Preparation and X-Ray Powder Diffraction Patterns of the Sodium Vanadates NaVO₃, Na₄V₂O₇, and Na₃VO₄

By Marten G. Barker • and Alan J. Hooper, Department of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD

The reactions of various sodium oxo-compounds with vanadium pentoxide and sodium metavanadate are described. Products of reaction are characterised by means of thermal gravimetric analysis, differential thermal analysis, and powder X-ray crystallography. Sodium metavanadate, NaVO₃, and sodium pyrovanadate, Na $_4V_2O_7$, are found to possess two temperature-dependent structural modifications, whilst four structural modifications of the orthovanadate, Na₃VO₄, are obtained depending on the method of preparation.

THE sodium oxide-vanadium pentoxide phase diagram ^{1,2} indicates the presence of two alkali-metal-rich vanadates, namely the pyrovanadate, Na4V2O7, and the orthovanadate, Na₃VO₄. Together with the metavanadate, $NaVO_3$, these compounds represent the least well characterised compounds in the sodium oxidevanadium pentoxide system. Although the alkalimetal vanadates were first prepared in 1831,³ they have only in recent years been investigated in any detail.⁴

series of solid-state reactions were carried out, and the products of these reactions together with those from the d.t.a. and t.g.a. experiments were examined by X-ray powder diffraction. The results of the X-ray diffraction study are reported later in the paper.

RESULTS AND DISCUSSION

D.t.a. and t.g.a. of the reactions between sodium carbonate and vanadium pentoxide in the molar ratios

TABLE 1	
Differential thermal analysis of Na CO VO reaction	mixt

Differ	ential thermal a	nalysis of $Na_2CO_3-V_2O_5$:	reaction mixtures
$Na_2CO_3: V_2O_5/mol$	Temp./°C	Transition type	Assignment
1:1 (heating)	530	Sharp endo. ^a	Melting Na ₂ O: V_2O_5 40 : 60 mol %
• •	570	Sharp exo. ^b	Solidification NaVO ₃
	620	Sharp endo.	Melting NaVO ₃
1:1 (cooling)	570	Sharp exo.	Solidification NaVO ₃
• •	450	Broad, small exo.	Oxygen-loss
2:1 (heating)	530	Endo.	Melting $Na_2O: V_2O_5 40: 60 \mod \%$
	555	Endo.	Melting $Na_2O : V_2O_5 57 : 43 \mod \%$
	570	Small endo.	Melting $Na_2O: V_2O_5 60: 40 \mod \%$
2:1 (cooling)	650	Sharp exo.	Solidification $Na_4V_2O_7$
	429	Sharp, small exo.	Phase transition $Na_4V_2O_7$
3:1 (heating)	535	Endo.	Melting $Na_2O: V_2O_5$ 41:59 mol %
	555	Endo.	Melting $Na_2O: V_2O_5 58: 42 \mod \%$
	615	Small endo.	Melting $Na_2O: V_2O_5 63: 37 \text{ mol } \%$
3:1 (cooling)	555	Small endo.	$Na_{3}VO_{4}$ (IV) $Na_{3}VO_{4}$ (III)
			phase transition

• Endo. = Endothermic. ^b Exo. = exothermic.

The general method used for the preparation of the sodium vanadates is the reaction of sodium carbonate with the pentoxide, V2O5. Equimolar proportions of these reactants yield the metavanadate, whilst proportions in the ratios 2:1 and 3:1 (Na₂CO₃: V₂O₅) give the pyro- and ortho-vanadates.

Polymorphism has been reported for all the alkalimetal-rich sodium vanadates and the transition temperatures between the high- and low-temperature forms have been determined.^{2,5,6} However, in the case of the pyrovanadate the X-ray powder diffraction patterns of both forms were not reported.

