Reaction of Oxides of Nitrogen with Some Silicon Halides and Hydridehalides

By Bernard J. Aylett,* Ian A. Ellis, and John R. Richmond, Chemistry Department, Westfield College, Hampstead, London NW3 7ST

The interaction of SiF₄, Si₂F₆, SiCl₄, Si₂Cl₆, SiH₃I, SiH₃Br, SiF₃I and p-CIC₆H₄SiH₃ with nitrogen oxides chosen from N₂O, NO, N₂O₃, N₂O₄, and N₂O₅ has been studied with and without u.v. irradiation. There is very little reaction between SiF₄ and N₂O, NO, N₂O₄, or N₂O₅ at room temperature. Below *ca.* -60° , SiF₄ reacts with N₂O₃ (but not with N₂O₄ or N₂O₅) to give a 1:1 adduct, probably NO⁺(SiF₄, NO₂)⁻, which dissociates and decomposes above 0°. Both NO and N₂O₄ react with Si₂F₆ to produce (SiF₃)₂O and its disproportionation products, but Si₂Cl₆ with NO, N₂O₃, or N₂O₄, and SiCl₄ with NO usually give NOCI and polychloro-siloxanes or -silanes. The iododerivatives SiF₃I and SiH₃I chiefly form disiloxanes and N₂O or N₂ with NO, but in the former case some oligomeric fluorosiloxanes including cyclic (SiF₂O)₂ are produced with irradiation; SiH₃Br and NO yield SiH₂Br₂ and (SiH₃O)_n (especially n = 4) under similar conditions. The reaction of SiHCl₃ and NOCI produces HCl, N₂O, and chlorosiloxanes. No clear evidence for isolable Si-nitroso-compounds was obtained in any system.

THERE have been few comprehensive studies of the reactions of nitrogen oxides with simple silicon compounds. Despite early reports ¹ that SiF_4 reacted with NO, N_2O_3 , N_2O_4 , and N_2O_5 , Caillat ² found that N_2O_4 and N_2O_5 were without effect on SiF₄ under a variety of conditions. Also N_2O_4 and NOCI did not react ³⁻⁵ with SiCl₄, but N_2O_5 did,⁶ while SiHCl₃ and N_2O_4 rapidly produced NOCl and HCl.7 In a comparative study, Spialter and Austin⁸ showed that a variety of compounds containing Si-H, Si-Si, and Si-C bonds were oxidized by nitrogen oxides at room temperature, and that the general order of reactivity was: $N_2O_4 >$ $N_2O_3 > NO \gg N_2O$. Brief preliminary reports ^{9,10} have stated that photolysis with NO results in oxidation of SiH₄, Si₂Cl₆, SiHCl₃, or Me₃SiCl and formation of NOCl (in the last three cases), N₂O, and possibly N₂.

The silicon-containing product in those cases where reaction occurs is normally silica or a siloxane. In a few cases, however, it has been possible to isolate intermediates. A recent preliminary report ¹⁰ describes the characterization of SiCl₃NO from the brief reaction of $SiCl_4$ or Si_2Cl_6 with NO under u.v. irradiation; the other products were (SiCl₃)₂O, NOCl, N₂O, and N₂. Two Si-nitroso-compounds, R_3 SiNO (R = Ph or SiMe₃), have been isolated ¹¹ from the reaction of R₃SiLi and NOCl, but they decompose well below room temperature, probably forming disiloxanes. Intermediates with Si-N bonds have also been proposed (but not isolated) for the

¹ F. Kuhlmann, Annalen, 1841, 39, 319; Ann. Chim. Phys.,

1841, [3], 2, 116. ² R. Caillat, Bull. Soc. chim. France, 1944, [5], 11, 453; Ann. Chim. (France), 1945, [11], 20, 367.

 ³ R. Weber, Pogg. Ann., 1863, 118, 471.
 ⁴ J. F. X. Harold, J. Amer. Chem. Soc., 1898, 20, 13.
 ⁵ I. R. Beattie and K. M. Livingston, J. Chem. Soc. (A), 1969, 859.

M. Schmeisser, Angew. Chem., 1955, 67, 493.

 ⁷ A. Besson and L. Fournier, Compt. rend., 1909, 148, 1192.
 ⁸ L. Spialter and J. D. Austin, J. Amer. Chem. Soc., 1966, 88, 1828.

⁹ K. R. R. Prased, B. K. Sahay, A. K. Ray, A. Signorelli, and R. Varma, Abstracts 4th International Conference on Organometallic Chemistry, Bristol, 1969, M10; R. H. Kagann, A. K. Ray, and R. Varma, ibid., M11.

¹⁰ R. Varma and K. H. Kagann, Abstracts 163rd. American Chemical Society National Meeting, Boston, Mass., U.S.A., 1972, INOR 138; R. Varma and P. Orlander, *ibid.*, INOR 139.

