Crystal and Molecular Structures of μ-Oxalato-di[bisethylenediaminenickel(II)] Dinitrate, μ-Oxalato-bis[di-(2-aminoethyl)aminecopper(II)] Diperchlorate, and μ-Oxalato-bis[di-(3-aminopropyl)aminezinc(11)] Diperchlorate

By Neil F. Curtis, Chemistry Department, Victoria University of Wellington, New Zealand
I. Ross N. McCormick and T. Neil Waters,* Chemistry Department, University of Auckland, New Zealand

Abstract

Crystal and molecular structures of the title compounds are reported. In each the complex cation is dimeric with the planar oxalate group acting as a bridge by forming five-membered chelate rings with two metal centres. Coordination geometries are approximately octahedral in the nickel compound (I), square pyramidal in the copper compound (II) (oxalate oxygen atoms occupying one basal and one axial site), and trigonal bipyramidal in the zinc compound (III) (oxalate oxygens occupying one apical and one equatorial site). The conformations of the co-ordinated amines are discussed and their relationships with the stereochemistry of the metal centres and with the hydrogen bonding network examined.

Crystal data: (I), monoclinic $a=6.33(2), b=12.03(2), c=14.95(3) A, \beta=91.2(3)^{\circ}, Z=2$, space group $P 2_{1} / n$; (II), orthorhombic, $a=7.02(1), b=13 \cdot 25(3) . c=25 \cdot 27(4) A, Z=4$, space group $P b c 2_{1}$: (III). orthorhombic, $a=13.38(2), b=14.72(3), c=13 \cdot 30(3) \AA, Z=4$, space group Pna2 ${ }_{1}$. The structures were solved by the heavy-atom method from photographic data and refined by least squares to $R 0.105$ [(I), 1936 independent reflexions], $0 \cdot 101$ [(II), 1948], and 0.090 [(III), 1688].

The preparations of several oxalato-amine derivatives of nickel(II), copper(II), and zinc(II) with a stoicheiometry featuring one oxalate to two metal ions have been reported. ${ }^{1,2}$ As a consequence of their properties, particularly their i.r. absorptions, the compounds were assigned dimeric structures with the oxalate ion function-

[^0]ing as a planar bridging group through the formation of five-membered chelate rings with each of two metal ions. In choosing three of these complexes, $\left[\left\{\mathrm{Ni}(\mathrm{en})_{2}\right\}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]$ $\left(\mathrm{NO}_{3}\right)_{2} \quad$ (I), $\quad\left[\{\mathrm{Cu}(\text { dien })\}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2} \dagger$ (II), and $\left[\{\mathrm{Zn}(\mathrm{dpt})\}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2} \ddagger$ (III), for an X-ray crystallographic study of the role of the oxalate ion under what
${ }^{1}$ N. F. Curtis, J. Chem. Soc., 1963, 4109.
${ }^{2}$ N. F. Curtis, J. Chem. Soc. (A), 1968, 1584.
was expected to be differing stereochemical situations, an examination of amine conformation was also contemplated.

The metal ions, high-spin d^{8} nickel(II), d^{9} copper(II), and d^{10} zinc(II), show progressively more variable coordination geometry. Compounds of nickel(iI) are usually six-co-ordinate and octahedral unless the ligands have demanding steric requirements. Those of copper(II) show a greater variety of stereochemistries but with tetragonal structures (square planar, square pyramidal, and distorted octahedral) most common. The coordination arrangement about zinc(II) is largely determined by inter- and intra-ligand interactions and a variety of geometries have been observed. The series of dimeric amine-oxalate compounds which include (I), (II), and (III) illustrate these effects. With nickel(II) compounds are all six-co-ordinate, attempts to prepare triamine analogues of (II) or (III) yielding aquo-complexes $\left[\left\{\mathrm{Ni}\left(\mathrm{N}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right] \mathrm{X}_{2}{ }^{2}$ Copper(II) forms the bridging oxalato-compounds only with the triamines dien and dpt whereas zinc(II) complexes can be prepared with a number of amines. These are six-co-ordinate and isomorphous with their nickel(II) analogues when diamines, e.g. $\left[\left\{\mathrm{Zn}(\mathrm{en})_{2}\right\}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]_{2}$, or tetramines, $\left.\left[\{\mathrm{Zn}(\operatorname{trien})\}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)\right]_{2}$, are employed, ${ }^{2}$ but with the triamine dpt the five-coordinate compound (III), not isomorphous with its copper(II) analogue, was prepared.

The amines en, dien, and dpt have their own stereochemical properties which together with the co-ordination ' preferences ' of the metal ion and any other interor intra-molecular interactions determine the exact geometry of the structures adopted. For en these are simple and gauche conformations are observed. ${ }^{3}$ Details and, where applicable, chirality, are determined largely by hydrogen bonding to the amino-groups, non-bonded interactions involving methylene groups and, for copper(II), by what appears to be an electronic effect which imposes asymmetry. ${ }^{4}$ For the triamines, dien and dpt, two modes of co-ordination are possible, distinguished for an octahedral metal centre as facial (vicinal) or meridional (equatorial). Related configurations are possible for other co-ordination geometries. The relative stabilities of these two arrangements depend, among other things, on the metal-nitrogen distances, and vicinal co-ordination is observed in $\mathrm{MoO}_{3}(\text { dien })^{5}$ and $\mathrm{Mo}(\mathrm{CO})_{3}(\text { dien })^{6}$ where the metal-nitrogen distances are long. Meridional bonding is seen in $\mathrm{Ni}(\text { dien })_{2} \mathrm{Br}_{2}, \mathrm{H}_{2} \mathrm{O},{ }^{7} \mathrm{Cu}(\text { dien })_{2}, \mathrm{H}_{2} \mathrm{O},{ }^{8}$ $\mathrm{Cu}(\text { dien })_{2}\left(\mathrm{NO}_{3}\right)_{2}{ }^{9} \mathrm{Cu}($ dien $)\left(\mathrm{C}_{2} \mathrm{O}_{4}\right), 4 \mathrm{H}_{2} \mathrm{O}^{10}$ and $[\mathrm{Cu}$ (dien)$\left.\left(\mathrm{HCO}_{2}\right)\right]\left(\mathrm{HCO}_{2}\right) .{ }^{11}$ The dpt compounds $[\alpha-\mathrm{Co}(\mathrm{dpt})-$ $(\mathrm{en}) \mathrm{Cl}] \mathrm{I}_{2}, \mathrm{H}_{2} \mathrm{O},{ }^{12} \quad\left[\beta-\mathrm{Co}(\mathrm{dpt})(\mathrm{en}) \mathrm{Cl}^{2}\right] \mathrm{ZnCl}_{4},{ }^{13} \quad\left[\mathrm{Ni}(\mathrm{dpt})_{2}\right]-$ $\left(\mathrm{ClO}_{4}\right)_{2},^{14}$ and $[\mathrm{Cu}(\mathrm{dpt})(\mathrm{OAc})] \mathrm{ClO}_{4}{ }^{15}$ also have the merid-

[^1]ional arrangement. For dpt two conformations are apparent: either both chelate rings have a chair conformation as in $\left[\mathrm{Ni}(\mathrm{dpt})_{\mathbf{2}}\right]\left(\mathrm{ClO}_{4}\right)_{\mathbf{2}}$, or they have chair-distorted boat conformations as in the $\mathrm{Co}^{\mathrm{II}}$ and $\mathrm{Cu}^{\mathrm{II}}$ examples. In the aforementioned dien compounds the chelate rings are all reported to have the gauche conformation, often very asymmetric. Metal-nitrogen bond lengths and chelate (NMN) bond-angle rigidity appear to be important factors in determining the conformations adopted, although in view of the limited number of reported structures the significance of hydrogen bonding and nonbonded interactions is not clear.

EXPERIMENTAL

Crystallographic Data.-(I). $\mathrm{C}_{10} \mathrm{H}_{32} \mathrm{~N}_{10} \mathrm{Ni}_{2} \mathrm{O}_{10}, M=569 \cdot 8$, Monoclinic, $\quad a=6.33(2), \quad b=12.03(2), \quad c=14.95(3) \quad \AA$, $\beta=91 \cdot 2(3)^{\circ}$ (standard deviations from the spread of film measurements), $Z=2, D_{\mathrm{m}}=1.640(8)$ (inferring $Z=1.97$). Space group $P 2_{1} / n$. 2226 Independent reflexions collected (290 unobserved) for layers $0-4 k l$ and $h 0-8 l$. Crystal dimensions: $0.30 \times 0.15 \times 0.14 \mathrm{~mm} . \mathrm{Cu}-K_{\alpha}$ radiation, $\lambda=1.5418 \AA ; \mu\left(\mathrm{Cu}-K_{\alpha}\right)=27.9 \mathrm{~cm}^{-1}$.
(II). $\mathrm{C}_{10} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{Cu}_{2} \mathrm{~N}_{6} \mathrm{O}_{12}, M=620 \cdot 3$, Orthorhombic, $a=$ $7 \cdot 02(1), b=13 \cdot 25(3), c=25 \cdot 27(4) \AA$ (standard deviations from spread of measurement), $Z=4, D_{\mathrm{m}}=1.812(7)$ (inferring $Z=4 \cdot 02$). Space group $P b c 2_{1} . \quad 2400$ (452 Unobserved) reflexions were collected for layers $0-5 k l$ and $h 0-9 l$. Crystal dimensions: $0.26 \times 0.12 \times 0.15 \mathrm{~mm}$. $\mu\left(\mathrm{Cu}-K_{\alpha}\right)=50.6 \mathrm{~cm}^{-1}$.
(III). $\mathrm{C}_{14} \mathrm{H}_{34} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{O}_{12} \mathrm{Zn}_{2}, M=680 \cdot 1$, Orthorhombic, $a=$ $13 \cdot 38(2), b=14 \cdot 82(3), c=13 \cdot 30(3) \AA$ (standard deviations from spread of measurements), $Z=4, \quad D_{\mathrm{m}}=1 \cdot 690(5)$ (inferring $Z=3 \cdot 97$). Space group $P n a 2_{1}$. 1915 (227 Unobserved) reflexions collected for layers $0-9 k l$ and $h k 0-8$. A separate needle-shaped crystal of hexagonal cross-section was used for each layer. Dimensions parallel to the needle (a axis) 0.42 and 0.21 mm , across a diagonal (c axis) 0.19 and $0.10 \mathrm{~mm} . \mu\left(\mathrm{Cu}-K_{\alpha}\right)=47.6 \mathrm{~cm}^{-1}$.

Intensity data were collected by Weissenberg photographic methods and absorption corrections ${ }^{16}$ applied to the sets from (II) and (III). Structure solutions were by conventional heavy-atom methods, the choice of non-centrosymmetric space group for (II) being dictated by the course of the refinement, that for (III) being implied by the Patterson function. Block-diagonal least-squares methods were used to adjust parameters with recourse to difference syntheses for (II) when progress was impeded by false symmetry. Standard scattering factors ${ }^{17}$ were used, real dispersion corrections of $-3 \cdot 1,-2 \cdot 1$, and -1.7 e being applied to nickel (0), copper (0), and zinc(0) values. The models adopted excluded hydrogen atoms until the last stages of refinement but progressively allowed for heavy-atom and then light-atom thermal anisotropy. Hydrogen atoms were finally placed at computed positions and their presence

[^2]Table 1
Atom positions

(a) Compound (I)			
Atom	x / a	y / b	z / c
Ni	0.2547(2)	$0 \cdot 1547(1)$	0.0780 (1)
$\mathrm{O}(\mathbf{1})$	$0 \cdot 1654(12)$	$0.0718(6)$	$0 \cdot 8031$ (4)
$\mathrm{O}(2)$	$0 \cdot 1389(17)$	0.0741 (8)	$0 \cdot 6609$ (5)
$\mathrm{O}(3)$	$0 \cdot 3774(13)$	$0 \cdot 1677(6)$	$0 \cdot 7309$ (7)
$\mathrm{O}(4)$	$0 \cdot 2519$ (7)	$-0.0154(4)$	$0 \cdot 0469(3)$
$\mathrm{O}(5)$	-0.0462(7)	$0 \cdot 1403(4)$	$0 \cdot 0183(3)$
$\mathrm{N}(1)$	$0 \cdot 2294(10)$	$0 \cdot 1051$ (5)	$0 \cdot 7294$ (4)
$\mathrm{N}(2)$	$0 \cdot 1347$ (9)	$0 \cdot 1213(5)$	$0 \cdot 2057(4)$
N(3)	0.5440 (10)	$0 \cdot 1407(5)$	$0 \cdot 1474(4)$
N(4)	$0 \cdot 3986(9)$	$0 \cdot 1933(5)$	-0.0425(4)
N(5)	$0 \cdot 2187(10)$	$0 \cdot 3269(5)$	$0 \cdot 0875$ (4)
$\mathrm{C}(1)$	$0 \cdot 3083(15)$	$0 \cdot 0788(8)$	$0 \cdot 2614$ (5)
$\mathrm{C}(2)$	$0 \cdot 5042(13)$	$0 \cdot 1414(8)$	$0 \cdot 2430$ (5)
$\mathrm{C}(3)$	$0 \cdot 4298(13)$	$0 \cdot 3140(7)$	$-0.0466(5)$
$\mathrm{C}(4)$	$0 \cdot 2405(15)$	$0 \cdot 3712(6)$	-0.0043(5)
C(5)	$-0.0855(9)$	$0 \cdot 0452(5)$	-0.0093(4)
$\mathrm{H}(1, \mathrm{~N} 2)$	0.023	$0 \cdot 061$	$0 \cdot 211$
$\mathrm{H}(2, \mathrm{~N} 2)$	$0 \cdot 079$	$0 \cdot 187$	$0 \cdot 242$
$\mathrm{H}(1, \mathrm{~N} 3)$	$0 \cdot 628$	$0 \cdot 069$	$0 \cdot 139$
$\mathrm{H}(2, \mathrm{~N} 3)$	$0 \cdot 650$	$0 \cdot 203$	$0 \cdot 140$
$\mathrm{H}(1, \mathrm{~N} 4)$	$0 \cdot 316$	$0 \cdot 177$	-0.099
$\mathrm{H}(2, \mathrm{~N} 4)$	$0 \cdot 546$	$0 \cdot 163$	-0.053
$\mathrm{H}(1, \mathrm{~N} 5)$	$0 \cdot 077$	$0 \cdot 356$	$0 \cdot 108$
$\mathrm{H}(2, \mathrm{~N} 5)$	$0 \cdot 328$	$0 \cdot 369$	$0 \cdot 123$
$\mathrm{H}(1, \mathrm{Cl})$	$0 \cdot 334$	-0.009	$0 \cdot 246$
$\mathrm{H}(2, \mathrm{C} 1)$	$0 \cdot 266$	$0 \cdot 088$	$0 \cdot 332$
$\mathrm{H}(1, \mathrm{C} 2)$	$0 \cdot 637$	$0 \cdot 102$	$0 \cdot 278$
$\mathrm{H}(2, \mathrm{C} 2)$	$0 \cdot 478$	$0 \cdot 227$	$0 \cdot 266$
$\mathrm{H}(1, \mathrm{C} 3)$	$0 \cdot 446$	$0 \cdot 339$	-0.117
$\mathrm{H}(2, \mathrm{C} 3)$	0.574	$0 \cdot 335$	-0.010
$\mathrm{H}(1, \mathrm{C} 4)$	$0 \cdot 097$	$0 \cdot 353$	-0.042
$\mathrm{H}(2, \mathrm{C} 4)$	$0 \cdot 265$	0.461	-0.001

