	Raman ^a (soln.)	I.r. (mull)	Raman (solid)	I.r. (mull)	Raman (solid)	Raman ^a (soln.)	I.r. (mull)	Raman (solid)	Raman • (soln.)
$MP_{3} \operatorname{str} \begin{array}{c} A_{1} \\ E \end{array}$	391w 369m	395w 371w	389w,p 370vw,dp	388m 367s	385w 367w	399w 375s	402w 368w	396m,p 374w,dp	398m 374s	396w	394w,p 376vw,dp
$MX_3 \operatorname{str} A_1 E$	263vs 233vs	263vs 232vs	262vs,p 236s,dp	198ms 175vs	195vs 180s	283vs 264s	286vs 269m	291vs,p 268s,dp?	195s 175vs	199s 175s	196s,p 170sh,dp
PC ₃ asym str	743s 742sh 733sh	743m,sh 735m	b	736sh 729ys	736sh 729m	744sh 733s	744sh 738m	735m,dp 726sh	742sh 737vs 732s	743 m	Ь
PC ₃ sym str	688m 678s	689s 678w	b	684s 676vs	688s 680w	691m 680s	695vs 674sh	686vs,p	689s 678vs	691s	b
PC ₃ asym def	$299 { m sh} \ 282 { m sh}$	3 00w	296w,bd,dp	315m 295m	297w	298 sh			310m 293m		
PC ₃ sym def and PC ₃ rock	$255 \mathrm{sh}$ 195 w	191m 173w.sh			225s	246vs 209w 176m	248vs 204s 187sh	249s,dp 198sh	169vs	2 36 m	234m,bd,dp
MX ₃ P ₃ def and lattice	152m 148sh	158sh 146s		138s,bd	132s	150s	155sh		142s 136sh		
	5 4 w	110w,511	994	92w	108w	54 m	76w		94w		
Limit of study	(40)	(80)	324w,p (190)	(40)	(100)	(40)	(60)	(190)	(40)	(130)	(160)

^a In nitromethane. ^b Not investigated.

mixing with PC₃ deformations cannot be escaped! The internal motions of the ligand follow the assignments for trans-PtCl₂(PMe₃)₂.

Facial Isomers MX₃(PMe₃)₃.—The spectra are summarised in Table 2. The greatest attainable symmetry near 300 and 270 cm⁻¹ but for RhCl₃(PMe₃)₃, the only possible bands are 263 and 233 cm⁻¹. Whilst these frequencies are much lower than those of cis-PdCl₂(PMe₃)₂,

⁸ R. J. Goodfellow, J. G. Evans, P. L. Goggin, and D. A. Duddell, J. Chem. Soc. (A), 1968, 1604.

they bear the same relationship to those of the iridium complex as those of the palladium complex do to the equivalent platinum complex. Bands are present in previously reported spectra corresponding to the band at 233 cm⁻¹. The strong band at 246 cm⁻¹ in the spectra of $IrCl_3(PMe_3)_3$ could be regarded as an IrCl stretch but similar bands in *cis*-MX₂(PMe₃)₂ ¹ [M == Pd or Pt] have been assigned to a symmetric PC₃ deformation. As these bands are much stronger in the chloro-complexes than in the equivalent bromo-complexes, considerable mixing must occur. However, for the previously reported spectra of $IrCl_3(PR_3)_3^{4,5}$ the $IrCl_3$ frequency is can easily be identified in the spectra of *mer*-IrCl₃-(PMe₃)₃ and this assignment agrees with those by previous workers for similar complexes.^{2,4,5} We assign the rhodium complex in the same way in agreement with previous workers ³⁻⁵ but the mixing between the RhCl (*trans* to PMe₃) stretch with the PC₃ symmetric deformation at 240 cm⁻¹ (no doubt of the phosphine *trans* to it) is particularly severe. This is shown not only by its high i.r. intensity but also by its abnormally high Raman intensity and exceptional degree of polarisation.