¹¹ J. Jappy and P. N. Preston, J. Organometallic Chem., 1969, 19, 196.

siloxane-forming reactions of SiF₂ with NO,¹² (SiMe₃)_n- NMe_{3-n} (n = 1-3) with NOCl,¹³ and $(SiH_3)_2NMe$ with NOCL¹⁴ Finally, in a thorough study of the mercury-sensitized photolysis of methylsilanes, Nay et al.¹⁵ found that added NO resulted in the formation of disiloxanes; with MeSiH₃, they were able to isolate a compound formulated as MeSiH₂ON(SiH₂Me)N(SiH₂Me)- $OSiH_2Me$, and it was suggested that this arose from (MeSiH₂ON=)₂, itself formed by the addition of NO to MeSiH₂· radicals and subsequent dimerization. Decomposition of (MeSiH₂ON=)₂ provided a route to the observed (MeSiH₂)₂O, N₂, and N₂O.

The present work was undertaken to gain a clearer understanding of reactions of oxides of nitrogen with simple Si-H and Si-halogen compounds. In particular the behaviour of SiF_4 was compared with that of the more studied BF_{3} ,¹⁶ and the possibility that silicon might form analogues of C-nitroso-compounds such as CX₃NO (X = H, F, or Cl) was explored.

EXPERIMENTAL

All reactions were carried out using high-vacuum or dry-box techniques. Pressures were measured with sensitive glass spiral or spoon gauges, and i.r. spectra were recorded on a Perkin-Elmer 337 spectrometer. Products were separated by trap-to-trap distillation or with a 5 ft, jacketed, low-temperature fractionation column,17 then generally characterized by measurement of vapour density, vapour pressures at various temperatures, and i.r. spectra. For u.v. irradiation, either 150 W or 1 kW sources were used, together with a quartz reaction tube and mercury ¹² J. M. Bassler, P. L. Timms, and J. L. Margrave, Inorg.

Chem., 1966, 5, 729. ¹³ J. E. Byrne and C. R. Russ, J. Organometallic Chem., 1970, **22**, 357; F. A. Lavallee and C. R. Russ, Inorg. Nuclear Chem. Letters, 1970, 6, 527.

14 C. Glidewell and D. W. H. Rankin, J. Chem. Soc. (A), 1970,

¹⁴ C. Glidewell and D. W. H. Rankin, J. Chem. Soc. (A), 1910, 279.
¹⁵ M. A. Nay, G. N. C. Woodall, O. P. Strausz, and H. E. Gunning, J. Amer. Chem. Soc., 1965, 87, 179.
¹⁶ (a) G. B. Bachman, H. Feuer, B. R. Bluestein, and C. M. Vogt, J. Amer. Chem. Soc., 1955, 77, 6188; (b) G. B. Bachman and J. Hokama, *ibid.*, 1957, 79, 4370; (c) G. B. Bachman and J. L. Dever, *ibid.*, 1958, 80, 5871; (d) R. W. Sprague, A. B. Garrett, and H. H. Sisler, *ibid.*, 1960, 82, 1059; (e) J. C. Evans, H. W. Rinn, S. J. Kuhn, and G. A. Olah, Inorg. Chem., 1964, 3, 857; (f) A. B. Ray, *ibid.*, 1967, 6, 110; (g) S. Ikawa and S. Maeda, Bull. Chem. Soc. Japan, 1969, 42, 1462.
¹⁷ (a) G. E. Coates, J. Chem. Soc., 1951, 2003; (b) B. J. Aylett, I. A. Ellis, and J. R. Richmond, J.C.S. Dalton, 1973, 981.

sensitization in most cases: variations are indicated in the Tables.

Tetrafluorosilane,18 (p-chlorophenyl)silane,19 iodosilane,19 and di-iodosilane¹⁹ were prepared by literature methods, and the last two were converted into bromo- and dibromosilane by passage over dry mercuric bromide. Trifluoroiodosilane resulted from the reaction ^{17b} of hydrogen iodide with SiF₃NMe₂. Fluorination of hexachlorodisilane with antimony trifluoride below room temperature yielded crude

mixture at 254 nm for 15 min, the only new products were N_2 and $(SiF_3)_2O$, corresponding to about 0.2% reaction. Representative reactions with other oxides are summarized in Table 1. SiF_4 alone was unaffected by long irradiation.

Reaction of Tetrafluorosilane with 'Lithium Nitrosyl.'- SiF_4 (4.9 mmol) was shaken at 60° for 17 h with the solid derived from 4.9 mmol each of lithium and NO. The nitrogen-containing volatile products were N_2 (0.3 mmol), N_2O (0.2 mmol) and NO (3.9 mmol). The dark grey solid