(b) Compound (II)

$\mathrm{Cu}(1)$	0.2282(3)	0.1013(1)	0.0707
$\mathrm{Cu}(2)$	$-0.2297(3)$	-0.0994(2)	-0.0704(1)
$\mathrm{Cl}(1)$	$0 \cdot 3880$ (4)	-0.2510(4)	$0 \cdot 0026(2)$
$\mathrm{Cl}(2)$	$-0.0586(6)$	-0.0077(3)	$0 \cdot 2477(3)$
$O(1)$	$0 \cdot 2602(17)$	$-0.3373(9)$	$0 \cdot 0016$ (6)
$\mathrm{O}(2)$	$0 \cdot 2842(20)$	$-0 \cdot 1600(9)$	$-0.0017(8)$
$\mathrm{O}(3)$	$0 \cdot 4832(25)$	-0.2419(14)	$0 \cdot 0474$ (5)
$\mathrm{O}(4)$	$0 \cdot 5169(19)$	-0.2541(10)	$-0.0468(6)$
$\mathrm{O}(5)$	-0.0953(41)	$0 \cdot 0842(13)$	$0 \cdot 2255(11)$
$\mathrm{O}(6)$	$0 \cdot 1173(40)$	-0.0429(22)	$0 \cdot 2308(14)$
$\mathrm{O}(7)$	-0.2189(34)	-0.0724(18)	$0 \cdot 2418(12)$
$\mathrm{O}(8)$	$-0.0499(32)$	$0.0032(18)$	$0 \cdot 3022(6)$
$\bigcirc(9)$	-0.0281(15)	$-0.0050(8)$	$0 \cdot 0680(4)$
$\mathrm{O}(10)$	$0 \cdot 1847(15)$	$0.0857(8)$	$-0.0081(4)$
$\mathrm{O}(11)$	$0 \cdot 0110(16)$	0.0108(8)	$-0.0702(4)$
$\mathrm{O}(12)$	-0.1985(14)	-0.0798(7)	$0 \cdot 0062(4)$
N(1)	$0 \cdot 4356$ (20)	$-0.0075(10)$	0.0793 (6)
N(2)	$0 \cdot 2716(25)$	$0 \cdot 1217(11)$	$0 \cdot 1510$ (5)
$N(3)$	$0.0926(17)$	$0 \cdot 2231$ (9)	0.0750 (5)
$\mathrm{N}(4)$	$-0.4648(15)$	-0.0110(7)	$-0.0735(5)$
N(5)	-0.2735(16)	-0.1200(9)	$-0.1466(5)$
$\mathrm{N}(6)$	-0.0632(17)	-0.2307(8)	$-0.0772(6)$
C(1)	$0 \cdot 4910(24)$	-0.0168(11)	$0 \cdot 1310(5)$
$\mathrm{C}(2)$	$0 \cdot 4554(32)$	$0.0747(18)$	$0 \cdot 1611$ (7)
C(3)	$0.2418(30)$	$0 \cdot 2291$ (14)	$0 \cdot 1577(6)$
C(4)	$0.0395(22)$	$0 \cdot 2473(11)$	$0 \cdot 1319$ (6)
C(5)	$0 \cdot 5214(41)$	$0 \cdot 0077(20)$	$-0.1298(15)$
$\mathrm{C}(6)$	$-0.4756(31)$	-0.0842(16)	$-0.1589(7)$
C(7)	-0.2277(33)	$-0.2251(13)$	$-0.1665(7)$
$\mathrm{C}(8)$	-0.0608(33)	-0.2671(14)	$-0.1295(8)$
$\mathrm{C}(9)$	-0.0611(20)	-0.0252(10)	0.0191 (5)
$\mathrm{C}(10)$	$0 \cdot 0593(19)$	$0.0277(9)$	$-0.0232(5)$
$\mathrm{H}(1, \mathrm{~N} 1)$	$0 \cdot 400$	-0.080	0.071
$\mathrm{H}(2, \mathrm{~N} 1)$	$0 \cdot 563$	0.005	$0 \cdot 062$
$\mathrm{H}(1, \mathrm{~N} 2)$	$0 \cdot 175$	$0 \cdot 086$	J. 174
H(1,N3)	$0 \cdot 166$	$0 \cdot 284$	0.062
$\mathrm{H}(2, \mathrm{~N} 3)$	-0.032	$0 \cdot 223$	$0 \cdot 055$
$\mathrm{H}(\mathbf{1}, \mathrm{N} 4)$	-0.584	-0.042	0.058

Table 1 (Continued)
(b) Compound (II)

Atom	x / a	y / b	z / c
$\mathrm{H}(2, \mathrm{~N} 4)$	-0.451	0.057	-0.056
$\mathrm{H}(1, \mathrm{~N} 5)$	-0.184	-0.070	-0.164
$\mathrm{H}(1, \mathrm{~N} 6)$	-0.107	-0.293	-0.057
$\mathrm{H}(2, \mathrm{~N} 6)$	0.078	-0.225	-0.070
$\mathrm{H}(1, \mathrm{C} 1)$	0.412	-0.080	0.148
$\mathrm{H}(2, \mathrm{C} 1)$	0.643	-0.034	0.131
$\mathrm{H}(1, \mathrm{C} 2)$	0.567	0.129	0.151
$\mathrm{H}(2, \mathrm{C} 2)$	0.463	0.056	0.203
$\mathrm{H}(1, \mathrm{C} 3)$	0.355	0.270	0.137
$\mathrm{H}(2, \mathrm{C} 3)$	0.245	0.248	0.200
$\mathrm{H}(1, \mathrm{C} 4)$	-0.010	0.325	0.136
$\mathrm{H}(2, \mathrm{C} 4)$	-0.069	0.196	0.147
$\mathrm{H}(1, \mathrm{C} 5)$	-0.409	0.063	-0.153
$\mathrm{H}(\mathbf{2 , C 5})$	-0.650	0.042	-0.141
$\mathrm{H}(1, \mathrm{C} 6)$	-0.521	-0.095	-0.203
$\mathrm{H}(\mathbf{2 , C 6})$	-0.592	-0.149	-0.141
$\mathrm{H}(1, \mathrm{C} 7)$	-0.182	-0.221	-0.208
$\mathrm{H}(2, \mathrm{C} 7)$	-0.355	-0.272	-0.164
$\mathrm{H}(1, \mathrm{C} 8)$	0.079	-0.246	-0.145
$\mathrm{H}(2, \mathrm{C} 8)$	-0.069	-0.349	-0.126

(c) Compound (III)

$\mathrm{Zn}(1)$	0.1012(2)	$0 \cdot 1341(1)$	$0 \cdot 2500$
$\mathrm{Zn}(2)$	-0.0691(2)	$0 \cdot 3534(1)$	$-0.0355(2)$
$\mathrm{Cl}(1)$	$0 \cdot \mathbf{2 5 9 0}(4)$	$0 \cdot 4249(3)$	$0.0819(4)$
$\mathrm{Cl}(2)$	$0 \cdot 2590$ (4)	-0.0704(4)	$0 \cdot 1384(6)$
$\mathrm{O}(1)$	$0 \cdot 2326(23)$	$0 \cdot 4636(23)$	-0.0100(29)
$\mathrm{O}(2)$	$0 \cdot 1876(22)$	$0 \cdot 3646(20)$	$0 \cdot 1072(32)$
$\mathrm{O}(3)$	$0 \cdot 2936(39)$	$0 \cdot 4831$ (38)	$0 \cdot 1537(31)$
$\mathrm{O}(4)$	$0 \cdot 3431$ (21)	$0 \cdot 3772(26)$	$0 \cdot 0696$ (25)
$\mathrm{O}(5)$	$0 \cdot 1713(14)$	-0.1157(13)	$0 \cdot 1261$ (20)
$\mathrm{O}(6)$	$0.3415(13)$	-0.1219(12)	$0 \cdot 1457(24)$
$\mathrm{O}(7)$	$0 \cdot 2724(21)$	$0 \cdot 0026(18)$	$0 \cdot 0751(29)$
$\mathrm{O}(8)$	$0 \cdot 2503(29)$	-0.0270(32)	$0 \cdot 2299$ (28)
$\mathrm{O}(9)$	$0 \cdot 1039(9)$	$0 \cdot 1580$ (8)	$0 \cdot 0865(9)$
$\mathrm{O}(10)$	$0.0017(9)$	$0 \cdot 2368$ (7)	$0 \cdot 2418(9)$
$\mathrm{O}(11)$	-0.0771(11)	$0 \cdot 3250(8)$	$0 \cdot 1289(8)$
O(12)	0.0221 (9)	$0 \cdot 2463$ (8)	-0.0209(7)
N(1)	$0 \cdot 0211(11)$	$0 \cdot 0174(12)$	$0 \cdot 2245(12)$
$\mathrm{N}(2)$	$0 \cdot 1066(16)$	$0 \cdot 1079(13)$	$0 \cdot 4098(14)$
$\mathrm{N}(3)$	$0 \cdot 2402(13)$	$0 \cdot 1912(16)$	$0 \cdot 2491$ (17)
N(4)	-0.2195(13)	$0 \cdot 3280$ (15)	-0.0524(13)
N(5)	$-0.0351(13)$	$0 \cdot 3742$ (12)	-0.1912(12)
$\mathrm{N}(6)$	-0.0167(13)	$0 \cdot 4771$ (12)	$0 \cdot 0093(13)$
$\mathrm{C}(1)$	-0.0427(28)	-0.0073(31)	$0 \cdot 3060(30)$
$\mathrm{C}(2)$	-0.0210(25)	-0.0060(18)	$0 \cdot 3954(21)$
$\mathrm{C}(3)$	$0 \cdot 0053(18)$	$0 \cdot 0773(19)$	$0 \cdot 4476(17)$
$\mathrm{C}(4)$	$0 \cdot 1425(24)$	0-1876(18)	$0 \cdot 4673$ (16)
C(5)	$0 \cdot 2524$ (25)	$0 \cdot 2068(19)$	$0 \cdot 4376(15)$
$\mathrm{C}(6)$	$0 \cdot 2650$ (20)	$0 \cdot 2515(17)$	$0 \cdot 3343$ (15)
$\mathrm{C}(7)$	$-0.2417(21)$	$0 \cdot 2775$ (18)	-0.1487(18)
$\mathrm{C}(8)$	$-0.2056(17)$	$0 \cdot 3225(17)$	-0.2408(18)
$\mathrm{C}(9)$	-0.0929(23)	$0 \cdot 3113(17)$	$-0.2610(19)$
$\mathrm{C}(10)$	$-0.0392(20)$	$0 \cdot 4687(12)$	$-0.2305(14)$
$\mathrm{C}(11)$	$0 \cdot 0257(22)$	$0 \cdot 5266(16)$	-0.1624(21)
$\mathrm{C}(12)$	-0.0150(18)	$0 \cdot 5512(15)$	-0.0647(20)
C (13)	$0.0399(12)$	$0 \cdot 2184(10)$	$0 \cdot 0615(12)$
C(14)	-0.0152(12)	$0 \cdot 2664(11)$	0.1511(12)
$\mathrm{H}(1, \mathrm{~N} 1)$	0.061	-0.041	$0 \cdot 215$
$\mathrm{H}(2, \mathrm{Nl})$	-0.029	0.019	$0 \cdot 167$
$\mathrm{H}(1, \mathrm{~N} 2)$	$0 \cdot 157$	$0 \cdot 057$	0.415
$\mathrm{H}(1, \mathrm{~N} 3)$	$0 \cdot 255$	$0 \cdot 233$	$0 \cdot 190$
$\mathrm{H}(2, \mathrm{~N} 3)$	$0 \cdot 298$	$0 \cdot 147$	$0 \cdot 252$
$\mathrm{H}(1, \mathrm{~N} 4)$	$-0 \cdot 264$	$0 \cdot 383$	-0.058
$\mathrm{H}(2, \mathrm{~N} 4)$	-0.251	$0 \cdot 288$	$0 \cdot 000$
H(1,N5)	0.037	$0 \cdot 354$	-0.185
$\mathrm{H}(1, \mathrm{~N} 6)$	$0 \cdot 056$	$0 \cdot 479$	$0 \cdot 031$
$\mathrm{H}(2, \mathrm{~N} 6)$	-0.056	$0 \cdot 508$	$0 \cdot 064$
$\mathrm{H}(1, \mathrm{Cl})$	-0.109	0.037	$0 \cdot 306$
$\mathrm{H}(2, \mathrm{C} 1)$	-0.066	-0.078	$0 \cdot 297$
$\mathrm{H}(1, \mathrm{C} 2)$	-0.087	-0.037	0.429
$\mathrm{H}(2, \mathrm{C} 2)$	0.041	-0.054	$0 \cdot 397$
$\mathrm{H}(1, \mathrm{C} 3)$	-0.052	$0 \cdot 129$	0.431
$\mathrm{H}(2, \mathrm{C} 3)$	0.008	$0 \cdot 064$	0.528