We describe here the reactions of various alkali-metal oxo-compounds with vanadium pentoxide for the range of compositions between $Na_2O: V_2O_5$ 1:1 and 4:1. Reactions were followed by differential thermal analysis (d.t.a.) and thermogravimetric analysis (t.g.a.) and the results of these will be described first. A separate

¹ G. Canneri, Gazzetta, 1928, **58**, 6. ² A. A. Fotiev and B. V. Slobodin, Zhur. priklad. Khim., 1965, 38, 801.

1:1, 2:1, and 3:1 were carried out with an identical heating rate. The results (Table 1) are in good agreement in terms of both temperature and composition with those shown in the phase diagram of ref. 2.

Sodium metavanadate was found to exhibit pronounced supercooling, and the weak transition at 450 °C may be attributable to an oxygen-loss effect similar to that observed in the preparation of the vanadium bronzes. The phase transition of sodium pyrovanadate at 429 °C was readily observed on cooling, but not so easily detected on subsequent heating. The t.g.a. curve for the reaction of 3 mol of sodium carbonate with 1 mol of the pentoxide showed that the formation of the pyrovanadate was relatively rapid but the further reaction of 1 mol of sodium carbonate to give the orthovanadate was much slower. No thermal effects were therefore observed for the slower reaction on the d.t.a.

⁴ M. Lelong, Rev. Chim. minérale, 1966, 3, 259.
 ⁵ I. Lukacs and C. Strusievici, Z. anorg. Chem., 1962, 315,

³ J. J. Berzelius, Pogg. Ann., 1831, 22, 1.

<sup>323.
&</sup>lt;sup>6</sup> G. Le Flem and R. Olazcuaga, Bull. Soc. chim. France, 1968,

and the traces for the 2:1 and 3:1 reactions were therefore identical. The reaction of sodium oxide and sodium metavanadate was also studied by d.t.a. Reaction took place at the much lower temperature of 265 °C giving a large exothermic peak. On cooling, a small reversible endothermic transition at 330 °C was observed.

TABLE 2

	X-Ray	diffract	ion pa	ttern of (a) a-N	$Ma_4V_2O_7$
$d/{ m \AA}$	I/I ₀	$d/{ m \AA}$	I/I_0	$d/{ m \AA}$	I/I_0	$d/\text{\AA} I/I_0$
6.56	15	2.714	5	2.025	30	1.650 1
4.796	30	2.683	45	1.989	1	1.635 1
4.599	2	2.656	100	1.985	1	1.629 1
4.353	3	2.622	15	1.814	2	1.622 10
3.995	50	2.578	3	1.794	3	1.613 20
3.786	15	2.532	12	1.784	12	1.537 3
3 ∙ 6 26	5	$2 \cdot 481$	6	1.774	3	1.530 2
3.548	35	$2 \cdot 281$	10	1.767	1	1.514 1
3·3 02	55	2.259	10	1.758	1	1.503 5
3.008	2	$2 \cdot 222$	6	1.743	5	
2.862	25	2.080	1	1.725	1	
2.739	1	2.067	1	1.667	2	
(b) β·	Na ₄ V ₂ O	7				
$d/{ m \AA}$	I/I_0	$d/{ m \AA}$	$I/I_{\rm 0}$	$d/{ m \AA}$	I/I_{0}	$d/\text{\AA} I/I_0$
5.609	10	3.243	35	$2 \cdot 254$	8	1.674 8
5.372	4	3.137	30	$2 \cdot 141$	25	1.583 10
4.928	6	$2 \cdot 979$	4	$2 \cdot 103$	6	1.551 - 6
4 ·647	15	$2 \cdot 912$	2	2.010	10	1.499 8
4.529	8	$2 \cdot 823$	100	1.945	4	1.466 6
4 ·230	20	2.600	25	1.903	20	1.431 30
4.077	6	$2 \cdot 468$	2	1.884	35	
3.842	8	2.398	4	1.841	6	
3.389	4	2.332	4	1.698	2	

X-Ray Powder Diffraction Studies.—Sodium metavanadate. The X-ray powder diffraction patterns of the products obtained from both the d.t.a. and t.g.a. experiments and from corresponding mixtures of sodium patterns of these products showed them to contain unreacted pentoxide.