TABLE 1

Reactions of SiF₄ with nitrogen oxides

$\frac{\text{SiF}_4}{\text{mmol}}$	Oxide	Temp.	Pressure		Time	
mmol	mmol	°C	atm	Irradiation •	h	Products/mmol
19.5	NO, 39	25	15(g) ^b	No	15	No reaction •
19.5	NO, 39	25	6(g)	Yes. P/Hg	0.2	NO; SiF_4 ; $(SiF_8)_2O(0.01)$
19.5	NO, 39	25	10(g)	Yes. Q/Hg	0.2	$N_{2}O$ (trace); NO; SiF ₄ ; (SiF ₃) ₂ O (0.05)
19.0	NO, 38	25	5(g)	No	6550	$N_{2}O$ (trace); NO; SiF ₄ ; (SiF ₂), O (1.0)
6.3	$N_{2}O_{4}, 5\cdot 2$	25	3(1)	No	120	$N_{2}O_{4}$; SiF ₄ (6·2); (SiF ₃) ₂ O (0·05) •
12.8	$N_{2}O_{5}, 7.4$	5	3(1)	No	84	$O_2(0.5)$; N_2O_4 ; N_2O_5 ; $SiF_4(12.4)$; $(SiF_3)_2O(0.2)$
2.98	$N_{2}O_{3}, 3.70$	84	-(1)	No	1	Solid adduct; N_2O_3 (0.78) ^d

• P. Pyrex reaction vessel. Q, quartz reaction vessel. b Phase present during reaction. • Red colour below $ca. -150^{\circ}$. BF₃-NO mixtures are similarly orange at low temperatures (ref. 16f). • Combining ratio (SiF₄:N₂O₃) 1:0-98. Similar stoicheio-metry when SiF₄ in excess. I.r. (thin film, -80°): 2120w [v(NO⁺)]; 1380vs, 1290s, 1250s [all v(NO₂-)]; 1100w; 1030vs (SiF₄); 1020sh; 750vs, br cm⁻¹. The adduct decomposed at room temperature to give NOCI, SiF₄, and a solid {i.r.: 1370vs [v(NO₂-)]; 1100m, br (SiO₂); 1025m; 836w; 824w; 720s, br (SiF₆²-) cm⁻¹}, partly involatile at 300°. • Gas-liquid titrations showed no interactions at -64°.

TABLE 2

Reactions of Si_2X_6 (X = F or Cl) with nitrogen oxides

Disilane	Oxide	Temp.	Pressure		Time	
mmol	mmol	°C	atm	Irradiation •	h	Products/mmol
Si ₂ F ₆ (5.0)	NO (10·6)	25	4(1) ^b	No	72•	SiF_4 ; N ₂ O; NO (0.2); Si_2F_6 (trace); $(SiF_3)_2O$; $(SiF_2O)_n^{d}$
		_				solid $(SiF_2O)_z^{e}$
Si ₂ F ₆ (5·3)	NO (10·6)	25	0·2(g)	Yes. Q/Hg	0.12	SiF_4 ; N ₂ O (trace); NO (10.5); Si_2F_6 (5.2); solid (trace)
$Si_{2}F_{6}(1.6)$	NO (3·3)	25	0·2(g)	Yes. \dot{Q}/I_2	0.12	$N_{2}O$ (trace); NO (3.3); Si ₂ F ₄ (1.6)
$Si_{2}F_{6}(1.5)$	N_2O_4 (1.6)	5	1(g)	No	17	SiF_4 (trace); NO; N_2O_4 ; Si_2F_6 (0.9); (SiF ₃) ₂ O (trace);
						solid $(SiF_2O)_{\pi}$ (0.0985 g) •
Si_2F_6 (1.4)	N_2O_4 (2.6)	25	2(1)	No	12	SiF_2 (trace); N_2O ; NO ; N_2O_4 ; $(SiF_3)_2O$ (trace); solid
			• •			(SiF ₂ O) _z
Si ₂ Cl ₆ (5·2)	NO (30·3)	25	5(1)	No	16	N ₂ O; NO (28.7); Si ₂ Cl ₆ ; (SiCl ₃) ₂ O; liquid chlorosiloxanes
,	、					$(0.020 \text{ g})^{\prime}$
Si_2Cl_6 (4.3)	NO (4·9)	25	1(1)	No	604 0	$N_2O(2.0)$; NO (0.8); Si ₂ Cl ₆ ; (SiCl ₃) ₂ O
Si ₂ Cl ₆ (5·0)	NO (4·9)	25	5(1)	Yes. P	0.25	NO (3.7) ; NOCl; Si ₂ Cl ₆ ; (SiCl ₂) ₂ O; liquid chlorosiloxanes
2 0 ()	× /		()			$(0.005 \text{ g})^{f}$
Si ₂ Cl ₆ (7·4)	NO (9·3)	25	1.5(1)	Yes. Q/Hg	18	NOCl (9.3); Si ₂ Cl ₆ ; (SiCl ₃) ₂ O (trace); solid chloro-poly-
- 2 - 0 (-)	()		()	~1 0		silanes and -siloxanes
$Si_{2}Cl_{6}$ (5.8)	N_2O_4 (0.30)	-3	0.5(1)	No	6000	Incondensible gas (0.30) NOCl (0.59) ; Si ₂ Cl ₆ (5.3) ; solid
			(-)			(0.0482 g) *
Si ₂ Cl ₆ (5·4)	' N ₂ O ₃ ' (1·25)	5	1(1)	No	6000 I	NOCI (2·4); SiCl ₄ ; solid ¹
			-(-/			