Table 1 (Continued)
(c) Compound (III)

Atom	x / a	y / b	z / c
H(1,C4)	0.095	0.246	0.449
H(2,C4)	$0 \cdot 137$	$0 \cdot 173$	0.547
H(1,C5)	0.285	$0 \cdot 252$	$0 \cdot 493$
$\mathrm{H}(2, \mathrm{C} 5)$	0.293	$0 \cdot 142$	0.436
H(1,C6)	$0 \cdot 216$	0.311	$0 \cdot 329$
H(2,C6)	0.343	$0 \cdot 273$	0.325
$\mathrm{H}(1, \mathrm{C} 7)$	-0.323	$0 \cdot 270$	-0.156
H(2,C7)	-0.207	0.211	-0.146
$\mathrm{H}(1, \mathrm{C} 8)$	-0.223	0.395	-0.234
$\mathrm{H}(2, \mathrm{C} 8)$	-0.248	$0 \cdot 294$	-0.304
$\mathrm{H}(1, \mathrm{C} 9)$	-0.076	$0 \cdot 329$	-0.340
$\mathrm{H}(2, \mathrm{C} 9)$	-0.071	0.241	-0.247
$\mathrm{H}(1, \mathrm{Cl} 0)$	-0.116	$0 \cdot 493$	-0.230
$\mathrm{H}(2, \mathrm{Cl} 0)$	-0.011	$0 \cdot 470$	-0.308
$\mathrm{H}(1, \mathrm{Cl1})$	0.042	0.590	-0.202
$\mathrm{H}(2, \mathrm{Cll})$	0.095	$0 \cdot 490$	-0.148
$\mathrm{H}(1, \mathrm{Cl} 2)$	-0.092	0.575	-0.076
$\mathrm{H}(2, \mathrm{Cl} 2)$	0.031	0.606	-0.035

Table 2
Anisotropic thermal parameters ${ }^{a}$

(a) Compound (I)						
Atom	b_{11}	b_{22}	b_{33}	b_{12}	b_{13}	b_{23}
Ni	76(2)	20(1)	12(1)	-14(2)	23(1)	-6(1)
$\mathrm{O}(1)$	401(20)	85(5)	33(3)	$-179(16)$	85(12)	-2(6)
$\mathrm{O}(2)$	760(36)	126(7)	37(3)	$284(26)$	$-165(71)$	49(8)
$\mathrm{O}(3)$	377 (20)	65(5)	105(5)	-135(17)	$224(16)$	$-15(9)$
$\mathrm{O}(4)$	99(10)	20(3)	$26(2)$	$8(9)$	10(7)	$-20(4)$
$\mathrm{O}(5)$	130(11)	$24(3)$	$28(2)$	5(9)	6(8)	-15(4)
$\mathrm{N}(1)$	212(16)	40(4)	$21(2)$	42(14)	$34(10)$	$-1(5)$
$\mathrm{N}(2)$	104(11)	41(4)	19(2)	0 (12)	47(9)	18(5)
$\mathrm{N}(3)$	147(14)	49(4)	$23(2)$	-20(13)	36(10)	-6(5)
N(4)	147(13)	46(4)	15(2)	$5(13)$	39(9)	$-1(5)$
$\mathrm{N}(5)$	198(15)	27(3)	21 (2)	-6(12)	70(9)	-6(5)
C(1)	240(21)	84(7)	$22(3)$	3(21)	7 (13)	$37(7)$
C(2)	162(18)	91(7)	22(3)	-2(19)	7(12)	16(8)
$\mathrm{C}(3)$	237(19)	49(5)	26(3)	-45(17)	73(12)	18(6)
$\mathrm{C}(4)$	326(24)	$27(4)$	$32(3)$	$31(17)$	54(15)	$12(6)$
C(5)	59(11)	29(4)	17(2)	$5(12)$	25(8)	-6(5)
(b) Compound (II)						
$\mathrm{Cu}(1)$	98(4)	18(1)	7(1)	-4(3)	-11(2)	-2(1)
$\mathrm{Cu}(2)$	103(4)	19(1)	6 (1)	$-13(3)$	-3(2)	-1(1)
$\mathrm{Cl}(1)$	108(4)	16(1)	11(1)	-44(8)	-33(4)	3(1)
$\mathrm{Cl}(2)$	253(8)	49(2)	8(1)	-43(7)	$-0(7)$	6(4)
$\mathrm{O}(1)$	169(23)	42 (6)	$25(3)$	-125(20)	78(13)	-48(7)
$\mathrm{O}(2)$	185(26)	18(6)	40(4)	99(21)	50(19)	25(9)
$\mathrm{O}(3)$	580(38)	82 (11)	$24(2)$	-13(35)	-116(11)	-21(7)
$\mathrm{O}(4)$	137(23)	47(7)	$27(3)$	31 (24)	38(15)	56(7)
$\mathrm{O}(5)$	618(92)	68(8)	77(7)	19(49)	-42(40)	136(10)
$\mathrm{O}(6)$	$667(75)$	185(22)	64(10)	436(61)	209(40)	$80(23)$
$\mathrm{O}(7)$	716(60)	$172(15)$	$55(5)$	-350(41)	-168(26)	-100 (13)
$\mathrm{O}(8)$	739(55)	244(18)	$5(2)$	-680(41)	-1(19)	-23(10)
$\mathrm{O}(9)$	118(20)	30(6)	$5(1)$	-31(18)	-14(10)	$1(5)$
$\mathrm{O}(10)$	111(18)	$30(5)$	4(1)	$-57(17)$	-5(9)	-2(5)
$\mathrm{O}(11)$	143(19)	27(5)	6(1)	-76(17)	-14(10)	4(5)
$\mathrm{O}(12)$	97(17)	17(4)	7 (1)	-27(16)	$9(9)$	$1(5)$
$\mathrm{N}(1)$	141 (25)	$30(7)$	$9(2)$	-80(23)	25(12)	5 56)
$\mathrm{N}(2)$	380(40)	$30(7)$	$3(1)$	-29(29)	-37(12)	-6(5)
$\mathrm{N}(3)$	103(21)	23(6)	$4(1)$	-49(20)	-4(10)	$1(5)$
N(4)	56(18)	4(4)	$10(2)$	14(16)	3 (10)	$5(5)$
$\mathrm{N}(5)$	85(21)	19(5)	8(2)	63(18)	37(10)	6(5)
N(6)	131(20)	$25(5)$	$15(2)$	82(16)	$2(13)$	$-1(7)$
$\mathrm{C}(1)$	190(30)	$38(8)$	3(2)	67(24)	-8(13)	$7(6)$
$\mathrm{C}(2)$	276(46)	69(13)	9 9)	58(44)	-44(18)	-12(10)
C(3)	$282(47)$	43(10)	$2(2)$	-24(36)	-11(17)	-4(7)
C(4)	146(28)	17(6)	8(2)	57(25)	24(17)	10(7)
C (5)	266(57)	55(14)	$42(7)$	-32(49)	-94(34)	$-9(19)$
C(6)	220(41)	$55(12)$	$12(3)$	$21(39)$	-72(17)	$-9(10)$
C(7)	306(50)	26(8)	$10(2)$	22 (35)	16(20)	-20(7)
C (8)	272 (47)	35(9)	12 (3)	-47(36)	43(20)	-6(9)
$\mathrm{C}(9)$	100(25)	18(6)	4(2)	-31(22)	12(12)	-0(6)
$\mathrm{C}(10)$	$90(23)$	8(5)	4(2)	$21(20)$	-24(10)	2(5)

Table 2 (Continued)
(c) Compound (III)

Atom	b_{11}	b_{22}	b_{33}	b_{12}	b_{13}	b_{23}
Zn (1)	50(1)	34(1)	40(1)	$0(2)$	1 (2)	19(2)
$\mathrm{Zn}(2)$	53(1)	34(1)	39(1)	8(2)	-1(3)	16(2)
$\mathrm{Cl}(1)$	53(3)	43(2)	89(4)	$11(4)$	-23(6)	1(5)
$\mathrm{Cl}(2)$	$61(3)$	66(3)	124(5)	-23(5)	48(7)	7(7)
$\mathrm{O}(1)$	158(23)	251 (20)	463(33)	-68(36)	$-253(43)$	$529(33)$
$\mathrm{O}(2)$	161 (19)	210(19)	369 (39)	$-223(28)$	-242(48)	365(42)
$\mathrm{O}(3)$	323(48)	257(29)	$290(30)$	85(70)	$-188(65)$	$-384(40)$
$\mathrm{O}(4)$	168(20)	$320(31)$	148(27)	274(36)	-52(41)	-42(54)
$\mathrm{O}(5)$	80(11)	87(11)	167(20)	-44(18)	9(27)	-26(27)
$\mathrm{O}(6)$	55(10)	67(9)	254(30)	8 (16)	22(30)	$50(29)$
$\mathrm{O}(7)$	$164(22)$	124(15)	356(34)	47(31)	161(49)	281 (31)
$\mathrm{O}(8)$	259(41)	301 (39)	152(25)	139(62)	$9(55)$	$-181(55)$
$\mathrm{O}(9)$	49(7)	46(6)	44(6)	25(11)	1(12)	11(11)
$\mathrm{O}(10)$	65 (8)	40(5)	32(6)	8(11)	-5(13)	21(11)
$\mathrm{O}(11)$	90(10)	36(5)	$32(6)$	21(13)	-3(13)	19(10)
O (12)	68(8)	44 (5)	17(5)	15(11)	-7(12)	8(10)
N(1)	49(10)	67(9)	58(10)	9 (16)	-31(17)	8(17)
N(2)	$111(15)$	72(10)	50(9)	-45(22)	-15(22)	41(17)
N(3)	53(10)	112(14)	72(11)	18(21)	-3(24)	-48(25)
N(4)	59(10)	97(13)	58(11)	-8(20)	20(19)	-4(21)
N(5)	69(10)	64(9)	49(8)	20(17)	57(17)	35(15)
$\mathrm{N}(6)$	69(11)	63(9)	$55(9)$	$-17(18)$	32(18)	-48(15)
$\mathrm{C}(1)$	$151(24)$	206(30)	124(28)	$-209(40)$	28(37)	-46 (53)
C(2)	205(26)	112(13)	90(16)	$-216(27)$	-56(36)	119(23)
C(3)	73(14)	114(17)	73(14)	-15(27)	54(24)	81 (25)
C(4)	168(25)	93(14)	$21(8)$	$-20(34)$	-0(29)	-49(22)
C(5)	173(26)	84(15)	43(11)	$-15(34)$	-69(27)	-46(20)
C(6)	105(19)	67(11)	56(12)	-27(24)	15(28)	-33(21)
$\mathrm{C}(7)$	114(19)	74(13)	57(12)	28(27)	$-5(29)$	44(23)
C(8)	70(13)	82(13)	60(12)	$5(23)$	-41(26)	$8(24)$
$\mathrm{C}(9)$	$151(23)$	67(12)	56(13)	-27(31)	-6(32)	3(26)
$\mathrm{C}(10)$	127(18)	36(7)	47(10)	-22(21)	-6(24)	56(14)
C(11)	108(20)	76(12)	131(18)	-23(26)	-3(35)	157(21)
C(12)	73(15)	55(10)	102(19)	- 16(21)	$7(29)$	10(24)
C(13)	39(8)	25(6)	53(9)	-26(13)	60(16)	7(13)
C(14)	33(9)	39(8)	42(8)	$-20(14)$	8(16)	27(14)

- The scattering factor for an atom is expressed as:

$$
f=f_{0} \exp -\left(b_{11} h^{2}+b_{22} k^{2}+b_{33} l^{2}+b_{12} h k+b_{13} h l+b_{23} k l\right) .
$$

verified by difference-Fourier syntheses before their inclusion with temperature factors of $5 \cdot 0 \AA .^{2}$ Further least-squares cycles were then computed, but the hydrogen parameters were not adjusted except to maintain their proper geometric relationships with other atoms. A weighting scheme of the form $w=\left[1+\left(F_{0}-b\right)^{2} / a^{2}\right]^{-1}$ was used throughout, the parameters a and b being varied at intervals to keep $\left\langle w \Delta^{2}\right\rangle$ constant over $\left|F_{0}\right|$ ranges. As the models were progressively made more complex, significance tests were applied to justify each alteration. ${ }^{18}$ Final R values were $0 \cdot 105$ (I), 0.101 (II), and 0.090 (III).
Atomic co-ordinates and standard deviations are listed in Table 1, thermal parameters in Table 2, and calculated bond lengths and angles in Tables 3 and 4. The relevant atom numbering systems are shown in the Figure. Observed and calculated structure factors for each analysis are listed in Supplementary Publication No. SUP 20677 (8 pp., 1 microfiche).*
The standard deviations quoted in Tables 1-4 are those obtained from the least-squares variances and are expected to be under-estimated. A check of internal consistency between bonds of known equality, for use as a guide, is unfortunately not possible but experience suggests that actual values will be ca. $1 \cdot 3-1 \cdot 5$ times those listed.