For the iridium bromide, the strong i.r. band at 206 cm⁻¹ must be the asymmetric stretch whilst the strong,

						$\mathbf{h}_{\mathbf{P}} (\mathbf{D}_{\mathbf{P}}) = \mathbf{h}_{\mathbf{P}} (\mathbf{D}_{\mathbf{P}}) = \mathbf{h}_{\mathbf{P}} (\mathbf{D}_{\mathbf{P}})$,	L-D- (DM-)					
MP str MP ₂ str (sy (asym, MX ₂ str (sym) (asym) MX str	I.r. (mull) 387w 297sh 346vs 264s	RhCl₃(PM Raman (solid) 388w 356w 297vs 346vw 265m	le ₃) ₃ Raman <i>a</i> (soln.) 391w,p 361m,p 363wm,dp 301vs,p 257w	I.r. (mull) 388m 360s 188m 206s 176s	R I.r. b (soln.) 385m 362s 205m	hBr ₃ (PMe Raman (solid) 388w 362w 184vs	Raman 4 (soln.) 384wm,p 359w,p 362w,dp 186vs,p	I.r. (mull) 394m 364m 312sh 322vs 266vs	IrCl ₃ (I.r. ¢ (soln.) 393m 365ms 324s 272ms	PMe ₃) ₃ Raman (solid) 396w 366w <i>313</i> vs <i>326</i> sh 267s	Raman <i>«</i> (soln.) 393m,p 363m,p 365w,dp <i>311</i> vs,p	1: I.r. (mull) 394m 365s 193m 206s 178s	rBr ₃ (PMe ₃) I.r.¢ (soln.) 393m 365ms 210ms	3 Raman (solid) 397w 375vw 199vs 173m	Raman <i>a</i> (soln.) 394wm,p 364wm,p 367vw,dp 192vs,p
PC_3 asym str PC_3 sym str PC_3 asym def	740s 728vs 679m 672s 286s	745m 727m 686s 674sh	744m,dp 736w,sh,dp 683s,p 666s,p	740s 729vs 678ms 670s 308w 290w	† † 279m	738m 729m 684s	100m,. †	742vs 731vs 684s 676vs 290s	295m	745m 735m 689s 676sh	741m,dp 735m,dp 684vs,p 679sh 288w	739vs 727vs 680s 672s 312sh 299m	† † ca. 300sh	742m 734wm 689s 680sh 320vw	740m,dp 732m,dp 685vs,p
PC ₃ sym def and PC ₃ rock	237s 181w	239s 199s	240vs,p ca. 220p 196vs,p	278m	272m 245wm	222m	280w,bd,d 214s,p	P 245s	245m	246m 230w 206s	240w,sh 230s,p 203s,p	288m 229sh 172vw	230sh	292w 224m ca	290w,bd,dp 231ms,bd,p . 204w,sh
MX ₃ P ₃ det and lattice	142s 113w	146m 139sh 110w	138vs,dp	129sh 124vs		123sh 110sh		161w 147s 134sh 113m		147s 120sh 80sh	141s,dp	121s 90w		129m 119m 102s 85w 73sh 67vs 49vw 38m	
Other bands			329vw,p		335w		332w,p	352sh	356sh					259wm 251wm 154vw 145vw	334wm,p 262sh
Limit of study	(40)	(100)	(110)	(40)	(200)	(80)	(150)	(40)	(200)	(60)	(120)	(40)	(200)	(25)	(140)
				• In nitre	omethane.	In dil	promometha	ine. 🛛 In	n dichloro	methane.					

TABLE 3

Vibrational spectra (below 800 cm⁻¹) of mer-MX₃(PMe₃)₃ (M = Rh or Ir; X = Cl or Br)

† Not investigated.

close to 270 cm^{-1} so that the higher band (264 cm^{-1}) should be the more metal-chlorine stretching in nature.