• Pyrex vessel; Q, quartz vessel. • Phase present. • A red colour appeared after some hours, but disappeared with longer reaction times. The compound responsible for this colour could not be isolated. • Refers to volatile oligomers. • The solid appeared inert towards hot alkali. On heating to 350° in vacuo, it evolved traces of SiF₄ and (SiF₃) O, but the i.r. spectrum was unchanged. / Purple liquid, partly held at -23° . V.P.: 6 mmHg/25°. I.r. (gas) showed bands at 1120, 1082, 808, 765, and 718 cm⁻¹. • Involatile at 350° in vacuo. • Equivalent to 0.24 mmol of 'Si₂Cl₄'. • Reaction appeared complete after 5 min. / Involatile at 200° in vacuo. volatile at 300° in vacuo; slowly hydrolysed, giving SiO₂ and HCl.

hexafluorodisilane, which was purified by repeated fractionation from the column at -85° . Oxides of nitrogen were prepared by standard routes and then rigorously dried and fractionated. Reaction of the stoicheiometric quantity of nitric oxide with 1% lithium amalgam with shaking for 40 min led to its complete absorption and formation of a mixture of 'lithium nitrosyl' and mercury.20

Reactions of Tetrafluorosilane with Nitrogen Oxides .---SiF₄ and N₂O did not react in the gas phase at 25° even after 10 weeks; after mercury-sensitized irradiation of the

B. J. Aylett, I. A. Ellis, and C. J. Porritt, J.C.S. Dalton, 1972, 1953.
 B. J. Aylett and I. A. Ellis, J. Chem. Soc., 1960, 3415.

product was shown (qualitative analysis, i.r.) to contain Li⁺, SiF₆²⁻, and fluorosiloxane polymers, together with finely divided mercury.

Reactions of Hexafluoro- and Hexachloro-disilane with Nitrogen Oxides.—Si $_2F_6$ and NO did not react after 72 h in the gas phase at 25°; systems in which reaction occurred are summarized in Table 2. Control experiments showed that Si_2F_6 , Si_2Cl_6 , and NO, alone and under the same conditions, were essentially unaffected by gas-phase irradiation.

Reactions of Bromo-, Iodo-, and Trifluoroiodo-silane with 20 H. Hohn, V. Gutmann, and O. Sova, Monatsh., 1957, 88, 502.

Nitric Oxide.—There was no reaction after 20 min between these halogenosilanes and nitric oxide at low pressure (ca. 0.2 atm) and room temperature. At higher pressures (with a liquid phase present) or with irradiation, reaction proceeded to give the products shown in Table 3. Control experiments showed that irradiation of the halogenosilanes alone under similar conditions merely led to slight (ca. 1%) disproportionation.

Other Reactions.—(a) An equimolar mixture of SiCl₄ and NO produced only a trace of NOCl after 72 h at room temperature; when irradiated for 1.5 h, SiCl₄ (7.6 mmol) and NO (8.4 mmol), yielded N₂ (trace), N₂O, NO (6.5 mmol),

 SiF_4 at low temperatures, while gas-liquid titrations of the N_2O_4 -SiF₄ system at -64° showed no interaction. The normal decomposition of N_2O_5 to N_2O_4 and oxygen was unaffected by the presence of SiF₄, confirming ref. 2.

was unaffected by the presence of SiF_4 , confirming ref. 2. With N_2O_3 at -84° , there was immediate formation of a 1:1 solid adduct, involatile at that temperature, when either component was initially in excess. At room temperature, the vapour pressure of the adduct exceeded 1 atm; at first, it re-formed unchanged on cooling, but after several such cycles irreversible changes gave a solid, involatile at room temperature.