[^3]
Table 3

Bond lengths (\AA)
(a) Compound (I)

Nickel octahedron	
$\mathrm{Ni}-\mathrm{N}(2)$	$2 \cdot 108(6)$
$\mathrm{Ni}-\mathrm{N}(3)$	$\mathbf{2 \cdot 0 9 2 (6)}$
$\mathrm{Ni}-\mathrm{N}(4)$	$2 \cdot 089(6)$
$\mathrm{Ni}-\mathrm{N}(5)$	$2 \cdot 089(6)$
$\mathrm{Ni}-\mathrm{O}(4)$	$2 \cdot 097(4)$
$\mathrm{Ni}-\mathrm{O}(5)$	$2 \cdot 093(5)$
Oxalate bridge	
$\mathrm{C}(5)-\mathrm{C}\left(5^{\prime}\right)^{*}$	$1.554(8)$
$\mathrm{C}(5)-\mathrm{O}(5)$	$1.239(7)$
$\mathrm{C}\left(5^{\prime}\right)-\mathrm{O}(4)$	$1.236(7)$

(b) Compound (II)

Copper square pyramids	
$\mathrm{Cu}(1)-\mathrm{N}(1)$	$2 \cdot 06(1)$
$\mathrm{Cu}(1)-\mathrm{N}(2)$	$2 \cdot 07(1)$
$\mathrm{Cu}(1)-\mathrm{N}(3)$	$1.88(1)$
$\mathrm{Cu}(1)-\mathrm{O}(9)$	$2 \cdot 29(1)$
$\mathrm{Cu}(1)-\mathrm{O}(10)$	$2 \cdot 02(1)$
$\mathrm{Cu}(1)-\mathrm{O}\left(3^{\prime}\right)$	$2 \cdot 96$
$\mathrm{Cu}(2)-\mathrm{N}(4)$	$2 \cdot 02(1)$
$\mathrm{Cu}(2)-\mathrm{N}(5)$	$1 \cdot 97(1)$
$\mathrm{Cu}(2)-\mathrm{N}(6)$	$2 \cdot 10(1)$
$\mathrm{Cu}(2)-\mathrm{O}(11)$	$2 \cdot 23(1)$
$\mathrm{Cu}(2)-\mathrm{O}(12)$	$1.97(1)$
$\mathrm{Cu}(2)-\mathrm{O}\left(\mathbf{4}^{\prime \prime}\right)$	2.78

Oxalate bridge	
$\mathrm{C}(9)-\mathrm{C}(9)$	$1 \cdot 29(2)$
$\mathrm{C}(9)-\mathrm{O}(12)$	$1 \cdot 25(2)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1 \cdot 53(2)$
$\mathrm{C}(10)-\mathrm{O}(10)$	$1 \cdot 23(2)$
$\mathrm{C}(10)-\mathrm{O}(11)$	$1.26(2)$

(c) Compound (III)

Zinc trigonal bipyramids			
$\mathrm{Zn}(1)-\mathrm{N}(1)$	2.05(2)	$\mathrm{C}(3)-\mathrm{N}(2)$	1-52(3)
$\mathrm{Zn}(1)-\mathrm{N}(2)$	2-16(2)	$\mathrm{N}(2)-\mathrm{C}(4)$	1-48(3)
$\mathrm{Zn}(1)-\mathrm{N}(3)$	2.04(2)	$\mathrm{C}(4)-\mathrm{C}(5)$	$1 \cdot 55$ (5)
$\mathrm{Zn}(1)-\mathrm{O}(9)$	2.20(1)	$\mathrm{C}(5)-\mathrm{C}(6)$	$1 \cdot 53(3)$
$\mathrm{Zn}(1)-\mathrm{O}(10)$	2.02(1)	$\mathrm{C}(6)-\mathrm{N}(3)$	1-48(3)
$\mathrm{Zn}(1)-\mathrm{O}(8)$	3•11	$\mathrm{N}(4)-\mathrm{C}(7)$	1-51(3)
		$\mathrm{C}(7)-\mathrm{C}(8)$	1-47(4)
$\mathrm{Zn}(2)-\mathrm{N}(4)$	2.06(2)	$\mathrm{C}(8)-\mathrm{C}(9)$	$1 \cdot 54(4)$
$\mathrm{Zn}(2)-\mathrm{N}(5)$	$2 \cdot 14(2)$	$\mathrm{C}(9)-\mathrm{N}(5)$ $\mathrm{N}(5)-\mathrm{C}(10)$	1-52(3)
$\mathrm{Zn}(2)-\mathrm{N}(6)$	2.04(2)	$\mathrm{N}(5)-\mathrm{C}(10)$	$1 \cdot 49(3)$
$\mathrm{Zn}(2)-\mathrm{O}(11)$	2.23(1)	$\mathrm{C}(10)-\mathrm{C}(11)$	1.52 (4)
$\mathrm{Zn}(2)-\mathrm{O}(12)$	$2 \cdot 00$ (1)	$\mathrm{C}(11)-\mathrm{C}(12)$	1-45(4)
		$\mathrm{C}(12)-\mathrm{N}(6)$	1-47(3)
Oxalate bridge		Perchlorate anions	
$\mathrm{C}(13)-\mathrm{C}(14)$	1-57(2)		
$\mathrm{C}(13)-\mathrm{O}(9)$	1-28(2)	$\mathrm{Cl}(1)-\mathrm{O}(1)$	$1 \cdot 39(5)$
$\mathrm{C}(13)-\mathrm{O}(12)$	$1 \cdot 19(2)$	$\mathrm{Cl}(1)-\mathrm{O}(2)$	1-35(4)
$\mathrm{C}(14)-\mathrm{O}(10)$	$1 \cdot 30(2)$	$\mathrm{Cl}(1)-\mathrm{O}(3)$	$1 \cdot 36(5)$
$\mathrm{C}(14)-\mathrm{O}(11)$	1-23(2)	$\mathrm{Cl}(1)-\mathrm{O}(4)$	1-34(4)
Dipropylenetriamine groups		$\mathrm{Cl}(2)-\mathrm{O}(5)$	1-36(2)
$\mathrm{N}(1)-\mathrm{C}(1)$	1.43(4)	$\mathrm{Cl}(2)-\mathrm{O}(6)$	1-34(2)
$\mathrm{C}(1)-\mathrm{C}(2)$	1-23(5)	$\mathrm{Cl}(2)-\mathrm{O}(7)$ $\mathrm{Cl}(2)-\mathrm{O}(8)$	$1.38(4)$ $1.38(4)$
$\mathrm{C}(2)-\mathrm{C}(3)$	1-45(4)	$\mathrm{Cl}(2)-\mathrm{O}(8)$	$1 \cdot 38(4)$

* $C\left(5^{\prime}\right)$ is related to $C(5)$ by a centre at $0,0,0$.

Table 4
Bond angles (${ }^{\circ}$)
(a) Compound (I)

\quad Nickel octahedron	
$\mathrm{N}(2)-\mathrm{Ni}-\mathrm{N}(3)$	$82 \cdot 2(5)$
$\mathrm{N}(2)-\mathrm{Ni}-\mathrm{N}(4)$	$174 \cdot 7(5)$
$\mathrm{N}(2)-\mathrm{Ni}-\mathrm{N}(5)$	$94 \cdot 9(5)$
$\mathrm{N}(2)-\mathrm{Ni}-\mathrm{O}(4)$	$90 \cdot 8(5)$
$\mathrm{N}(2)-\mathrm{Ni}-\mathrm{O}(5)$	$91 \cdot 7(5)$
$\mathrm{N}(3)-\mathrm{Ni}-\mathrm{N}(4)$	$93 \cdot 0(5)$
$\mathrm{N}(3)-\mathrm{Ni}-\mathrm{N}(5)$	$98 \cdot 2(5)$
$\mathrm{N}(3)-\mathrm{Ni}-\mathrm{O}(4)$	$92 \cdot 0(5)$
$\mathrm{N}(3)-\mathrm{Ni}-\mathrm{O}(5)$	$169 \cdot 6(5)$
$\mathrm{N}(4)-\mathrm{Ni}-\mathrm{N}(5)$	$83 \cdot 6(5)$
$\mathrm{N}(4)-\mathrm{Ni}-\mathrm{O}(4)$	$91 \cdot 6(5)$
$\mathrm{N}(4)-\mathrm{Ni}-\mathrm{O}(5)$	$93 \cdot 4(5)$
$\mathrm{N}(5)-\mathrm{Ni}-\mathrm{O}(4)$	$169 \cdot 0(5)$
$\mathrm{N}(5)-\mathrm{Ni}-\mathrm{O}(5)$	$90 \cdot 6(5)$
$\mathrm{O}(4)-\mathrm{Ni}-\mathrm{O}(5)$	$79.7(4)$
Oxalate bridge	
$\mathrm{Ni}-\mathrm{O}(5)-\mathrm{C}(5)$	$113 \cdot 1(6)$
$\mathrm{Ni}-\mathrm{O}(4)-\mathrm{C}\left(5^{\prime}\right)$	$112.7(6)$

$\mathrm{O}(5)-\mathrm{C}(5)-\mathrm{O}\left(4^{\prime}\right)$	$125 \cdot 6(6)$
$\mathrm{O}(5)-\mathrm{C}(5)-\mathrm{C}\left(5^{\prime}\right)$	$116 \cdot 8(7)$
$\mathrm{C}(5)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{O}(4)$	$117 \cdot 5(7)$
Ethylenediamine groups	

$\mathrm{Ni}-\mathrm{N}(2)-\mathrm{C}(1)$	$107 \cdot 6(7)$
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	$109 \cdot 9(9)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(3)$	$110 \cdot 0(9)$
$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{Ni}$	$108 \cdot 6(7)$
$\mathrm{Ni}-\mathrm{N}(4)-\mathrm{C}(3)$	$108 \cdot 5(7)$
$\mathrm{N}(4)-\mathrm{C}(3)-\mathrm{C}(4)$	$108 \cdot 7(9)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(5)$	$108 \cdot 1(9)$
$\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{Ni}$	$106 \cdot 3(8)$
Nitrate anion	
$\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{O}(2)$	$119 \cdot 2(11)$
$\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{O}(3)$	$116 \cdot 8(10)$
$\mathrm{O}(2)-\mathrm{N}(1)-\mathrm{O}(3)$	$124 \cdot 0(11)$

(b) Compound (II)

Copper square pyramids	
$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{N}(2)$	$83 \cdot 3(8)$
$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{N}(3)$	$162 \cdot 5($
$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{O}(9)$	$97 \cdot 4($
$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{O}(10)$	$98 \cdot 0($
$\mathrm{N}(2)-\mathrm{Cu}(1)-\mathrm{N}(3)$	$84 \cdot 5($
$\mathrm{N}(2)-\mathrm{Cu}(1)-\mathrm{O}(9)$	$103 \cdot 0($
$\mathrm{N}(2)-\mathrm{Cu}(1)-\mathrm{O}(10)$	$178 \cdot 3($
$\mathrm{N}(3)-\mathrm{Cu}(1)-\mathrm{O}(9)$	$97 \cdot 6($
$\mathrm{N}(3)-\mathrm{Cu}(1)-\mathrm{O}(10)$	$94 \cdot 0($
$\mathrm{O}(9)-\mathrm{Cu}(1)-\mathrm{O}(10)$	$77 \cdot 9($
$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{O}\left(3^{\prime}\right)$	92
$\mathrm{~N}(2)-\mathrm{Cu}(1)-\mathrm{O}\left(3^{\prime}\right)$	90
$\mathrm{~N}(3)-\mathrm{Cu}(1)-\mathrm{O}\left(3^{\prime}\right)$	76
$\mathrm{O}(9)-\mathrm{Cu}(1)-\mathrm{O}\left(3^{\prime}\right)$	165
$\mathrm{O}(10)-\mathrm{Cu}(1)-\mathrm{O}\left(3^{\prime}\right)$	89
$\mathrm{Cu}(1)-\mathrm{O}\left(3^{\prime}\right)-\mathrm{Cl}\left(1^{\prime}\right)$	117
$\mathrm{~N}(4)-\mathrm{Cu}(2)-\mathrm{N}(5)$	$85 \cdot 1($
$\mathrm{N}(4)-\mathrm{Cu}(2)-\mathrm{N}(6)$	$158 \cdot 1($
$\mathrm{N}(4)-\mathrm{Cu}(2)-\mathrm{O}(11)$	$103 \cdot 9(7$
$\mathrm{N}(4)-\mathrm{Cu}(2)-\mathrm{O}(12)$	$93 \cdot 0($
$\mathrm{N}(5)-\mathrm{Cu}(2)-\mathrm{N}(6)$	$83 \cdot 8($
$\mathrm{N}(5)-\mathrm{Cu}(2)-\mathrm{O}(11)$	$102 \cdot 2($
$\mathrm{N}(5)-\mathrm{Cu}(2)-\mathrm{O}(12)$	$117 \cdot 4($
$\mathrm{N}(6)-\mathrm{Cu}(2)-\mathrm{O}(11)$	$96 \cdot 9($
$\mathrm{N}(6)-\mathrm{Cu}(2)-\mathrm{O}(12)$	$97 \cdot 3($
$\mathrm{O}(11)-\mathrm{Cu}(2)-\mathrm{O}(12)$	$80 \cdot 0($
$\mathrm{N}(4)-\mathrm{Cu}(2)-\mathrm{O}\left(4^{\prime \prime}\right)$	85
$\mathrm{~N}(5)-\mathrm{Cu}(2)-\mathrm{O}\left(4^{\prime \prime}\right)$	90
$\mathrm{~N}(6)-\mathrm{Cu}(2)-\mathrm{O}\left(4^{\prime \prime}\right)$	76
$\mathrm{O}(11)-\mathrm{Cu}(2)-\mathrm{O}\left(4^{\prime \prime}\right)$	165
$\mathrm{O}(12)-\mathrm{Cu}(2)-\mathrm{O}\left(4^{\prime \prime}\right)$	88
$\mathrm{Cu}(2)-\mathrm{O}\left(4^{\prime \prime}\right)-\mathrm{Cl}\left(1^{\prime \prime}\right)$	122