Meridional Isomers MX₃(PMe₃)₃.—The observed frequencies are listed in Table 3, with assignment of skeletal stretching modes based on a C_{2v} description. The M-P stretching vibrations are easily assigned by comparison with planar $[MX(PMe_3)_3]^+$. Thus the higher frequency band in both i.r. and Raman spectra is MP (trans to X) stretching whilst the lower band is both asymmetric and symmetric vibrations of the linear MP₂ group. The latter Raman band shifts to higher frequency for the perpendicularly polarised condition indicating a contribution from the asymmetric vibration under the strongly polarised band due to the symmetric vibration. As with $[MX_3(PMe_3)]^-$ (M = Pd or Pt) the asymmetric MX₂ motion is likely to be very weak in the Raman effect but the symmetric MX₂ vibration is not necessarily very weak in the i.r. although it can be concealed under the asymmetric counterpart. These three vibrations

polarised Raman band at 192 cm⁻¹ is the symmetric counterpart. The third band, at 178 cm⁻¹, is less polarised than the symmetric MBr_2 vibration. The RhBr frequencies are similar to IrBr except that the RhBr (*trans* to PMe₃) band is hidden beneath the RhBr₂ symmetric vibration in the Raman spectra but shows its presence by the shift of this band to lower frequency under perpendicular polarising conditions.

Complex Cations $[MX_2(PMe_3)_4]^+$.—The spectra of these cations, which ¹H n.m.r. showed to have the *trans* configuration,⁶ are summarised in Table 4. The MX_2 stretching frequencies are readily identified as mutually exclusive i.r. and Raman bands near to the frequencies of the MX_2 stretching vibrations of the meridional complexes. Any band in the region 400—310 cm⁻¹ might be a MP_4 vibration except that v_2 of BF_4^- occurs as a weak Raman band at 364 cm⁻¹ and is sometimes detected in the i.r. spectra of solids. In general, five bands occur in this region, (i) 390—400 cm⁻¹, Raman-active and polarised but seen in i.r. of the rhodium complexes; (ii) ca. 380 cm⁻¹, i.r.-active only; (iii) 350—365 cm⁻¹, i.r.active and sometimes seen as a depolarised Raman band; (iv) 340—350 cm⁻¹, Raman-active only and polarised; and (V) ca. 320 cm⁻¹ with same behaviour as band (iii). The maximum possible number of MP stretching frequencies is four and the most reasonable band to assign to another cause is (v) which could be asymmetric PC₃ deformation {our previous assignment ¹ of bands near to 320 cm⁻¹ to a B_{1g} metal-phosphorus stretch in $[M(PMe_a)_4]^{2+}[M = Pd \text{ or Pt}]$ may therefore be in error}. metric stretching frequency is slightly lowered, exactly paralleling the relationship between trans-PtCl₂(PMe₃)₂ and [PtCl(PMe₃)₃]⁺. This change in the asymmetric frequency is much more marked than that caused by oxidation to Ir^{IV}. In all the complexes of meridional type that we have studied the symmetric and asymmetric trans-MP₂ frequencies are practically coincident and are lower than the M-P (trans to halide) frequency, reflecting the well established relative trans influences of phosphines and halides.