TABLE 3

Reactions of SiF ₃ I,	SiH ₃ I, and	SiH,Br with	nitric oxide ^a

Silyl derivative	NO	Pressure		Time	
mmol	mmol	atm	Irradiation •	h	Products/mmol
SiF ₃ I (4.6)	24.4	4(1) ^ø	No	720	N_2O ; NO (20.6); SiF ₄ ; SiF ₃ I; SiF ₂ I ₂ ; I ₂ ; solid fluorosiloxanes.
$SiF_{3}I(2\cdot 2)$	$2 \cdot 2$	1(g) ^b	Yes. Q/Hg	0.25	$N_2(0.4)$; N_2O ; NO ; SiF_4 ; SiF_3I ; SiF_2I_2 (trace); $(SiF_3)_2O$; $(SiF_2O)_n d$;
					HgI_2
SiH ₃ I (7·5)	78	10(1)	\mathbf{No}	20 •	N_2O ; NO ; SiH_3I (3.0); $(SiH_3)_2O$; Compound A'; solid siloxanes; I_2
SiH ₃ I (9.8)	10.0	5(1)	Yes. Q	0.1	$N_2O(0.1)$; NO (9.8); SiH ₃ I (9.6); (SiH ₃) ₂ O (0.1); I ₂
$SiH_3I(0.4)$	0.6	0·1(g)	Yes. Q/Hg	0.25	H_2 (trace); N_2O ; NO ; SiH_3I ; $(SiH_3)_2O$ (trace); $(SiH_2O)_n$ (trace); HgI_3
SiH_3Br (4.7)	$23 \cdot 2$	7(1)	No	2	N_2O ; NO; SiH ₃ Br; (SiH ₃) ₂ O; (SiH ₂ O) _n q
$SiH_3Br(5.9)$	13.0	4(1)	No	106	N_{2}/H_{2} (0.2); $N_{2}O$; NO (10.5); $SiH_{3}Br$ (4.6); $SiH_{2}Br_{2}$; (SiH_{3}), O (trace);
• • •		• •			$(SiH_2O)_n$, solid
SiH ₃ Br (6·2) ^A	$25 \cdot 9$	8(1)	No	21	N_2/H_2 (0.25); N_2O ; NO (24.1); SiH ₃ Br; (SiH ₂ O) _n ; solid
$SiH_{3}Br(5\cdot8)$	$12 \cdot 2$	1•5(g)	Yes. P	0.2	N_2/H_2 ; N_2O ; NO ; SiH_3Br ; $SiH_2Br_2(0.4)$; $(SiH_3)_2O$ (trace); $(SiH_2O)_n e^{i_1}$
$SiH_{3}Br(3\cdot9)$	$11 \cdot 1$	1(g)	Yes. Q	0.1	N_2/H_2 ; N_2O ; NO ; SiH_3Br ; SiH_2Br_2 ; $(SiH_3)_2O$; $(SiH_2O)_n r$; solid
• All experiments carried out at 25° • Phase present • P. Pyrey vessel • quartz vessel • Pumped from column at					

• All experiments carried out at 25°. • Phase present. • P, Pyrex vessel. Q, quartz vessel. • Pumped from column at -128° , slightly less volatile than $(SiF_{3})_{2}O$; M, 170 \pm 20; decomposed to solids with essentially no evolution of SiF₄; i.r. (gas): 1170s, br, 1020sh, 990vs, br, 881sh, 875m, 870sh, 425w cm⁻¹. • Even after 48 h, $\geq 60\%$ of SiH₃I was oxidized. I.r. (gas): 2210s, 1660s, 1460w, 1295s, 1280sh, 1190m, br, 940vs, 750m, br cm⁻¹. Passed -46° , held at -96° . • Chiefly n = 4; see text. * With tin foil (10 mmol). • Found: M, 188. Calc. for (SiH₂O)₄, 184.

NOCl (1.3 mmol), SiCl₄ (7.2 mmol), (SiCl₃)₂O (trace), and solid (shown by i.r. to be chlorosiloxanes and/or silica).

(b) When NOCl and an excess of SiHCl₃ were irradiated for 1 h, all NOCl was consumed and the products were HCl, N₂O, SiHCl₃, (SiCl₃)₂O (trace), and a mixture of chlorosiloxanes. Under similar conditions, SiHCl₃ alone was essentially unchanged: after irradiation for 20 h, more than 90% of the starting material was recovered, together with small amounts of H₂ and an almost involatile yellow oil.

(c) An equimolar mixture of (chlorophenyl)silane and NO was unchanged after 192 h at room temperature.

RESULTS AND DISCUSSION

Reactions with SiF_4 .—Generally, SiF_4 was rather unreactive towards oxides of nitrogen (Table 1); only with N_2O_3 did more than 5% react, even after long reaction times or with irradiation. Small amounts of $(SiF_3)_2O$ no doubt resulted from attack on walls of the vessel by SiF_4 , but the formation of some N_2O from NO suggests reaction (1). No NOF was detected: it is

$$2SiF_4 + 4NO \longrightarrow (SiF_3)_2O + N_2O + 2NOF$$
 (1)

reported ²¹ to react with glass or silica, forming SiF₄ and N_2O_3 . Neither N_2O_4 nor N_2O_5 gave solid adducts with

• No interaction between NOCl and SiF₄ was observed down to -96° ; cf. M. E. Peach and T. C. Waddington, J. Chem. Soc., 1963, 799, and ref. 5.

²¹ C. Woolf, Adv. Fluorine Chem., 1965, 5, 1.

²² K. Nakamoto, 'Infrared Spectra of Inorganic and Coordination Compounds,' Wiley, New York, 1963; D. M. L. Goodgame and M. A. Hitchman, *Inorg. Chem.*, 1964, **3**, 1389; 1965, **4**, 721. These changes were conveniently followed by observing the i.r. spectrum of a thin film of adduct inside a cooled cell.

A 1:1 adduct, possibly NO⁺BF₃,ONO⁻, is reported between BF₃ and N₂O₃ at low temperatures,^{16b} although the final products are given by equation (2).^{16e, f} In

$$SN_2O_3 + 8BF_3 \longrightarrow 6NOBF_4 + B_2O_3$$
 (2)

this case, the 1:1 adduct at -84° is formulated as NO⁺SiF₄,ONO⁻, with NO₂⁻ possibly bidentate.²² The solid decomposition product contains NO₂⁻ and SiF₆²⁻ (refs. 22 and 23) as well as SiO₂; (NO)₂SiF₆, expected by analogy with equation (2) dissociates rather readily,²⁴ and NOF thus produced can react further with the glass. The observed anions in the solid and NOCl * in the volatile products probably arise by reaction with cell windows (*cf.* ref. 25).