The low-temperature form was prepared by the addition of a stoicheiometric quantity of sodium hydroxide in solution to a boiling solution of ammonium metavanadate. Evaporation to dryness of the solution on a water bath gave orange plate-like crystals which, when ground, gave a cream coloured powder. The X-ray diffraction pattern of the powder showed it to be the low-temperature form of sodium metavanadate β -NaVO₃.⁵ No structure change was evident for the thermal effect observed at 450 °C by d.t.a., but some line-broadening was observed at this temperature. The sample changed from white to grey during the thermal cycle, and exhibited a small weight gain (ca. 0.35%) and restoration of the white colouration when re-heated in oxygen at 400 °C.

Sodium pyrovanadate, Na4V2O7. X-Ray powder diffraction patterns of the pyrovanadate showed that the phase transition at 429 °C is not completely reversible, both high- and low-temperature forms being present. Attempts to obtain a pure sample of the high-temperature form by quenching molten pyrovanadate were unsuccessful. The X-ray diffraction pattern of the high-temperature form $(\beta - Na_4V_2O_7)$ was obtained by use of a high-temperature X-ray diffraction camera, the sample being maintained at 600 °C for 24 h before exposure of the film. By use of the data for the hightemperature phase the pattern of the low-temperature phase was established by removal of the lines due to the former from the pattern for a mixture of both phases. The X-ray diffraction patterns of both forms are given in Table 2.

Stoicheiometric reaction (Na : $V 3 : 1$)								
Expt. no.	Reaction	Ratio	Atmosphere	Temp./°C	Time/h	Modification *		
(1)	$Na_2CO_3 + V_2O_5$	3:1	Air	700	t .	(IV) + (III)		
(2)	$Na_2CO_3 + V_2O_5$	3:1	Ar	700	÷	(IV) + (III)		
(3)	$Na_2CO_3 + V_2O_5$	3:1	O2	700	ŧ	(IV) + (III)		
(4)	$Na_2CO_3 + V_2O_5$	3:1	Ar	600	$\overline{72}$	(II) + (IV)		
(5)	$NaOH + V_2O_5$	6:1	N_2	600	24	(IV) + (III) + (I)		
(6)	$Na_2O + V_2O_5$	3:1	Ar	600	24	(III) + (IV)		
(7)	$Na_2O_2 + V_2O_5$	3:1	Air	600	÷,	(IV) + (III) + (I)		
(8)	$Na_2O + NaVO_3$	1:1	Ar	315	9 ē	(I) + (IV) + (III)		
(9)	$Na_2O + NaVO_3$	1:1	Ar	375	4	$(\mathbf{I}) + (\mathbf{IV})$		
(10)	$Na_2O + NaVO_3$	1:1	Ar	600	24	(III) + (IV)		

TABLE 3

* Modification of Na₃VO₄ produced, in order of bulk. \dagger T.g.a. experiments; in these the reaction mixtures were heated to 700 °C at 14° min⁻¹, maintained at that temperature for 4 h, and then cooled to 200 °C at 14° min⁻¹.

carbonate and the pentoxide heated in argon, oxygen, and air indicated the formation of the high-temperature form of the metavanadate, α -NaVO₃. The X-ray pattern was in excellent agreement with that given in ref. 5. The low-temperature form of sodium metavanadate may not be prepared by the reaction of sodium carbonate and the pentoxide, since for complete reaction, the mixture must be heated to form the eutectic composition at 530 °C. Reaction mixtures which were heated for long periods below this temperature did not reach equilibrium and X-ray diffraction Sodium orthovanadate, Na_3VO_4 . This compound was prepared by the reaction of either vanadium pentoxide with sodium carbonate, sodium hydroxide, sodium peroxide, or sodium oxide, or of sodium metavanadate and sodium oxide (Table 3). The X-ray diffraction patterns of the products from these reactions were not, however, identical. Close examination of the patterns revealed the existence of some four different phases. Chemical analyses (Table 4) gave values in good agreement with those calculated for the stoicheiometry Na_3VO_4 , and this was also confirmed by t.g.a. of the sodium carbonate-vanadium pentoxide reactions. The analytical results indicate that the four phases observed by use of X-ray diffraction are therefore phase modifications of the compounds Na₃VO₄. To assist in the recognition of these phases they have been numbered in