\quad Oxalate bridge	
$\mathrm{Cu}(1)-\mathrm{O}(9)-\mathrm{C}(9)$	$107 \cdot 3(9)$
$\mathrm{Cu}(1)-\mathrm{O}(10)-\mathrm{C}(10)$	$118 \cdot 5(9)$
$\mathrm{Cu}(2)-\mathrm{O}(11)-\mathrm{C}(10)$	$108 \cdot 9(9)$
$\mathrm{Cu}(2)-\mathrm{O}(12)-\mathrm{C}(9)$	$114 \cdot 8(9)$

(c) Compound (III)

Zinc trigonal bipyramid

N	(8)	$\mathrm{N}(2)-\mathrm{Zn}(1)-\mathrm{O}(9)$	177.0(8)
$\mathrm{N}(1)-\mathrm{Zn}(\mathrm{I})-\mathrm{N}(3)$	145.0(9)	$\mathrm{N}(2)-\mathrm{Zn}(1)-\mathrm{O}(10)$	102.1(8)
$\mathrm{N}(1)-\mathrm{Zn}(1)-\mathrm{O}(9)$	88.8(8)	$\mathrm{N}(3)-\mathrm{Zn}(1)-\mathrm{O}(9)$	$85 \cdot 0$ (8)
$\mathrm{N}(1)-\mathrm{Zn}(1)-\mathrm{O}(10)$	105.9(8)	$\mathrm{N}(3)-\mathrm{Zn}(1)-\mathrm{O}(10)$	107.0(8)
$\mathrm{N}(2)-\mathrm{Zn}(1)-\mathrm{N}(3)$	92.8(9)	$\mathrm{O}(9)-\mathrm{Zn}(1)-\mathrm{O}(10)$	$80 \cdot 6(7)$

Table 4 (Continued)
(c) Compound (III)

Zinc trigonal bipyramids				
$\mathrm{N}(4)-\mathrm{Zn}(2)-\mathrm{N}(5)$	97-4(8)	$\mathrm{C}(3)-\mathrm{N}(2)-\operatorname{Zn}(1)$	$110 \cdot 5(12)$	
$\mathrm{N}(4)-\mathrm{Zn}(2)-\mathrm{N}(6)$	122.0 (9)	$\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{C}(4)$	$110 \cdot 8(14)$	
$\mathrm{N}(4)-\mathrm{Zn}(2)-\mathrm{O}(11)$	91.5(8)	$\mathrm{Zn}(1)-\mathrm{N}(2)-\mathrm{C}(4)$	112-2(12)	
$\mathrm{N}(4)-\mathrm{Zn}(2)-\mathrm{O}(12)$	117.6 (8)	$\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	108.7(15)	
$\mathrm{N}(5)-\mathrm{Zn}(2)-\mathrm{N}(6)$	94.7(8)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	114.3(15)	
$\mathrm{N}(5)-\mathrm{Zn}(2)-\mathrm{O}(11)$	170-2(8)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(3)$	113.9(14)	
$\mathrm{N}(5)-\mathrm{Zn}(2)-\mathrm{O}(12)$	94-4(8)	$\mathrm{C}(6)-\mathrm{N}(3)-\operatorname{Zn}(1)$	116.6(12)	
$\mathrm{N}(6)-\mathrm{Zn}(2)-\mathrm{O}(11)$	84-1(8)			
$\mathrm{N}(6)-\mathrm{Zn}(2)-\mathrm{O}(12)$	117.7(8)	Zn	$111.9(12)$	
$\mathrm{O}(11)-\mathrm{Zn}(2)-\mathrm{O}(12)$	77.7(7)	$\mathrm{N}(4)-\mathrm{C}(7)-\mathrm{C}(8)$	114.8(14)	
		$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	114.7(15)	
$\mathrm{N}(1)-\mathrm{Zn}(1)-\mathrm{O}(8)$	72	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{N}(5)$	109.0(14)	
$\mathrm{N}(2)-\mathrm{Zn}(1)-\mathrm{O}(8)$	86	$\mathrm{C}(9)-\mathrm{N}(5)-\mathrm{Zn}(2)$	113.2(12)	
$\mathrm{N}(3)-\mathrm{Zn}(1)-\mathrm{O}(8)$	74	$\mathrm{C}(9)-\mathrm{N}(5)-\mathrm{C}(10)$	109.6(13)	
$\mathrm{O}(9)-\mathrm{Zn}(1)-\mathrm{O}(8)$	92	$\mathrm{Zn}(2)-\mathrm{N}(5)-\mathrm{C}(10)$	117.7(11)	
$\mathrm{O}(10)-\mathrm{Zn}(1)-\mathrm{O}(8)$	172	$\mathrm{N}(5)-\mathrm{C}(10)-\mathrm{C}(11)$	107.2(14)	
$\mathrm{Zn}(1)-\mathrm{O}(8)-\mathrm{Cl}(2)$	119	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	117-4(15)	
Oxalate bridge		$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{N}(6)$	114.8(15)	
		$\mathrm{C}(12)-\mathrm{N}(6)-\mathrm{Zn}(2)$	118.2(12)	
$\mathrm{Zn}(1)-\mathrm{O}(9)-\mathrm{C}(13)$	111.0(10)			
$\mathrm{Zn}(1)-\mathrm{O}(10)-\mathrm{C}(14)$	114.6(10)	Perchlorate anions		
$\mathrm{Zn}(2)-\mathrm{O}(11)-\mathrm{C}(14)$	109.5(10)	$\mathrm{O}(1)-\mathrm{Cl}(1)-\mathrm{O}(2)$	107.9(16)	
$\mathrm{Zn}(2)-\mathrm{O}(12)-\mathrm{C}(13)$	$118.8(10)$	$\mathrm{O}(1)-\mathrm{Cl}(1)-\mathrm{O}(3)$	116.3(17)	
$\mathrm{O}(9)-\mathrm{C}(13)-\mathrm{O}(12)$	127.7(12)	$\mathrm{O}(1)-\mathrm{Cl}(1)-\mathrm{O}(4)$	108.7(16)	
$\mathrm{O}(9)-\mathrm{C}(13)-\mathrm{C}(14)$	115.4(12)	$\mathrm{O}(2)-\mathrm{Cl}(1)-\mathrm{O}(3)$	118.6(17)	
$\mathrm{O}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	116.7(12)	$\mathrm{O}(2)-\mathrm{Cl}(1)-\mathrm{O}(4)$	106.4(15)	
$\bigcirc \mathrm{O}(10)-\mathrm{C}(14)-\mathrm{O}(11)$	125.0(12)	$\mathrm{O}(3)-\mathrm{Cl}(1)-\mathrm{O}(4)$	97.5(16)	
$\mathrm{O}(10)-\mathrm{C}(14)-\mathrm{C}(13)$	118.1(12)	(1)		
$\mathrm{O}(11)-\mathrm{C}(14)-\mathrm{C}(13)$	116.6(12)	$\mathrm{O}(5)-\mathrm{Cl}(2)-\mathrm{O}(6)$	116.1(12)	
	Dipropylenetriamine groups		$\mathrm{O}(5)-\mathrm{Cl}(2)-\mathrm{O}(7)$	115-0(13)
			$\mathrm{O}(5)-\mathrm{Cl}(2)-\mathrm{O}(8)$	105.1(14)
$\mathrm{Zn}(1)-\mathrm{N}(1)-\mathrm{C}(1)$	113.5(14)	$\mathrm{O}(6)-\mathrm{Cl}(2)-\mathrm{O}(7)$	$112 \cdot 2(14)$	
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	126-3(20)	$\mathrm{O}(6)-\mathrm{Cl}(2)-\mathrm{O}(8)$	105.5(15)	
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	122-3(19)	$\mathrm{O}(7)-\mathrm{Cl}(2)-\mathrm{O}(8)$	100.9(15)	

discussion

ORTEP Diagrams of the three complex ions are shown in Figure 1. From these and the appropriate bond length and angle data it can be seen that the co-ordination stereochemistry about the metal ions is different for the three compounds, being essentially octahedral in (I), tetragonal pyramidal in (II), and trigonal bipyramidal in (III). Nevertheless each complex has a dimeric cation in which two metal atoms are symmetrically bridged by an oxalate group. The structures of the cations, the structures of the anions, and the hydrogen bonding and molecular packing are considered separately.

Structure of Cations.-(a) The metal-oxalate groupings. The oxalato-group is bichelate and bound in such a way as to complete a five-, rather than a four-membered ring, with each metal. Table 5 lists planes of best fit and the deviations therefrom of selected atoms. The oxalate ion has a similar structural role in $\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right), 2 \mathrm{H}_{2} \mathrm{O},{ }^{19}$ $\mathrm{Ti}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right), 10 \mathrm{H}_{2} \mathrm{O},^{20} \quad\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{VO}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right),{ }^{21} \quad \beta-\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2}-$ $\left(\mathrm{C}_{2} \mathrm{O}_{4}\right),{ }_{2}^{22} \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right),{ }^{23}$ and $\left.\left[\mathrm{Ru}_{2} \text { (pyridine) }\right)_{8} \mathrm{C}_{2} \mathrm{O}_{4}\right]$ $\left(\mathrm{BF}_{4}\right)_{2}{ }^{24}$

In all instances the bridging group is essentially planar,
19 F. Mazzi and C. Garavelli, Periodica Mineral., 1957, 26, 269.
${ }_{20}$ M. G. B. Drew, G. W. A. Fowles, and D. F. Lewis, Chem. Comm., 1969, 876.
${ }_{21}$ N. W. Alcock, Chem. Comm., 1968, 1327.
22 J. Garaj, Chem. Comm., 1968, 904.
${ }^{23}$ L. Cavaica, A. Chiesi Villa, A. Gaetani, Manfredotti, A. Mangia, and A. A. G. Tomlinson, J.C.S. Dalton, 1972, 39.
${ }_{24}$ P.-T. Cheng, B. R. Loescher, and S. C. Nyburg, Inorg. Chem., 1971, 10, 1275.

Table 5
Planes of best fit and deviations therefrom. Equations are expressed in the cosine form $l X+m Y+n Z+p=0$, with reference to cell axes and with p expressed in \AA units
(a) Compound (I)
$\begin{array}{ccccc}\text { (i) Definition of plane } & l & m & n & p \\ \mathrm{O}(4), \mathrm{O}(5), \mathrm{C}(5), \mathrm{O}\left(4^{\prime}\right), & 0.420 & 0.215 & -0.882 & 0\end{array}$
$\begin{array}{cccccc}\text { (a): } \mathrm{O}(4), \mathrm{O}(5), \mathrm{C}(5), \mathrm{O}\left(4^{\prime}\right), & 0.420 & 0.215 & -0.882 & 0 \\ \mathrm{O}\left(5^{\prime}\right), \mathrm{C}\left(5^{\prime}\right) & & & & & \\ (b): \mathrm{Ni}, \quad \mathrm{Ni}^{\prime}, \mathrm{O}(4), \quad \mathrm{O}\left(4^{\prime}\right), & 0.414 & 0.208 & -0.886 & 0\end{array}$
(b): $\mathrm{Ni}, \underset{\mathrm{O}(5), \mathrm{O} \mathrm{N}^{\prime}, \underset{(5)}{\mathrm{O}}(\mathbf{4}), \mathrm{C}(5), \mathrm{C}\left(\mathbf{5}^{\prime}\right)}{\mathrm{O}}$
$\begin{array}{lrrrrr}(c): \mathrm{N}(1), \mathrm{O}(1)-(3) & 0.624 & -0.780 & -0.046 & 0.734 \\ (d): \mathrm{Ni}, \mathrm{O}(4), \mathrm{O}(5), \mathrm{N}(3), & 0.461 & 0.150 & -0.874 & 0.016 \\ \mathrm{~N}(5) & & & & \\ \text { (e): } \mathrm{Ni}, \mathrm{N}(2), \mathrm{N}(3) & 0.022 & -0.980 & -0.197 & 2.018 \\ (f): \mathrm{Ni}, \mathrm{N}(4), \mathrm{N}(5) & 0.876 & 0.065 & 0.478 & -2.068\end{array}$
$\begin{array}{lllll}(f): N i, N(4), N(5) & 0.876 & 0.065 & 0.478 & -2.068\end{array}$
(ii) Deviations (\AA) from planes

Plane (a):
$\mathrm{O}(4) 0.004, \mathrm{O}(5)-0.004, \mathrm{C}(5)-0.014$, $\mathrm{Ni} 0.036, \mathrm{Ni}^{\prime}-0.036$, etc.
Plane (b) :
$\mathrm{Ni} 0.009, \mathrm{O}(4)-0.007, \mathrm{O}(5)-0.015, \mathrm{C}(5) 0.014, \mathrm{Ni}^{\prime}-0.009$, etc., $\mathrm{N}(3) 0.197, \mathrm{~N}(5)-0.219$
Plane (c): $\mathrm{N}(1) 0.004, \mathrm{O}(1)-0.001, \mathrm{O}(2)-0.001, \mathrm{O}(3)-0.001$
Plane (d):
$\mathrm{Ni} 0.007, \mathrm{O}(4) 0.103, \mathrm{O}(5)-0.107, \mathrm{~N}(3)-0.090, \mathrm{~N}(5) 0.088$, $\mathrm{N}(2)-2 \cdot 091, \mathrm{~N}(4) \mathbf{2} \cdot 090$
Plane (e):

$$
C(1) 0.361, C(2)-0.296
$$

Plane (f): $\mathrm{C}(3) \mathbf{0 . 2 3 9}, \mathrm{C}(4)-0.475$
(b) Compound (II)
(i) Definition of plane
(a): $\mathrm{O}(9), \mathrm{O}(10), \mathrm{O}(11)$,
$\mathrm{O}(12), \mathrm{C}(9), \mathrm{C}(10)$
(b): $\mathrm{O}(9)-(12)$
$(c): \mathrm{N}(1)-(3), \mathrm{O}(10)$
(d): $\mathrm{N}(4)-(6), \mathrm{O}(12)$
(e): $\mathrm{Cu}(1), \mathrm{N}(1), \mathrm{N}(2)$
$(f): \mathbf{C u}(1), \mathbf{N}(2), \mathbf{N}(3)$
$(g): \mathrm{Cu}(2), \mathrm{N}(4), \mathrm{N}(5)$
(h): $\mathrm{Cu}(2), \mathrm{N}(5), \mathrm{N}(6) \quad-0.573-0.794 \quad 0.204-1.605$
(ii) Deviations (A) from planes