The strong interaction between SiF_4 and N_2O_3 and lack of it between SiF_4 and N_2O_4 or N_2O_5 at -64° may be rationalized by noting that these oxides tend to ionize as $NO^+NO_2^-$, $NO^+NO_3^-$, and $NO_2^+NO_3^-$ respectively,²⁶ and that NO_3^- is a poorer electron donor

²³ G. M. Begun and A. C. Rutenberg, *Inorg. Chem.*, 1967, 6, 2212 and references therein.

²⁴ F. Seel and H. Massat, Z. anorg. Chem., 1955, 280, 186.
 But see also: A. Chrétian and P. Bouy, Compt. rend., 1958, 246, 2493 and S. J. Kuhn, Canad. J. Chem., 1967, 45, 3207.
 ²⁵ Cf. ref. 16e.

²⁶ F. A. Cotton and G. Wilkinson, 'Advanced Inorganic Chemistry,' Interscience, New York, 3rd edn., 1972; C. B. Colburn, 'Developments in Inorganic Nitrogen Chemistry,' vol. I, Elsevier, Amsterdam, 1966. than NO_2^- . Only with more powerful electron acceptors than SiF₄ may adducts such as NO⁺(SnX₄,NO₃)⁻ (X = F or Cl) be isolated.27

Lithium nitrosyl, $(LiNO)_x$, now considered ²⁸ to be a cis-hyponitrite rather than Li⁺NO⁻, reacted readily with SiF_4 at 60°. All of the NO was displaced, some 12%having been reduced to nitrogen and 8% to N_2O . The SiF_4 was partly converted into fluorosiloxane polymers and SiF_6^{2-} , but no evidence for SiF_3NO was found. Few reactions of lithium derivatives with SiF_4 have been attempted,29 but some are thermodynamically favoured and should be useful in synthesis.

Reactions with Si_2X_6 (X = F or Cl).—It was hoped that Si₂F₆ might react with NO after photolytic cleavage of the Si-Si bond to give SiF₃NO. In the event, gaseous mixtures were almost unaffected by irradiation in the presence of either mercury or iodine (Table 2). Formation of small amounts of N₂O gave some evidence for reaction according to equation (3), X = F. When a liquid phase was present, almost all Si₂F₆ was consumed, and $ca. 2 \mod of NO$ were used per mol of Si_2F_6 . Besides the products required by equation (3), SiF₄ and fluoro-

$$\operatorname{Si}_{2}X_{6} + 2\operatorname{NO} \longrightarrow (\operatorname{Si}X_{3})_{2}O + \operatorname{N}_{2}O$$
 (3)

siloxane oligomers arose from disproportionation ³⁰ of $(SiF_3)_2O$; control experiments showed that Si_2F_6 alone yielded only small amounts of SiF_4 .

By contrast, reaction between Si₂F₆ and N₂O₄ followed equation (4), X = F, in either gaseous or gas-liquid

$$\operatorname{Si}_{2}X_{6} + \frac{1}{2}\operatorname{N}_{2}O_{4} \longrightarrow (\operatorname{Si}X_{3})_{2}O + \operatorname{NO}$$
 (4)

systems. As before, (SiF₃)₂O reacted further to give SiF_4 and $(SiF_2O)_n$; additional reduction of NO to N_2O was observed when a liquid phase was present.

With Si₂Cl₆ and NO, relatively brief reaction times led to the formation of a rather involatile purple liquid; under irradiation, some NOCl was also formed. The i.r. spectrum of the liquid showed bands consistent with the formation of SiCl₂O(SiCl₂O)_nSiCl₂ and (SiCl₂O)_n species, but gave no indication of any nitrogen-containing product; the origin of the colour is not known. Longer reaction times without irradiation led to products in amounts consistent with equation (3), X = Cl; with long irradiation, almost all NO was converted into NOCl, and the solid product was chiefly chloropolysilanes. Similarly, after prolonged reaction of Si_2Cl_6 with NO + $\frac{1}{2}N_2O_4$ (viz. ' N_2O_3 ') or N_2O_4 below room temperature, essentially all nitrogen was present as NOCl (equation 5).

$$Si_{2}Cl_{6} + N_{2}O_{x} \longrightarrow 2NOCl + solids \qquad (5)$$
$$(x = 3 \text{ or } 4)$$

All excess of Si₂Cl₆ disproportionated with N₂O₃, and this

may be related to the superior Lewis base strength of NO_2^- referred to earlier.