TABLE 4 Chemical analyses

Chemie	ar anaryoe,	,	
Preparation	%Na	%V	%O (difference)
$3Na_2CO_3 + V_2O_5$ (700°, air)	37.6	27.7	34.7
$3Na_2O + V_2O_5$ (600°, air)	37.3	27.7	35.0
$Na_2O + NaVO_3 (315^\circ, Ar)$	37.3	$27 \cdot 6$	$35 \cdot 1$
$3Na_2CO_3 + V_2O_5$ (650°, O_2)	37.6	$27 \cdot 6$	$34 \cdot 8$
Na_3VO_4 (calc.)	37.5	27.7	34-8

the	Tables	with	Roman	numerals	in	parentheses,	e.g.
Na,	VO. (IV) and	will be :	referred th	us	in the text.	

Preparations at 700 °C by use of sodium carbonate gave products which were identical irrespective of the atmosphere used. The products were however faintly coloured and feebly paramagnetic [the products of experiments (1)--(3) gave values for the roomtemperature magnetic moment μ_{eff} of 0.612, 0.625, and 0.603 B.M.]. The colour and paramagnetism of the samples suggests some reduction of the vanadium had taken place possibly by oxygen loss. A decrease in temperature of the reaction [experiment (4)] gave a less paramagnetic product Na_3VO_4 (II) as the major constituent. The reaction of sodium oxide with sodium metavanadate at either 315 or 375 °C [experiments (8) and (9)] gave a white product, which in both cases consisted largely of the phase Na_3VO_4 (I). Although reaction takes place at the lower temperature, it is also very exothermic and the subsequent rise in temperature gives rise to the formation of the more reduced phases Na₂VO₄ (IV) and Na₃VO₄ (III) in small quantities. If the reaction mixture is heated to 600 °C [experiment (10)] the phase Na_3VO_4 (I) is no longer produced, the products being Na_3VO_4 (II) and Na_3VO_4 (IV).

Mixed-phase regions. An X-ray study of the compounds formed in the regions between Na4V2O7 and Na_3VO_4 (Table 5) showed that the pyrovanadate was

TABLE 5 The region Na₄V₂O₇ to Na₃VO₄ Expt. Ratio Atmo- $\mathrm{Na_2CO_3}:\mathrm{V_2O_5}$ Products sphere no. 2.0:1 $\begin{array}{l} {\rm Na_4V_2O_7} \\ {\rm Na_4V_2O_7} + {\rm Na_3VO_4} \ ({\rm IV}) \\ {\rm Na_4V_2O_7} + {\rm Na_3VO_4} \ ({\rm IV}) \end{array}$ Air (1) (2) (3) (4) (5) (6) (7) (8) (9) $2 \cdot 2 : 1$ Air $2 \cdot 4 : 1$ Air $2 \cdot 6 : 1$ Air' $2 \cdot 8 : 1$ Air ${\rm Na_{3}VO_{4}}$ (IV) + ${\rm Na_{4}V_{2}O_{7}}$ + ${\rm Na_{3}VO_{4}}$ (III) Ar $2 \cdot 6 : 1$ 2.8:1Ar $2 \cdot 6 : 1$ O_2 2.8:1O2) $\begin{array}{l} \mathrm{Na_4V_2O_7}\\ \mathrm{Na_3VO_4}\left(\mathrm{IV}\right) + \,\mathrm{Na_4V_2O_7} \end{array}$ 4:1* (10) $\bar{N_2}$ 5:1* (11) N_2