Plane (a):
$\mathrm{O}(9)-0.020, \mathrm{O}(10)-0.011, \mathrm{O}(11)-0.018, \mathrm{O}(12)-0.014$, $\mathrm{C}(9) 0.037, \mathrm{C}(10) \quad 0.026, \mathrm{Cu}(1) 0.027, \mathrm{Cu}(2) 0.043, \mathrm{~N}(2)$ $0.016, \mathrm{~N}(5) 0.055$
Plane (b):
$\mathrm{O}(9)-0.003, \mathrm{O}(10) 0.003, \mathrm{O}(11)-0.003, \mathrm{O}(12) 0.003$, $\mathrm{C}(9) 0.053, \mathrm{C}(10) 0.041, \mathrm{Cu}(1) 0.043, \mathrm{Cu}(2) 0.060$, $\mathrm{N}(2) \mathbf{0 . 0 3 2}, \mathrm{N}(5) 0.071$
Plane (c):
$\mathrm{N}(1)-0.094, \mathrm{~N}(2) 0.109, \mathrm{~N}(3)-1 \cdot 106, \mathrm{O}(12) 0.091, \mathrm{Cu}(1)$ $0 \cdot 115, \mathrm{O}(9) 2.344$
Plane (d) :
$\mathrm{N}(4) \mathbf{0 . 1 5 6}, \mathrm{N}(5)-0.167, \mathrm{~N}(6) 0.146, \mathrm{O}(12)-0.135, \mathrm{Cu}(2)$
$-0.188, \mathrm{O}(11)-2.372$
Plane (e):

$$
\mathrm{C}(1) 0.066, \mathrm{C}(2)-0.434, \mathrm{O}(9)^{*}+
$$

Plane (f) :

$$
C(3)-0.515, C(4) 0.428, O(9)^{*}+
$$

Plane (g):
$\mathrm{C}(\boldsymbol{5})-0.260, \mathrm{C}(6) \mathbf{0 . 3 7 2}, \mathrm{O}(11)^{*}$ -
Plane (h):
$\mathrm{C}(7) 0.416, \mathrm{C}(8)-0.018, \mathrm{O}(11)^{*}-$

* The sign of the displacements is given for the apical atoms.

Table 5 (Continued)
(c) Compound (III)

(i) Definition of plane	l	m	n	p
(a): $\mathrm{O}(9)-(12), \mathrm{C}(13), \mathrm{C}(14)$	0.7	0.687	0.080	-2.682
(b): $\mathrm{Zn}(1), \mathrm{N}(1), \mathrm{N}(3), \mathrm{O}(10)$	0.051	0.069	-0	. 982
(c): $\mathrm{Zn}(2), \mathbf{N}(4), \mathrm{N}(6), \mathrm{O}(12)$	$0 \cdot 179$	0.142	-0.973	0.892
(d) : $\mathrm{Zn}(1), \mathrm{N}(1), \mathrm{C}(2), \mathrm{C}(3)$	-0.843	$0 \cdot 497$	-0.205	0.791
(e): $\mathrm{Zn}(1), \mathrm{N}(2), \mathrm{C}(1), \mathrm{C}(2)$	0.699	-0.699	-0.153	940
$(f): \mathbf{N}(1), \mathbf{N}(2), \mathbf{C}(1), \mathbf{C}(3)$	$0 \cdot 495$	-0.824	0.275	26
(g): $\mathrm{Zn}(1), \mathrm{N}(2), \mathrm{C}(5), \mathrm{C}(6)$	644	-0.741	-0.194	1.267
(h): $\mathrm{Zn}(1), \mathrm{N}(3), \mathrm{C}(4), \mathrm{C}(5)$	$0 \cdot 344$	-0.929	0.135	0.983
(i): $\mathrm{N}(2), \mathrm{N}(3), \mathrm{C}(4), \mathrm{C}(6)$	-0.742	0.588	-0.321	1.831
(j): $\mathrm{Zn}(2), \mathrm{N}(4), \mathrm{C}(8), \mathrm{C}(9)$. 078	-0.988	0.132	. 196
(k): $\mathrm{Zn}(2), \mathrm{N}(5), \mathrm{C}(7), \mathrm{C}(8)$	0.429	-0.895	-0.118	4.924
(l) : $\mathrm{N}(4), \mathrm{N}(5), \mathrm{C}(7), \mathrm{C}(9)$	-0.485	0.795	-0.365	-5.527
		0.268	-0.253	-2.453
$: \underset{\mathrm{Cl}(11)}{\operatorname{Zn}(2),} \quad \mathrm{N}(6), \quad \mathrm{C}(10)$	-0.889	0.454	0.063	-3.258
(o): $\mathrm{N}(5), \mathrm{N}(6), \mathrm{C}(10), \mathrm{C}(12)$	-0.995	0.042	0.090	-0.495

(ii) Deviations (\AA) from planes

Plane (a):
$O(9) 0.011, O(10)-0.013, \mathrm{O}(11)-0.003, \mathrm{O}(12) 0, \mathrm{C}(13)$ $-0.022, \mathrm{C}(14) 0.027, \mathrm{Zn}(1)-0.083, \mathrm{Zn}(2) 0.188, \mathrm{~N}(2)$ $-0.126, N(5) 0.562$
Plane (b) :
$\mathrm{Zn}(1)-0.119, \mathrm{~N}(1) 0.045, \mathrm{~N}(3) 0.046, \mathrm{O}(10) 0.027, \mathrm{O}(9)$ 2.070, $\mathrm{N}(2)-2.262$

Plane (c):
$\mathrm{Zn}(2) \mathbf{0 . 1 4 6}, \mathrm{N}(4)-0.049, \mathrm{~N}(6)-0.049, \mathrm{O}(12)-0.048$, $\mathrm{O}(11)-2.061, \mathrm{~N}(5) 2.288$
Plane (d):
$\mathrm{Zn}(1)-0.052, \mathrm{~N}(1) 0.069, \mathrm{C}(2)-0.094, \mathrm{C}(3) 0.076, \mathrm{~N}(2)$ $-0.739, \mathrm{C}(1) \quad 0.386$
Plane (e):
$\mathrm{Zn}(1) 0.002, \mathrm{~N}(2)-0.003, \mathrm{C}(1)-0.004, \mathrm{C}(2) 0.005, \mathrm{~N}(1)$ $0.504, \mathrm{C}(3)-71.2$
Plane (f):
$\mathrm{N}(1)-0.077, \mathrm{~N}(2) 0.069, \mathrm{C}(1) 0.098, \mathrm{C}(3)-0.091, \mathrm{Zn}(1)$ $-0.868, \mathrm{C}(2) 0.555$
Plane (g):
$\mathrm{Zn}(1) 0.036, \mathrm{~N}(2)-0.045, \mathrm{C}(5) 0.060, \mathrm{C}(6)-0.052, \mathrm{~N}(3)$ $0.611, \mathrm{C}(4)-0.753$
Plane (k):
$\mathrm{Zn}(1) 0.065, \mathrm{~N}(3)-0.080, \mathrm{C}(4)-0.087, \mathrm{C}(5) \quad 0.102, \mathrm{~N}(2)$ $0.734, \mathrm{C}(6)-0.637$
Plane (i):
$\mathrm{N}(2)-0.041, \mathrm{~N}(3) 0.041, \mathrm{C}(4) 0.048, \mathrm{C}(6)-0.048, \mathrm{Zn}(1)$ $0.921, \mathrm{C}(5)-0.750$
Plane (j):
$\mathrm{Zn}(2)-0.080, \mathrm{~N}(4) 0.102, \mathrm{C}(8)-0.134, \mathrm{C}(9) 0.111, \mathrm{~N}(5)$ $-0.620, C(7) 0.644$
Plane (k)
$\mathrm{Zn}(2)-0.074, \mathrm{~N}(5) \quad 0.091, \mathrm{C}(7) 0.112, \mathrm{C}(8)-0.129, \mathrm{~N}(4)$ $-0.577, \mathrm{C}(9) \quad 0.697$
Plane (l)
$\mathrm{N}(4)-0.010, \mathrm{~N}(5) 0.010, \mathrm{C}(7) 0.012, \mathrm{C}(9)-0.012, \mathrm{Zn}(2)$ $-0.770, \mathrm{C}(8) 0.751$
Plane (m): $\mathrm{Zn}(2)-0.080, \mathrm{~N}(5) 0.104, \mathrm{C}(11)-0.148, \mathrm{C}(12) 0.124$, $\mathrm{N}(6)-0.395, \mathrm{C}(10) \quad 0.659$
Plane (n): $\mathrm{Zn}(2)-0.105, \mathrm{~N}(6) \quad 0.138, \mathrm{C}(10) \quad 0.146, \mathrm{C}(11)-0.180$, $\mathrm{N}(5)-0.501, \mathrm{C}(12) 0.550$
Plane (o):
$\mathrm{N}(5)-0.029, \mathrm{~N}(6) 0.030, \mathrm{C}(10) 0.036, \mathrm{C}(12)-0.037, \mathrm{Zn}(2)$ $0.589, \mathrm{C}(11)-0.710$
indisputably so in compounds (I) and (III) but with the likelihood that the carbon atoms in (II) are removed slightly [by $0.053(14)$ and $0.041(13) \AA$ for $C(9)$ and $C(10)$ respectively, deviations being in the direction perpendicular to the plane] from the plane through the four oxalate oxygen atoms. In each compound the central bond of the oxalate group is $1.54 \AA[1.554(8), 1 \cdot 53(2)$, and $1.57(2) \AA$ for the three complexes]. The mean carbonoxygen lengths are $c a .1 .25 \AA$ in each compound, those in (I) and (II) probably being equal $[1 \cdot 239(7)$ and $1 \cdot 236(7) \AA$ in centrosymmetric (I), $1 \cdot 23(2), 1 \cdot 25(2), 1 \cdot 26(2)$, and $1.29(2) \AA$ in (II)] but those in (III) are divided into longer and shorter pairs $[1 \cdot 28(2), 1 \cdot 30(2)$, and $1 \cdot 19(2)$, $1 \cdot 23(2) \AA]$ although such a distinction is close to the limit of significance. The oxalate group in ionic compounds is found to be symmetrical with the $\mathrm{C}-\mathrm{O}$ distance $c a$. $1.25 \AA$. For the acid dihydrate however, the $\mathrm{C}-\mathrm{OH}$ and $\mathrm{C}=\mathrm{O}$ distances are 1.281 and $1.207 \AA$ respectively, ${ }^{25}$ hydrogen bonding, or co-ordination of one oxygen of the carboxyl group, ${ }^{10}$ partially localising the negative charge on the interacting atom with increase in that $\mathrm{C}-\mathrm{O}$ distance and decrease in the other. Nevertheless the distance appears to be relatively insensitive to interactions by the oxygen atoms as can be seen from the lack of correlation between the $\mathrm{C}-\mathrm{O}$ and $\mathrm{M}-\mathrm{O}$ distances for (II) and (III). Thus the division of the $\mathrm{C}-\mathrm{O}$ bonds in (III) into longer and shorter pairs is unlikely to reflect differences in donor bonding. On the other hand, the two zinc atoms have different co-ordination geometries, that at $\mathrm{Zn}(2)$ being close to trigonal bipyramidal with that at $\mathrm{Zn}(\mathrm{I})$ being describable in terms of a distorted octahedron if a perchlorate oxygen in the equatorial plane $[\mathrm{Zn}(1)-\mathrm{O}(8)$ $3.11 \AA]$ be assumed a member of the co-ordination sphere. It is perhaps significant therefore that the two long $\mathrm{C}-\mathrm{O}$ bonds are associated with the same metal centre, $\mathrm{Zn}(\mathrm{l})$, the lengthening being assumed to be steric rather than electronic, in origin. The $\mathrm{Cu}-\mathrm{O}$ (apical) distances in (II) are 2.23 and $2 \cdot 29 \AA$ appreciably longer than the $\mathrm{Cu}-\mathrm{O}$ (basal) distances of 1.97 and $2.02 \AA$, as expected. In (III), the $\mathrm{Zn}-\mathrm{O}$ (apical) distances of $2 \cdot 20$ and $2 \cdot 23 \AA$. are again longer than the $\mathrm{Zn}-\mathrm{O}(\mathrm{eq})$ distances of 2.00 and $2.02 \AA$.