Reactions with SiF₃I and SiH₃X (X = Br or I).-Typical reactions between SiF₃I and NO are summarized in Table 3. Equimolar amounts in the gas phase, irradiated in presence of mercury, produced (SiF₃)₂O and fluorosiloxane oligomers from its disproportionation; NO was simultaneously reduced to N₂O and nitrogen. It should be noted that the fluorosiloxane oligomers decomposed to give solid polymers with no evolution of SiF₄. This fact, and their volatility, molecular weight, and i.r. spectra suggest (on the basis of a recent discussion ^{17b} of fluorosiloxanes) that they are cyclic $(SiF_2O)_n$ species, where *n* is chiefly 2. Without irradiation, appreciable reaction only occurred if a liquid phase was present. No nitrogen or volatile fluorosiloxanes were observed, but, after some weeks, disproportionation of SiF₃I became noticeable. In all cases no evidence for SiF₃NO was found, while the initial reaction could be represented by equation (6) or (7) (with irradiation) (X = F).

$$2\text{SiX}_{3}\text{I} + 2\text{NO} \longrightarrow (\text{SiX}_{3})_{2}\text{O} + \text{N}_{2}\text{O} + \text{I}_{2} \quad (6)$$
$$2\text{SiX}_{3}\text{I} + \text{NO} \longrightarrow (\text{SiX}_{3})_{2}\text{O} + \frac{1}{2}\text{N}_{2} + \text{I}_{2} \quad (7)$$

Table 3 shows that SiH₃I also reacted with NO according to equation (6) (X = H), either in the liquid phase or in the gas phase with irradiation. In one case, a small amount of liquid was isolated with i.r. absorptions more indicative of a nitrite or nitrate than of a nitrosoderivative.³¹ The liquid decomposed readily to (SiH₃)₂O NO, and N₂O; it may be noted that previous attempts to prepare alkylsilicon nitrites or nitrates from alkyliodosilanes and the appropriate silver salt have also led to disiloxane formation.32

SiH_aBr gave small amounts of similar products in the gas phase without irradiation, except that no free halogen was observed. As no NOBr was formed either, it appears that bromine was incorporated into the solid products, no doubt by direct reaction with Si-H bonds. In the liquid phase or with irradiation, the chief products were given by equation (8), in which displaced bromine

$$2\text{SiH}_{3}\text{Br} + 2\text{NO} \longrightarrow$$
$$\text{SiH}_{2}\text{Br}_{2} + \frac{1}{n}(\text{SiH}_{2}\text{O})_{n} + \text{N}_{2}\text{O} + \text{H}_{2} \quad (8)$$

appears as SiH₂Br₂. The i.r. spectra of more volatile samples of $(SiH_2O)_n$ (held at -96° , passed -82°) were similar to that reported ³³ when n = 4; less volatile samples (held at -82°) may have corresponded to n = 5or 6. If tin foil was added to the unirradiated mixture of SiH₃Br and NO, some $(SiH_2O)_n$ and N₂O (but not SiH_2Br_2) were slowly formed, analogously to reaction (6).

 ²⁷ C. C. Addison and W. B. Simpson, J. Chem. Soc. (A), 1966,
 775; R. D. Peacock and I. L. Wilson, *ibid.*, 1969, 2030.
 ²⁸ J. Goubeau and K. Laitenberger, Z. anorg. Chem., 1963, 320,
 78; N. Gee, D. Nicholls, and V. Vincent, J. Chem. Soc., 1964,

²⁹ U. Wannagat, H. Bürger, and F. Höfler, *Monatsh.*, 1968, 99, 1198; N. Wiberg and B. Neruda, Abstracts International Symposium Organosilicon Chemistry, Prague, 1965, p. 232.

³⁰ H. S. Booth and R. S. Osten, J. Amer. Chem. Soc., 1945, 67, 1091, and other citations in ref. 17b.
³¹ L. J. Bellamy, 'The Infrared Spectra of Complex Molecules,' Methuen, London, 2nd edn., 1960.
³² C. Eaborn, J. Chem. Soc., 1950, 3077; M. Schmidt and H. Schmidbaur, Angew. Chem., 1959, 71, 220.
³³ H. J. Campbell-Ferguson, J. Inorg. Nuclear Chem., 1965, 97 2121

^{27, 2121.}

More highly polymerized $(SiH_2O)_x$ was formed as a yellow oil from SiH_2I_2 and NO after 48 h; iodine was also liberated.

Other Reactions.—Neither SiCl₄ nor p-ClC₆H₄SiH₃ reacted appreciably with NO without irradiation. When $SiCl_4$ and NO were irradiated, however, a complex reaction occurred, represented approximately by equation (9), followed by further abstraction of chlorine from (SiCl₃)₂O by NO, and loss of SiCl₄ from (SiCl₃)₂O to give chloropolysiloxanes. Also SiHCl₃ and NOCl on irradiation reacted with elimination of HCl as shown in equation (10).[†] Other less volatile products with Si-H bonds (i.r.) were also formed.

$$2\text{SiCl}_{4} + 4\text{NO} \longrightarrow \\ (\text{SiCl}_{3})_{2}\text{O} + 2\text{NOCl} + \text{N}_{2}\text{O} \qquad (9)$$
$$2\text{SiHCl}_{3} + 2\text{NOCl} \longrightarrow$$

 $2 \text{HCl} + (\text{SiCl}_3)_2 \text{O} + \text{N}_2 \text{O}$ (10)