* NaOH: V_2O_5 at 600 °C for 24 h; experiments (1)---(9) were t.g.a. at 700 °C. \dagger Na₄V₂O₇ refers to a mixture of both high- and low-temperature forms.

always present in both the high- and low-temperature modifications with an excess of the latter over the former. The orthovanadate was always present as the

modification Na_3VO_4 (IV) together with, at the higher Na: V ratios, the modification Na₃VO₄ (III). Thermogravimetric analyses gave the observed loss of CO₂ to be in good agreement with that calculated for the formation of mixtures of the pyro- and ortho-vanadates. Reactions were also carried out (Table 6) between vanadium pentoxide and both sodium carbonate and sodium oxide in which the Na : V ratio was >3 : 1. All the products contained unreacted carbonate or oxide;

Table	6
-------	---

	The all	kali-me	tal-rich	region	, Na : V >3 : 1
Expt.		Atmo-	Temp.	Time/	Modification of
n o.	Ratio	sphere	°C	h	$Na_{3}VO_{4}$
(1)	3.2:1	Air	700	*	(IV) + (III)
(2)	3.4:1	Air	700	*	(IV)
(3)	3.2:1	Ar	700	*	(IV) + (III)
(4)	$3 \cdot 4 : 1$	Ar	700	*	(IV)
(5)	3.2:1	О,	700	*	(IV) + (III)
(6)	3.4:1	Ο,	700	*	(IV) + (III)
(7)	3.25:1	Air	600	2	(IV) + (III)
(8)	3.5:1	Air	650	1	(IV)
(9)	4.0:1	Air	650	1	(IV)
(10)	3.1:1	Ar	600	24	(III) + (IV) + (I)
(iii)	3.2:1	Ar	600	24	(II)' + (IV)'
(12)	3.3:1	Ar	600	24	(III) + (IV)
(13)	3.4:1	Ar	600	24	(II)' + (IV)'
(14)	3.5:1	Ar	600	24	(III) + (IV) + (I)
(15)	7.0:1	N.	600	24	$(\mathbf{IV}) + (\mathbf{III}) + (\mathbf{I}) +$
• •		4			ŇaOH Í

* All t.g.a.

for the sake of clarity, these have been omitted from the Table.

The modification Na_3VO_4 (IV) was produced in all reactions involving sodium carbonate and is apparently stabilised by the higher alkali-metal content in nonoxidising atmospheres. Room-temperature magnetic measurements on this modification showed it to be the most paramagnetic of the forms of the orthovanadate (µeff 0.811 B.M.).

The reaction of sodium oxide with vanadium pentoxide was very exothermic and it seems probable that the less oxygen-deficient phases are produced in the reaction but undergo oxygen loss due to the rapid rise in temperature on reaction.

X-Ray powder diffraction data. Interplanar spacings and relative intensities for the four modifications of the compound Na₃VO₄ are given in Table 7. Only the phase Na₃VO₄ (IV) could be satisfactorily indexed having a cubic structure based on the zinc sulphide lattice. Changes in the lattice parameter were observed from different preparations, varying from 7.60 to 7.69 Å suggesting a fairly wide stoicheiometry range. This compound is isostructural with the γ -form of sodium arsenate Na₃AsO₄ ⁷ (a = 7.669 Å) and contains four formula units per unit cell. This phase has been reported recently,8 and may now be best referred to as γ -Na₃VO₄ in view of its structural relationship with γ -Na₃AsO₄ and γ -Na₃PO₄. In the same paper,⁸ a phase

M. Palazzi and F. Remy, Bull. Soc. chim. France, 1971, 2795. ⁸ G. Le Flem, R. Olazcuaga, J. P. Parant, J. M. Réau, and C. Foussier, *Compt. rend.*, 1971, C, **273**, 1358. X-Ray diffraction patterns of modifications of Na_3VO_4