In all compounds the oxalate groups span co-ordinating positions which would be ideally at 90° to one another, although in all instances this angle is reduced to ca. 80°. These are adjacent octahedral positions in (I), where the oxygen-metal-oxygen bond angle is 80°, basal and apical positions in (II) ($\mathbf{7 8}$ and 80°) and apical and equatorial positions in (III) (78 and 81°). The dimensions of the oxalate ion are relatively insensitive to co-ordination and hence the angle subtended at a metal by an oxalato-group is largely determined by the $\mathrm{M}-\mathrm{O}$ distances. Thus in $\mathrm{Zr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{4}, 3 \mathrm{H}_{2} \mathrm{O}^{26}$ where $\mathrm{Zr}-\mathrm{O}$ is ca. $2 \cdot 2 \AA$ this angle is $\mathbf{7 1 . 3}{ }^{\circ}$, whereas in $\left[\mathrm{Cr}(\mathrm{en})_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]\left[\mathrm{Cr}(\mathrm{en})\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right], 2 \mathrm{H}_{2} \mathrm{O}^{27}$
${ }^{25}$ S. Shibata and M. Kimura, Bull. Chem. Soc. Japan, 1954, 27, 485.
${ }_{28}$ G. L. Glen, J. V. Silverton, and J. L. Hoard, Inorg. Chem., 1963, 2, 250.
${ }^{27}$ J. W. Lethbridge, L. S. Dent Glasser, and H. F. W. Taylor, J. Chem. Soc. (A), 1970, 1862.
J.C.S. Dalton
with $\mathrm{Cr}-\mathrm{O}$ ca. $1.95 \AA$ it is 83°. (Similar values are seen in $\mathrm{K}\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}, 3 \mathrm{H}_{2} \mathrm{O}{ }^{28}\right)$ In (I), (II), and (III), and in $\left.\left[\mathrm{Ru}_{2} \text { (pyridine }\right)_{8}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]\left(\mathrm{BF}_{4}\right)_{2}{ }^{24}$ the $\mathrm{M}^{-\mathrm{O}}$ distances are $c a .2 \cdot 1 \AA$ and the angle $c a .80^{\circ}$.
One unusual feature of the structure of (II) is the low value $\left[121(1)^{\circ}\right]$ found for one of the $\mathrm{O}-\mathrm{C}-\mathrm{O}$ angles which
simplistic expectations of linearity or coplanarity observed in transition-metal carbonyl and π-alkyl complexes ${ }^{30,31}$ is not clear. The effect could equally result from packing requirements since the crystal structures of all the compounds involve hydrogen-bonding networks and close intermolecular contacts. The detailed study

Figure 1 Thermal vibration ellipsoids of the complex cations, showing the atom numbering: (a) (I) $\left[\left\{\mathrm{Ni}(\mathrm{en})_{2}\right\}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]^{2+}$ [nitrate ion numbered as $\mathrm{N}(1), \mathrm{O}(1)-(3)]$; (b) (II) $\left[\{\mathrm{Cu}(\text { dien })\}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]^{2+}[$ perchlorate ions numbered as $\mathrm{Cl}(1), \mathrm{O}(1)-(4)$ and $\mathrm{Cl}(2), \mathrm{O}(5)-(8)]$; (c) (III) $\left[\{\mathrm{Zn}(\mathrm{dpt})\}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]^{2+}[$ perchlorate numbered as for (II)]
are normally close to 126° in other reported oxalate structures. Other values in the present structures are 125•6(6) in (I), $127\left(\mathrm{l}\right.$) in (II), and $125\left(\mathrm{l}\right.$) and $128(1)^{\circ}$ in (III). The temptation to dismiss an aberrant value must be tempered by the knowledge that similar, but smaller, differences occur in the monomeric complex Cu (dien)$\mathrm{C}_{2} \mathrm{O}_{4}, 4 \mathrm{H}_{2} \mathrm{O},{ }^{10}$ for which more precise data are available. A comparison of copper-oxalate groupings (Table 6) between this complex and (II), which is essentially its dimeric analogue, shows that the dimensions of the oxalate differ little in the two modes of co-ordination although a $\mathrm{C}-\mathrm{O}$ bond-length order O (basal) $>\mathrm{O}$ (apical) $>\mathrm{O}$ (non-bonded) is evident in the monomer.

Again, in all compounds, the metal atoms are found to be slightly but significantly out of planarity with the oxalato-bridging groups, the deviations (perpendicular to the planes) being: $\pm 0.036(\mathrm{I})(\mathrm{I}), 0.027(2)$ and $0.043(2)$ (II), and $-0.083(3)$ and $0.188(3) \AA$ (III). Whether this is a phenomenon to be regarded as a restricted version of the 'stepping' seen in some coordination compounds ${ }^{29}$ or as the sort of distortion from
${ }^{28}$ J. van Nierkerk and F. R. L. Schoening, Acta Cryst., 1951, 4, 35 .
${ }_{29}$ R. H. Holm, G. W. Everett, and A. Chakravorty, Progr. Inorg. Chem., 1966, 7, 83.
of the dimeric centrosymmetric molecule $\left[\mathrm{Ru}_{2} \text { (pyridine) }\right)_{8^{-}}$ $\left.\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]\left(\mathrm{BF}_{4}\right)_{2}$ reveals a geometry for the oxalate bridge

Table 6
Oxalato-geometry in (a) $\mathrm{Cu}($ dien $) \mathrm{C}_{2} \mathrm{O}_{4}, 4 \mathrm{H}_{2} \mathrm{O}$ and (b) (II)
Distances (\AA)

(a)	(b)
$1 \cdot 965(6)$	$2 \cdot 02,1 \cdot 97(1)$
$2 \cdot 230(6)$	$2 \cdot 29,2 \cdot 23(1)$
$1 \cdot 275(10)$	$1 \cdot 23,1 \cdot 25(2)$
$1.248(10)$	$1 \cdot 29,1 \cdot 26(2)$
$1 \cdot 560(11)$	$1 \cdot 53(2)$
$1 \cdot 227,1 \cdot 233(10)$	

Angles (${ }^{\circ}$)

O(bas)-Cu-O(ap)	$78 \cdot 8(2)$	$77 \cdot 9,80 \cdot 0(6)$
Cu-O(bas)-C	$117 \cdot 7(5)$	$118 \cdot 5,114 \cdot 8(9)$
Cu-O(ap)-C	$111 \cdot 2(5)$	$107 \cdot 3,108 \cdot 9(9)$
O(bas)-C-C	$117 \cdot 1(7)$	$118,121(1)$
O(ap)-C-C	$115 \cdot 1(7)$	$118,115(1)$
O(bas)-C-O	$123 \cdot 4(8)$	
O(ap)-C-O	$128 \cdot 7(8)$	
O(bas)-C-O(ap)		$121,127(1)$

closely parallel to that of compound (I), which suggests that the effects noted may be general.

[^4]${ }^{31}$ S. F. A. Kettle and R. Mason, J. Organometallic Chem., 1966, 5. 573.
(b) The metal-amine groupings. (i) $\left[\left\{\mathrm{Ni}(\mathrm{en})_{2}\right\}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]-$ $\left(\mathrm{NO}_{3}\right)_{2}$, (I). The stereochemistry about the nickel ion resembles that ${ }^{32}$ of $\left[\mathrm{Ni}(\mathrm{en})_{3}\right]^{2+}$ with one en replaced by the bridging oxalato-group. Bond lengths and angles in the $\mathrm{Ni}(\mathrm{en})$ moieties accord with literature values and each have an asymmetrical gauche conformation [Tables $3(a)$ and $4(a)$; planes of Table 5 (I)]. Most en complexes of nickel(II) appear to have symmetrically staggered chelate rings but asymmetry is common with copper, for example. The extensive hydrogen-bonding network, involving the nitrogen donors (see later) may determine the details of the conformation. The two

Table 7
Intermolecular approaches (\AA) less than the sum of van der Waals radii (taken as 1.6 for nitrogen and oxygen, $1.8 \AA$ for carbon and chlorine)
(a) Compound (I)

$\mathrm{O}(1) \cdots \mathrm{N}\left(2^{\prime \prime}\right)$	$3 \cdot 00$	$\mathrm{O}(3) \cdots \mathrm{N}\left(5^{\prime} \mathrm{V}\right)$	3.08
$\mathrm{O}(1) \cdots \mathrm{N}\left(3^{\prime 11}\right)$	$3 \cdot 22$	$\mathrm{O}(1) \cdots \mathrm{C}\left(5^{\prime \prime} \mathrm{III}\right)$	$3 \cdot 27$
$\mathrm{O}(1) \cdots \mathrm{N}\left(4^{\prime 1 \mathrm{II}}\right)$	$3 \cdot 08$	$\mathrm{O}(1) \cdots \mathrm{C}\left(5^{\prime \prime}\right)$	$3 \cdot 44$
$\mathrm{O}(2) \cdots \mathrm{N}\left(5^{\prime N}\right)$	$3 \cdot 09$	$\mathrm{O}(4) \cdots \mathrm{N}\left(\mathbf{4}^{\mathbf{v I}}\right)$	$3 \cdot 08$
$\mathrm{O}(3) \cdots \mathrm{N}\left(2^{\prime} \mathrm{v}\right)$	$3 \cdot 04$		

Roman numerals as superscripts refer to the following transformations of the atoms, relative to the molecule at x, y, z

$$
\text { I }-x,-y, 1-z \quad \text { IV } x-\frac{1}{2}, \frac{1}{2}-y, \frac{1}{2}+z
$$

II $1-x,-y, 1-z$
III $x, y, 1+z$

$$
\begin{aligned}
& \text { V } x-\frac{1}{2}, \frac{1}{2}-y, \frac{1}{2}+z \\
& \text { VI } \frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z \\
& \text { (} x,-y,-z
\end{aligned}
$$

(b) Compound (II)

$\mathrm{C}(8) \cdots \mathrm{O}\left(11^{\prime 1}\right)$	$3 \cdot 32$	$\mathrm{C}(9) \cdots \mathrm{O}\left(2^{\prime}\right)$	$3 \cdot 06$
$\mathrm{N}(1) \cdots \mathrm{O}\left(12^{\text {III }}\right)$	$3 \cdot 31$	$\mathrm{C}(10) \cdots \mathrm{O}\left(\mathbf{1}^{\prime \text { IIII }}\right)$	2.94
$\mathrm{N}(3) \cdots \mathrm{O}\left(12^{\prime \mathrm{III}}\right)$	$3 \cdot 22$	$\mathrm{C}(10) \cdots \mathrm{O}\left(2^{\prime}\right)$	$3 \cdot 00$
$\mathrm{N}(4) \cdots \mathrm{O}\left(10^{\prime \text { IV }}\right)$	$3 \cdot 23$	N(1) $\cdot \cdots \mathrm{O}\left(2^{\prime}\right)$	$3 \cdot 07$
$\mathrm{N}(6) \cdots \mathrm{O}\left(10^{\prime} \mathrm{I}\right)$	$3 \cdot 11$	$\mathrm{N}(1) \cdots \mathrm{O}\left(3^{\prime}\right)$	$3 \cdot 23$
$\mathrm{Cu}(2) \cdots \mathrm{O}\left(4^{\prime \mathrm{VI}}\right)$	$2 \cdot 78$	$\mathrm{N}(2) \cdots \mathrm{O}\left(4^{\prime}\right)$	$3 \cdot 23$
$\mathrm{O}(9) \cdots \mathrm{O}\left(1{ }^{\prime \prime} \mathrm{II}\right)$	$3 \cdot 23$	$\mathrm{N}(3) \cdots \mathrm{O}\left(\mathbf{1}^{\prime \prime \prime} \mathrm{III}\right)$	$3 \cdot 19$
$\mathrm{O}(10) \cdots \mathrm{O}\left(\mathbf{4}^{\prime} \mathbf{v}\right)$	3.14	$\mathrm{N}(3) \cdots \mathrm{O}\left(3^{\prime v}\right)$	$3 \cdot 10$
$\mathrm{O}(11) \cdots \mathrm{O}\left(8^{\text {VI }}\right)$	$3 \cdot 24$	$\mathrm{N}(4) \cdots \mathrm{O}\left(2^{\prime \prime V}\right)$	$3 \cdot 21$
$\mathrm{O}(12) \cdots \mathrm{O}\left(\mathbf{1}^{\prime \mathrm{III}}\right)$	$3 \cdot 24$	$\mathrm{N}(5) \cdots \mathrm{O}\left(8^{\prime \prime} \mathrm{IV}\right)$	$3 \cdot 04$
$\mathrm{O}(12) \cdots \mathrm{O}\left(\mathbf{4}^{\prime 1 \mathrm{IV}}\right)$	$3 \cdot 33$	$\mathrm{N}(6) \cdots \mathrm{O}\left(2^{\prime}\right)$	$3 \cdot 24$
$\mathrm{C}(9) \cdots \mathrm{O}\left(\mathbf{1}^{\prime \mathrm{III}}\right)$	$2 \cdot 89$	$\mathrm{N}(6) \cdots \mathrm{O}\left(4^{\prime} \mathrm{IV}\right)$	3.06

Transformations denoted by Roman numeral superscripts

$$
\begin{array}{cc}
\text { I }-x, y-\frac{1}{2}, z & \text { IV } x-1, y, z \\
\text { II } 1+x, y, z & \text { V } 1-x, \frac{1}{2}+y, z \\
\text { III }-x, \frac{1}{2}+y, z & \text { VI }-x,-y, z-\frac{1}{2}
\end{array}
$$

(c) Compound (III)

$\mathrm{O}(9) \cdots \mathrm{N}\left(4^{\prime} \mathrm{I}\right)$	$3 \cdot 01$	$\mathrm{C}(14) \cdots \mathrm{O}\left(2^{\prime}\right)$	$3 \cdot 13$
$\mathrm{O}(11) \cdots \mathrm{N}\left(\mathbf{3}^{\prime \mathrm{II}}\right)$	$2 \cdot 93$	$\left.\mathrm{C}(14) \cdots \mathrm{O} \mathbf{4}^{\prime \mathrm{II}}\right)$	$3 \cdot 04$
$\mathrm{Zn}(1) \cdots \mathrm{O}\left({ }^{\prime} 8\right)$	$3 \cdot 11$	$\mathrm{N}(1) \cdots \mathrm{O}\left(3^{\prime \mathrm{II}}\right)$	$3 \cdot 19$
$\mathrm{Zn}(2) \cdots \mathrm{O}\left(7^{\prime 1 \mathrm{II}}\right)$	$3 \cdot 34$	$\mathrm{N}(2) \cdots \mathrm{O}\left(\mathbf{1}^{\prime \mathrm{III}}\right)$	$3 \cdot 21$
$\mathrm{O}(9) \cdots \mathrm{O}\left(2^{\prime}\right)$	3-25	$\mathrm{N}(3) \cdots \mathrm{O}\left(2^{\prime}\right)$	$3 \cdot 25$
$\mathrm{O}(9) \cdots \mathrm{O}\left(7^{\prime}\right)$	$3 \cdot 21$	$\mathrm{N}(3) \cdots \mathrm{O}\left(8^{\prime}\right)$	$3 \cdot 22$
$\mathrm{O}(11) \cdots \mathrm{O}\left(4^{\prime 1}\right)$	$3 \cdot 26$	$\mathrm{N}(4) \cdots \mathrm{O}\left(\mathbf{7}^{\prime \prime \mathrm{II}}\right)$	$3 \cdot 02$
$\mathrm{C}(13) \cdots \mathrm{O}\left(2^{\prime}\right)$	$2 \cdot 98$	$\mathrm{N}(6) \cdots \mathrm{O}\left({ }^{\prime 1 \mathrm{II}}\right)$	2.97
$\mathrm{C}(13) \cdots \mathrm{O}\left(4^{\prime \mathrm{II}}\right)$	$2 \cdot 99$		
Transformations denoted by Roman numeral superscripts:			
I $\frac{1}{2}+x, \frac{1}{2}-y$,		III $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}+z$	
II $x-\frac{1}{2}, \frac{1}{2}-y$,			

chelate rings at each metal centre have the $\delta \lambda$ configurations.
(ii) $\left[\{\mathrm{Cu}(\text { dien })\}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}$, (II). The stereochemistry about the copper ions is square pyramidal with the oxalate oxygen atoms occupying one basal and