The metal-phosphorus frequencies in the rhodium

	VI	Diation	ai spectra	(below	800 cm -)	of irans-	[MA2(PMe	3)4] (1)	1 = Kn	or ir; $\Lambda =$	= CI OI	r Br)	
	[RhC	Cl ₂ (PMe ₃) ₄][[BF4]	$[RhBr_2(PMe_3)_4][BF_4]$				$[IrCl_2(PMe_s)_4][NO_3]$			[lrBr ₂ (PMe ₃) ₄][NO ₃]		
MP4 str	1.r. (mull) 391w 380w	Raman (solid)	Raman (soln.) ¢ 394w,p	I.r. (mull) 390w 375w	I.r. (soln.) <i>a</i> 370wm	Raman (solid) 390vw	Raman (soln.) ø 386w,p	I.r. (mull) 378w	Raman (solid)	Raman (soln.) a 402wm, p	I.r. (mull)	Raman (solid)	Raman (soln.) a 397w,p
MX, str (sym)	352sh	350m <i>302</i> vs	364w,dp 338w,bd,p <i>302</i> s,p	352w	353vw	352wm 340? <i>188</i> vs	352w,dp 344wm,p 189vs p	363w	340w 314vs	360vvw 335wm,bd,p <i>316</i> vs p	364w	350w 199vs	364w,dp 347vw,p 192vs p
(asym)	<i>361</i> s	362w	502-JF	211s	205ms	20070	100.0,p	329vs		01000,p	214vs	100 43	102V3,P
PC ₃ asym str	737s 723s	740m 728w	742wm,dp 725wm,dp	7375 7275 725sh	т	733m 730m 720m	740wm,dp 724wm.dp	740s 725s	741m 731m	745wm,dp 727wm,dp	737s 722s	739m 728w	738m,dp 722 wm,d p
PC3 sym str	684w	688m 678s	684sh,p 678ms,p	669s	†	677s	678ms,p	073	683vs	684s,p	450	684m	681s,p
PC3 asym def	669s 320w 292s 286sh	324w		6665 3195 2895 2835b	328wm,sh 320ms 290m	286wm	318w,dp 287m dp	671s 320sh 298s 290s	670w,sh		670s 319s 305s 291e		
PC ₈ sym def and PC ₃ rock	236s		262w,p	250w	2 00M	2000.11	20711,up	248sh 242m	236s	229s,p	240m	238m	228s,p
	185w	228m 198s	2195,p 201sh 185m dp			227m	217s,bd,p	210w	201s	215sh 196s,dp			208sh 176w.dp
MX ₂ P ₄ def and	169w		100111,012					163w	163m				110%,0p
lattice	137s 104w		139m,dp	126vs 92sh 88m		120w		128s 105s 90m			127s 92m	1 14 w	
	76m 61sh			65m				73m 61sh			73m		
$BF_4(\nu_1)$ Limit of study	(40)	(150)	(110)	(40)	(200)	(I00)	(120)	(40)	(150)	(180)	(40)	(80)	(140)
						a In pitro	mothene						

TABLE 4

Vibrational spectra (below 800 cm⁻¹) of trans- $[MX_2(PMe_3)_4]^+$ (M = Rh or Ir; X = Cl or Br)

* In intrometnane.
 * Not investigated.

It is difficult to imagine the remaining four bands as anything but MP_4 vibrations but if they are, there are two totally symmetric motions, no degeneracies, and a lack of mutual exclusion between Raman and i.r., and the point group must be of relative low symmetry such as C_s or C_2 . This lowering of symmetry could be due to the orientations of the PC₃ groups or non-planarity of the MP_4 skeleton or both. Whilst it would be possible to rationalise the top three frequencies with A_{1g} , E_u , and B_{1g} vibrations of a D_{4h} structure such an interpretation is not logically justified.

DISCUSSION

Along the series $[IrCl_4(PMe_3)_2]^-$, mer-IrCl_3(PMe_3)_3, $[IrCl_2(PMe_3)_4]^+$ there is a general increase in IrCl stretching frequencies for groups in which chlorine atoms are *trans* to each other, suggesting that the charge at the metal actually is increasing as the formal positivity of the complex increases, the neutral phosphine being a poorer donator of charge than the negative halide. Between the first and second members the asymmetric IrP₂ stretching frequency increases very markedly although the symcompounds are all a little lower than those of the iridium analogues, behaviour similar to that observed between palladium and platinum complexes.

Comparing Pt and Pd planar complexes $[MCl_3PMe_3]^$ and *cis*-MCl₂(PMe₃)₂ with Rh and Ir octahedral *mer*- and *fac*-MCl₃(PMe₃)₃ respectively, the M-Cl (*trans* to PMe₃) frequencies of the latter are lower for elements in the same period than those of the former, commonly by 10-20 cm⁻¹. Since there is much more vibrational frequency data published for Pt and Pd complexes, this relationship may prove useful in Rh and Ir studies.

Because of its colour, we only have information on i.r. active vibrations of *trans*- $IrCl_4(PMe_3)_2$, but it is still of interest to compare these with those of the isostructural Ir^{III} compound. The $B_u(IrCl_4)$ frequency is increased on oxidation by 20 cm⁻¹ whilst the $A_{2u}(IrP_2)$ frequency is only half as sensitive. In so far as any trend can be inferred from such limited data, it appears that the strengthening of the Ir-Cl bonding is greater than that of Ir-P.