CONCLUSION

Systems without Irradiation.—Reactivity of nitrogen oxides with respect to SiF_4 falls in the order $N_2O_3 >$ $N_2O_5 > N_2O_4 \ge NO \ge N_2O$, consistent with that determined by Spialter and Austin⁸ for other systems.[‡] Here N₂O₃ stands apart in that it forms an adduct at low temperatures.§

Similarly, N₂O₃ is much more reactive towards Si₂Cl₆ than N_2O_4 or, especially, NO. The course of reaction is also different: N_2O_3 and N_2O_4 give NOCl (equations 7) and 8) but NO does not (equation 4). This is reasonably related to the charge separations: $Si^{\delta+}-Cl^{\delta-} + NO^{\delta+}NO_n^{\delta-}$ (n = 2 or 3), and it can be predicted that Si₂Cl₆, like SiCl₄,⁶ will yield nitryl chloride with N_2O_5 ($NO_2^{\delta+}NO_3^{\delta-}$).

With Si_2F_6 , it was possible to show that liquid-phase reactions are much faster than gas-phase ones, although the products are generally similar. These observations are consistent with the idea that Si_2X_6 forms a transient intermediate with the nitrogen oxide dimer,³⁶ viz. Si_2X_6, N_2O_x (X = F, x = 2 or 4; X = Cl, x = 2), which rearranges to $(SiX_3)_2O$ and N_2O_{x-1} .

Both SiF₃I and SiH₃I slowly give free halogen with NO, but with SiH₃Br any bromine formed rapidly reacts with Si-H bonds. Possibly as a first step, halogen atoms are displaced by NO, since products are generally similar to those from irradiated mixtures. Observed

Irradiated CHCl₃ and NOCl yield HCl and CCl₃NO (ref. 34).

† Infanated Chol₃ and Noci yield field and Col₃ to ten, o_{2} , † These authors carried out their experiments at room temperature, when N₂O₃ is almost entirely dissociated.³⁵ § N₂O₃ also forms a white solid with SiCl₄ at -40°: B. J. Aylett and J. R. Richmond, unpublished observations. || Another clear example of this is provided by the reaction ³⁸ of CF₃NO and Me₃SiH, which yields the Si-O-bonded adduct, CF. NH-OSIMe CF₃·NH·OSiMe₃.

differences between SiH₃I and SiH₃Br are generally consistent with bromine's greater reactivity and the higher Si-Br bond energy (see below).

Systems with Irradiation.—Except in the case of chlorosilanes, results are generally consistent with initial production of SiX₃ radicals; these then react with NO to give SiX₃NO or (more probably) SiX₃ON diradicals. The former can then decompose or the latter can dimerize (as in the scheme of Nay et al.¹⁵) and then decompose, forming N₂O, N₂, and (SiX₃)₂O. Cleavage of Si-Si bonds in Si₂F₆ or Si-I bonds in SiF₃I or SiH₃I is easy,³⁷ and provides a reasonable route to the observed products. Bond dissociation of SiF_4 is much more difficult, and little reaction occurs. With SiH₃Br, Si-H, and Si-Br bonds are of comparable energy,³⁷ and SiH₂Br. radicals may be formed. These, after addition of NO and dimerization, could form (SiH₂BrON=)₂, which then decomposes to N₂O and (SiH₂Br)₂O [equivalent to $\frac{1}{n}$ (SiH₂O)_n + SiH₂Br₂]. The absence of disilanes amongst

the products from photolysis of monosilane derivatives suggests that SiX₃· reacts much more rapidly with NO than with itself.

Both SiCl₄ and Si₂Cl₆ readily convert NO into NOCI.

It seems reasonable to suppose that reaction of NO with Si-Cl provides an easy route; NOCl once formed will be stable towards photolysis or further reaction, unlike the corresponding fluoride, bromide, or iodide. Only when NOCl is photolysed with a compound containing Si-H bonds does further reaction occur to give HCl (equation 10).

No clear evidence was obtained for silvl nitrosyls similar to those described by Varma and co-workers.¹⁰ Possibly the compound resulting from SiH₃I and NO was SiH₃NO₂ or SiH₃NO₃; small amounts of coloured products were sometimes observed in reactions between Si_2F_6 or Si_2Cl_6 and NO, but their properties were not those expected for SiX₃NO. In all cases they readily decomposed during attempted separation. Under the conditions used here, the greater Si-O than Si-N bond energy appears decisive in determining the products.

We thank the S.R.C. for a studentship (to J. R. R.).

[2/2797 Received, 12th December, 1972]

34 B. W. Tattershall, Chem. Comm., 1970, 1522; J. Chem. Soc.

³⁵ I. R. Beattie, Progr. Inorg. Chem., 1970, 1322, J. Chem. Soc.
 ³⁵ I. R. Beattie, Progr. Inorg. Chem., 1963, 5, 1.
 ³⁶ Cf. ref. 26 and J. E. Williams and J. N. Murrell, J. Amer.
 Chem. Soc., 1971, 93, 7149.
 ³⁷ B. J. Aylett, Adv. Inorg. Chem. Radiochem., 1968, 11, 249.
 ³⁸ A. C. Delany, R. N. Haszeldine, and A. E. Tipping, J. Chem. Soc. (C), 1968, 2537.