(a) Na	a ₃ VO ₄	(I)									
$d/{ m \AA}$	I/I_{0}		d/Å	I/I_0		d/Å	$I/I_{\rm 0}$		d	Å	I/I_0
6.15	10	3	·363	25	2	$\cdot 259$	40		1.8	59	20
5.574	10	3	$\cdot 154$	20	2	·067	10		1.8	24	15
4.695	50	2	·885	10	2	·040	30		$1 \cdot 6$	72	5
3.849	20	2	.645	100	1	$\cdot 981$	30		1.6	21	10
3.591	15	2	$\cdot 362$	20	1	·961	5				
(b) Na	a₃VO₄	(II)									
$d/\text{\AA}$	I/I_0	d	/Å	I/I_{0}		$d/{ m \AA}$	I/I_{0}		d/	Å	I/I_{0}
6.11	18	3	$\cdot 54$	10	2	$\cdot 567$	10		$1 \cdot 9$	91	10
4.81	2	3	·46	1	2	$\cdot 485$	15		1.9	47	5
4.61	22	- 3	$\cdot 377$	2	2	$\cdot 364$	1		1.9	38	10
4.34	40	3	.045	100	2	·307	12		1.7	63	35
4·18	12	2	.956	2	2	.189	6		1.5	77	18
4.09	20	2	·828	2	2	$\cdot 159$	14		1.5	36	3
4.00	12	2	·760	70	2	$\cdot 129$	3		1.4	89	12
3.83	8	2	$\cdot 672$	80	2	.092	3		$1 \cdot 4$	73	6
3.63	5	2	·604	10	2	·047	30				
(c) Na	a ₃ VO ₄	(III)									
$d/{ m \AA}$	I/I_{0}		d _l Å	I/I_0	6	$l/{ m \AA}$	I/I_{0}		d	Å	I/I_0
4.33	40	3	.069	5	2	·401	10		1.8	26	1
4.19	50	2	·945	15	2	$\cdot 395$	10		1.7	83	10
3.99	40	2	.788	50	2	$\cdot 332$	1		$1 \cdot 6$	84	5
3.64	15	2	·706	10	2	$\cdot 156$	50		$1 \cdot 6$	43	2
3.55	20	2	.564	2	2	$\cdot 127$	2				
3.45	2	2	$\cdot 546$	100	2	·019	2				
3.170	1	2	·478	60	1	·989	3				
(<i>d</i>) N	a₃VO₄	(IV)									
$d/{ m \AA}$	h	k l	I/I	0		d	Å	h	k l		I/I_{0}
4.40	1	11	- 9	0		1.6	14	4	0 0		25
3.80	2	0 0	4	5		1.7	57	3	31		8
2.702	2	20	10	0		1.7	05	4	$2 \ 0$		2
2.304	3	11	1	5		1.5	64	4	$2 \ 2$		18
2.199	2	$2 \ 2$	1	6		1.4	67	3	33		8
<i>a</i> =	= 7.60	Å. D	(17.7)	7 °C)	= 2.72	2 at	17.7 °	с. 2	Z ==	4 (Found
3 ·91).		.,		-)				, -		- (

 β -Na₃VO₄ was prepared, being isostructural with the orthorhombic form of Na₃AsO₄. This phase is almost identical to Na₃VO₄ (II) but does not contain some of the weak lines observed in the diffraction pattern of the latter compound. The phase Na₃VO₄ (II) was observed in an earlier paper ⁶ which described the formation of a low-temperature phase α -Na₃VO₄, by the reaction of sodium carbonate and vanadium pentoxide at 600 °C in argon. The X-ray powder diffraction pattern of α -Na₃VO₄ (II) and the cubic form γ -Na₃VO₄.

The phase Na_3VO_4 (III) closely resembles that of Na_3VO_4 (II) and is almost identical to the phase reported in ref. 4, if the diffraction lines due to γ -Na₃VO₄ are removed from the published X-ray diffraction pattern. The phase Na_3VO_4 (I) has not been reported previously.