There is a close relationship between trends in Ir-P and IrCl frequencies and the relevant bond lengths in (a) mer-IrCl₃(PMe₂Ph)₃ and (b) trans-IrCl₄(PMe₂Ph)₂, the bond lengths (in Å) being (a) Ir-P (trans to Cl) = 2.277, (a) Ir-P (trans to P) = 2.363, (b) Ir-P 2.392 and (b) Ir-Cl = 2.324, (a) IrCl (trans to Cl) 2.361, (a) IrCl (trans to P) = 2.429.9

EXPERIMENTAL

Preparation of Compounds.-Analytical data are presented in Table 5. Complexes containing anions $[IrX_4(PMe_3)_2]^-$. Chloroiridic acid (0.87 mmol) was dissolved in ethanol (15 ml) and a little concentrated HCl (5 drops) added. This solution, in a Carius tube, was heated on a water bath until the colour lightened to brownish green. Trimethylphosphine (3.3 mmol), generated from freshly prepared AgIPMe₃, was condensed on to this solution at liquid N₂ temperature. The tube was sealed and warmed to 80 °C until all solid had dissolved (ca. 1 h). The tube was cooled, opened, and solvent removed to yield a solid which on recrystallisation from methanol gave pink crystals of [PMe₃H][IrCl₄-(PMe₂)]. When this compound was dissolved in a minimum of water and a slight excess of $Pr_{4}^{n}NCl$ added, $[Pr_{4}^{n}N]$ -[IrCl₄(PMe₃)₂] was precipitated; this was obtained as pink crystals by recrystallisation from methanol. To obtain which was recrystallised from methanol. The rhodium chloride complexes have been reported before but the *fac*-isomer was evidently not pure.¹⁰

The iridium complexes were prepared by the same method as that described for the anionic complexes except that a higher PMe_3 : Ir ratio (5:1) and much longer reaction times at 80 °C (3 days) were used. The products were treated as outlined above for rhodium. Solutions of the *mer*-isomers in dichloromethane were found to deposit crystals of the much less soluble *fac*-isomer if left to stand (after a day).

Cationic Complexes.—A solution of mer- $MX_3(PMe_3)_3$ in dichloromethane was stirred with 1 mol equivalent of $AgNO_3PMe_3$ for 12 h. The solution was filtered and removal of the solvent yielded $[MX_2(PMe_3)_4][NO_3]$. A solution of this product in a minimum of water yielded a precipitate of $[MX_2(PMe_3)_4][BF_4]$ when treated with a few drops of 40% aqueous fluoroboric acid. The product was recrystallised from dichloromethane, after drying with dried MgSO₄, by slow addition of ether.

 $IrCl_4(PMe_3)_2$ was prepared by oxidation of $[Pr^n_4N]$ - $[IrCl_4(PMe_3)_2]$ in chloroform with the required amount of a solution of chlorine in chloroform. The solvent was evaporated under reduced pressure and the desired product