Inter-relationship of the Phase Modifications of the Orthovanadate, Na_3VO_4 .—The relationship between the various phases of Na_3VO_4 is obviously complex. Le Flem has observed ⁸ that β -Na_3VO_4 may be converted into γ -Na_3VO_4 by heating to 700 °C, and that annealing of γ -Na_3VO_4 for 1 week at 450 °C initiated a reversal to β -Na_3VO_4. We have shown that all other modifications may be converted into γ -Na_3VO_4 by prolonged heating to 700 °C in inert atmospheres. A high-temperature

X-ray study showed that the formation of γ -Na₃VO₄ commenced at 340 °C from Na₃VO₄ (I), 450 °C from Na₃VO₄ (II), and 555 °C from Na₃VO₄ (III). We have not, however, studied the reversibility of these transitions.

Changes in the relative intensities of the diffraction lines of the γ -form of Na₃VO₄ took place on heating the compound in a high-temperature X-ray diffractometer. The temperature at which this transformation (which was reversible) occurred was dependent upon the initial lattice parameter of the compound, being at 430 °C for the compound with the cell constant a = 7.69 Å, and at 750 °C for a = 7.60 Å. The X-ray diffraction pattern of this high-temperature phase is given in Table 8. At

TABLE 8

X-Ray powder diffraction pattern of the high-temperature form of Na_3VO_4 at 550 °C

h k l	I/I _o	$d/{ m \AA}$	h k l	I/I_{0}
111	100	1.953	400	10
2 0 0	20	1.787	$3\ 3\ 1$	2
$2\ 2\ 0$	65	1.737	420	1
311	4	1.590	422	8
$2\ 2\ 2$	1	1.501	333	4
	$\begin{array}{cccccc} h & k & l \\ 1 & 1 & 1 \\ 2 & 0 & 0 \\ 2 & 2 & 0 \\ 3 & 1 & 1 \\ 2 & 2 & 2 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

temperatures >800 °C all forms of the orthovanadate lost sodium oxide giving the pyrovanadate Na₄V₂O₇.

That a large number of phases is reported for Na_3VO_4 , suggests that these are not simply temperature modifications, but may be the result of oxygen-loss effects. The observed paramagnetism and colouration of all the phases, other than Na_3VO_4 (I), implies that some reduction has taken place, the most paramagnetic species being γ -Na₃VO₄. The effect is most pronounced in preparations which require melt conditions to attain complete reaction. Reactions involving sodium carbonate, sodium oxide, and sodium hydroxide with the pentoxide all showed signs of fusion. Only the reaction of sodium oxide and the metavanadate, NaVO₃, occurred without melting, and the product of this reaction, Na₃VO₄ (I), was the least-reduced phase observed.

EXPERIMENTAL

Reagents.—The preparation of sodium oxide has been described previously.⁹ Sodium hydroxide, sodium carbonate, and vanadium pentoxide were of AnalaR grade and were dried to constant weight before use.

Chemical Analyses.—All samples were readily dissolved in water. Vanadium analyses were carried out by titration of V^{4+} in solution (obtained by sulphur dioxide reduction) with potassium permanganate. Sodium was determined by flame photometry.

Differential Thermal Analysis.—The apparatus used consisted of four chromel-alumel thermocouple junctions all set at the same vertical height and arranged symmetrically about the central axis of a tubular electrical furnace. Two of these junctions were connected so that their differential thermal e.m.f. was recorded on a single-pen chart recorder. On each of these two junctions was mounted a sample container, one containing the thermally inert reference material, alumina, and the other containing the sample.

⁹ M. G. Barker and D. J. Wood, J.C.S. Dalton, 1972, 9.

1973

The quantities of alumina and sample used were as near identical as possible. The remaining thermocouples were used to provide (a) a direct measurement of the temperature and (b) a normal thermal analysis on a sample contained in a holder identical to that used for the differential analysis. The furnace was programmed to give a linear heating or cooling rate.

Thermogravimetric Analysis.—The apparatus used has been described previously.⁹

[2/2383 Received, 17th October, 1972]