	Analytical	data for the	complexes		
Compound	Colour	M.p.	С	н	N
[PMe ₃ H][IrCl ₄ (PMe ₃) ₂]	Pink	280 a	19·45(19·4) b	$5 \cdot 2(5 \cdot 0)$	
[Prn4N][IrCl4(PMe3)2]	Pink	239	32.55 (32.6)	6·9(7·0)	$1 \cdot 9(2 \cdot 1)$
$[Pr_4^nN][IrBr_4(PMe_3)_2]$	Brown	252	$24 \cdot 8(25 \cdot 4)$	$5 \cdot 4(5 \cdot 5)$	$1 \cdot 6(1 \cdot 65)$
fac-RhCl _a (PMe ₃)	Very pale yellow	252	24·45(24·7)	6·2(6·2)	· · /
fac-RhBr ₃ (PMe ₃) ₃	Pale yellow	245	19.15(18.9)	$5 \cdot 1(4 \cdot 7)$	
fac-IrCl ₃ (PMe ₃) ₃	White	363	20.6(20.5)	$5 \cdot 2(5 \cdot 1)$	
fac-IrBr ₃ (PMe ₃) ₃	White	358	$16 \cdot 3(16 \cdot 35)$	$4 \cdot 1 (4 \cdot 1)$	
mer-RhCl ₃ (PMe ₃) ₃	Yellow	232	24.7(24.7)	$6 \cdot 0(6 \cdot 2)$	
mer-RhBr ₃ (PMe ₃) ₃	Orange	260	19-1(18-9)	$5 \cdot 1(4 \cdot 7)$	
mer-IrCl ₃ (PMe ₃)	Yellow	295	20.6(20.5)	5.0(5.1)	
mer-IrBr ₃ (PMe ₃) ₃	Yellow	325 d	$16 \cdot 6(16 \cdot 35)$	$3 \cdot 7(4 \cdot 1)$	
$[RhCl_2(PMe_3)_4][BF_4]$	Yellow	208	$25 \cdot 75(25 \cdot 45)$	6·4(6·4)	
$[RhBr_2(PMe_3)_4][BF_4]$	Yellow	215	$22 \cdot 1(22 \cdot 05)$	5.7(5.5)	
[IrCl ₂ (PMe ₃) ₄][NO ₃]	Pale yellow	245	23.05(22.9)	$6 \cdot 0(5 \cdot 7)$	$2 \cdot 45 (2 \cdot 25)$
$[IrBr_2(PMe_3)_4][NO_3]$	Yellow	251	20.15(20.05)	$5 \cdot 1(5 \cdot 0)$	$2 \cdot 0(1 \cdot 95)$
$\operatorname{IrCl}_4(\operatorname{PMe}_3)_2$	Purple	190	14-95(14-8)	3.6(3.7)	. ,

TABLE 5

^a Turns yellow at 180°. ^b Calculated values (%) in parentheses. ^d With decomposition.

 $[\Pr_4 N][IrBr_4(PMe_3)_2]$ a solution of bromoiridium(IV) acid, obtained from K_2IrBr_6 by ion-exchange, in a minimum of water was used as the starting material. It was mixed with ethanol and concentrated HBr and treated as in the above method. When most of the solvent had been removed after reaction, a slight excess of $\Pr_4 NBr$ in a minimum of water was added to precipitate the product, which was purified by dissolving in dichloromethane, drying with dried MgSO₄, and slowly reprecipitating with ether.

mer- and fac- $MX_8(PMe_8)_8$.—Hydrated rhodium trihalide (1 mmol) was dissolved in methanol (15 ml) and trimethyl phosphine (4 mmol) was condensed into it. The mixture was allowed to warm up to room temperature and stirred (10 min). The solution was evaporated to dryness; the residue was extracted with benzene and on evaporation yielded the *mer*-isomer which was recrystallised from methanol. The benzene-insoluble residue was continuously extracted with dichloromethane to yield the *fac*-isomer

⁹ L. Aslanov, R. Mason, A. G. Wheeler, and P. O. Whimp, Chem. Comm., 1970, 30.

obtained as deep purple crystals from an ether extract, and recrystallised from dichloromethane.

Vibrational measurements were made as previously described ¹¹ except that in order to get high enough concentrations for Raman studies of solutions, the nitromethane solutions of the *fac*-isomers were studied at 60 °C.

We thank Dr. R. J. Goodfellow of this department for useful discussions and his help in the preparation of the manuscript. We gratefully acknowledge a grant to purchase a Coderg Raman spectrometer and C.R.L. laser and a postgraduate studentship (to J. R. K.) both from the S.R.C. We also wish to thank Professor I. R. Beattie (Southampton University) for facilities for initial measurements of some of the Raman spectra.

[2/2778 Received, 11th December, 1972]

¹⁰ G. M. Intille, Inorg. Chem., 1972, **11**, 695.

¹¹ P. L. Goggin, R. J. Goodfellow, and F. J. S. Reed, J. Chem. Soc. (A), 1971, 2031.