[^5] Inorg. Chem., 1970, 9, 2421.
one apical site. At both metal centres the pyramidal bases have a slight tetrahedral distortion and the metal ions are displaced towards the apical atom by ca. $0.15 \AA$ [Table 5 (b)]. The $\mathrm{Cu}-\mathrm{O}$ (apical) bonds are somewhat longer than the $\mathrm{Cu}-\mathrm{O}$ (basal) bonds as is common for square planar copper(II). Copper-donor bond lengths are normal except for the $\mathrm{Cu}(1)-\mathrm{N}(3) 1 \cdot 88(1) \AA$, but as there are no clear chemical grounds for supposing that this bond should be short we regard this value with suspicion. Table 7 (b) which lists intermolecular contacts, together with Table $5(b)$, disclose that each copper atom completes a very distorted octahedron if the perchlorate oxygen atom lying close to the tetragonal axis of each group be assumed a further donor. The distances involved $\left[\mathrm{Cu}(1)-\mathrm{O}\left(3^{\prime}\right) 2 \cdot 96, \mathrm{Cu}(2)-\mathrm{O}\left(4^{\prime \prime}\right) 2.78 \AA\right]$ suggest that they should be so regarded [cf. $\mathrm{Cu}-\mathrm{O} 2.6 \AA$ found in tetragonal $\mathrm{Cu}(\mathrm{en})_{2}\left(\mathrm{ClO}_{4}\right)_{2}$ where the ClO_{4}^{-}ions are semi-co-ordinated $\left.{ }^{33}\right]$. The positioning of these atoms with respect to the complex cation can be seen in the molecular packing diagram [Figure 2 (b)], which also shows that parts of the crystal structure approximate to centrosymmetry, although it does not, particularly in the perchlorates, obey the requirements of space group Pbcm.

The dien ligands of the copper complex ion also show distorted gauche conformations of five-membered rings. Two $[\mathrm{Cu}(1), \mathrm{N}(1), \mathrm{C}(1), \mathrm{C}(2), \mathrm{N}(2)$ and $\mathrm{Cu}(2), \mathrm{N}(5), \mathrm{C}(7)$, $\mathrm{C}(8), \mathrm{N}(6)]$ are much more asymmetric than the other two, and of the latter one ring $[\mathrm{Cu}(1), \mathrm{N}(2), \mathrm{C}(3), \mathrm{C}(4), \mathrm{N}(3)]$ shows very large and relatively symmetrical deviations of the carbon atoms [0.43 and $-0.51 \AA$, Table $5(b)]$ from the plane defined by the metal and the two donors. It is not immediately obvious why this ring is so buckled but as with (I) there is extensive hydrogen bonding involving the amine nitrogen atoms. The largest deviation from the plane occurs at the carbon atoms bonded to the secondary nitrogens $[\mathrm{C}(2), \mathrm{C}(3)$ and $\mathrm{C}(6), \mathrm{C}(7)]$, a feature of a number of meridionally co-ordinated dien complexes (Figure 3), which presents the situation in $\left[\mathrm{Cu}(\text { dien })_{2}\right]$ $\mathrm{Br}_{2}, \mathrm{H}_{2} \mathrm{O},{ }^{8} \quad\left[\mathrm{Cu}(\right.$ dien $\left.)\left(\mathrm{HCO}_{2}\right)\right] \mathrm{HCO}_{2},{ }^{11} \quad \mathrm{Cu}($ dien $)\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)$,$4 \mathrm{H}_{2} \mathrm{O},{ }^{10}$ and (II). This is understandable although it is by no means obvious that it must always be so. Equally understandable is the observation that in (II) the carbon atoms bonded to the secondary nitrogens are displaced in a direction away from the apical co-ordinating atom. Figure 3 also shows the varied nature of the buckling where details are concerned, a range which is again assumed to reflect the different interatomic interactions in different crystals.

The conformations of the five-membered rings at each centre are $\lambda \delta$, the presence of a common nitrogen atom ensuring this arrangement in all the compounds of Figure 3.
(iii) $\left[\{\mathrm{Zn}(\mathrm{dpt})\}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}$, (III). The co-ordination stereochemistries at the metal centres of (III) show yet another geometry, trigonal bipyramidal, again with distortions. Values for bond lengths and angles are

[^6]
(c)

Figure 2 Projections of the crystal structures showing intermolecular contacts within an asymmetric unit: (a) (I) $\left[\left\{\mathrm{Ni}(\mathrm{en})_{2}\right\}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]\left(\mathrm{NO}_{3}\right)_{2} ;$ (b) (II) $\left[\{\mathrm{Cu}(\text { dien })\}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2} ;$ and (c) (III) $\left[\{\mathrm{Zn}(\mathrm{dpt})\}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}$
given in Table 3 (c) and 4 (c); relevant planes of best fit are quoted in Table 5 (c). The oxalate oxygen atoms occupy one apical and one equatorial site at each metal, the $\mathrm{O}-\mathrm{Zn}-\mathrm{O}$ chelate angle of $\mathrm{ca}. 80^{\circ}$ approximating to the 90° of the bipyramid. The dpt ligands have secondary

Figure 3 Conformations of co-ordinated diethylenetriamines: (a) $\mathrm{Cu}(\text { dien })_{2} \mathrm{Br}_{2}, \mathrm{H}_{2} \mathrm{O}$, (b) $\left[\mathrm{Cu}(\right.$ dien $\left.)\left(\mathrm{HCO}_{2}\right)\right] \mathrm{HCO}_{2}$, (c) Cu (dien)$\left(\mathrm{C}_{2} \mathrm{O}_{4}\right), 4 \mathrm{H}_{2} \mathrm{O}$, and (d) $\left[\{\mathrm{Cu}(\text { dien })\}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}$. Circles represent nitrogen atoms. The conformations of the chelate rings are represented by projections of the carbon atoms on to a plane which is normal to the $N-M-N$ plane of each ring and which passes through the two N atoms of that ring. Distances (\AA) from the $\mathrm{N}-\mathrm{M}-\mathrm{N}$ planes are shown
nitrogen atoms in the second apical sites, the primary amines occupying the remaining equatorial positions. This arrangement at each centre thus corresponds with the vicinal mode in octahedral co-ordination. There are, however, important differences between the metals. This is especially apparent in the angle subtended at zinc by the primary, equatorially bonded, nitrogen atoms of the dpt groups. The $\mathrm{N}(4)-\mathrm{Zn}(2)-\mathrm{N}(6)$ angle is 122° (cf. the ' ideal ' angle of 120°) but $\mathrm{N}(1)-\mathrm{Zn}(1)-\mathrm{N}(3)$ is 145°, apparently because of the presence of a perchlorate oxygen atom, $O(8)$, close to the equatorial plane at $3 \cdot 11 \AA$ from $\mathrm{Zn}(1)$. The co-ordination geometry at this centre could thus be regarded as that of a distorted octahedron in which one donor metal link is very long.

The four chelate rings formed by dpt all have the chair conformation, but their relationship within each ligand is different. At $\mathrm{Zn}(1)$ the chelate rings are disposed so that an approximate mirror relation exists across a plane through their common $\mathrm{Zn}-\mathrm{N}$ (secondary) bond, but at $\mathrm{Zn}(2)$ they are approximately related by a 120° rotation about this bond. In the former, the chairs may be thought of as back-to-back in the latter as back-to-foot [see Figures $1(c)$ and 4]. (In $\left[\mathrm{Ni}(\mathrm{dpt})_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2},{ }^{14}$ with meridional co-ordination the conformation is back-toback.) To our knowledge this is the first reported example of non-meridional co-ordination by dpt, a circumstance not only forced by the demands of the oxalate group, but, by reducing intramolecular repulsion, also favoured by the trigonal bipyramidal geometry. In the more normal meridional bonding, which reduces intra-

[^7]chelate contacts, the alternatives seem to be a chair-distorted-boat conformation as in $[\mathrm{Cu}(\mathrm{dpt})(\mathrm{OAc})] \mathrm{ClO}_{4}{ }^{15}$ and the $\alpha-$ and $\beta-[\mathrm{Co}(\mathrm{en})(\mathrm{dpt}) \mathrm{Cl}]^{2+}$ cations, ${ }^{12,13}$ or, if a chair-chair geometry is to prevail, a significant lengthening of the metal-nitrogen bonds, as in $\left[\mathrm{Ni}(\mathrm{dpt})_{2}\right]\left(\mathrm{ClO}_{4}\right)_{\mathbf{2}}$. A study of models suggests that for idealised bond lengths and angles, including equal metal-nitrogen bonds of $c a$. $2.0 \AA$ and a trigonal bipyramidal stereochemistry, the back-to-back conformation adopted at $\operatorname{Zn}(1)$ should be strain-free and that strain in the other back-to-foot arrangement is relieved if the metal-secondary-nitrogen bond is lengthened. The value of $2 \cdot 14 \AA$ found for the $\mathrm{Zn}(2)-\mathrm{N}(5)$ bond [cf. 2.04 and $2.06 \AA$ for the bonds to the primary nitrogens $N(4)$ and $N(6)]$ is therefore presumably to be expected. That the metal-secondary-nitrogen bond $[\operatorname{Zn}(1)-\mathrm{N}(2)]$ is also significantly longer seems also to have a steric explanation, since the distortion of the equatorial angles subtended at zinc causes $\mathrm{N}(1)-\mathrm{Zn}(1)$ $\mathrm{N}(3)$ to be expanded to 145°. If it were 180° the donor arrangement of the amine would then be that for meridional co-ordination in the octahedral stereochemistry, a situation in which strain-free chair-chair conformations can only be achieved if the metal-secondary-nitrogen

(c)

(b)

Figure 4 Conformations of co-ordinated dipropylenetriamines: (a) $\left[\left\{\mathrm{Zn}(\mathrm{dpt})_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}\right.$, (b) $\left[\mathrm{Ni}(\mathrm{dpt})_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$, (c) $[\mathrm{Cu}(\mathrm{dpt})-$ $(\mathrm{OAc})] \mathrm{ClO}_{4}$, and (d) $\beta-\left[\mathrm{Co}(\mathrm{en})(\mathrm{dpt}) \mathrm{Cl}^{2}\right] \mathrm{ZnCl}_{4}$. Circles represent nitrogen atoms; the observed $\mathrm{N}-\mathrm{N}-\mathrm{N}$ angle is shown. The conformations of the chelate rings are represented by projections of the carbon atoms on to a plane which is normal to the $\mathrm{N}-\mathrm{M}-\mathrm{N}$ plane of each ring and which passes through the two N atoms of that ring. Distances (\AA) from the $N-M-N$ planes are shown
bond, or all metal-nitrogen bonds, are increased from 2.0 Å.

This is not to suggest a cause for the lengthening of the bond lengths, indeed the reverse view is equally valid if the longer bonds to the apical nitrogen atoms be presupposed a requirement of zinc, ${ }^{34,35}$ but to confirm a

[^8]relationship between chelate ring conformation and metal-donor distances. Both these features may be reflecting other causal factors (see later).

Structure of Anions.-The perchlorate ions of compounds (II) and (III) gave evidence that their oxygen atoms were undergoing large thermal vibrations or had equivalent static disorder. It was clear from differenceFourier maps, however, that such disorders did not obviously require the use of a number of fractionally weighted models for the anion, although it is probable that the use of conventional ellipsoids of revolution to describe the situation was inadequate. Bond lengths are generally short, as is to be expected in the circumstances.

The nitrate ion of (I) has the expected geometry. The four atoms are coplanar ($\chi^{2} 0 \cdot 101$ for the plane $0.624 x-$ $0.780 y-0.046 z+0.734=0)$.

Hydrogen bonding and molecular packing. The hydrogen bonding is asymmetric in the sense of not including all suitable atoms, and a range of chelate ring conformations is a likely consequence. Other intermolecular forces also seem to be important and we mention $\mathrm{C} \cdots \mathrm{O}$ interactions in this context. Details of the hydrogen bonding in all three compounds are shown in Figure 2.
(i) $\left[\left\{\mathrm{Ni}(\mathrm{en})_{2}\right\}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]\left(\mathrm{NO}_{3}\right)_{2}$, (I). Eight non-furcated hydrogen bonds are possible and all are present, two to each nitrogen atom. By the criterion of $\mathrm{O} \cdots \mathrm{N}$ distances, the bond to $\mathrm{N}(3)$ is weaker than the rest although such a criterion is open to criticism. There are six bonds to nitrate, three to $\mathrm{O}(1)$ and two to $\mathrm{O}(3)$, and one to the oxalate oxygen atom $O(4)$. This hydrogenbonding network extends three-dimensionally throughout the crystal. Other forces are less readily identified from structural data but a feature present in all three compounds is the relatively close approach of the oxoanions to the carbon atoms of the oxalate bridge $[\mathrm{O}(1) \cdots \mathrm{C}(5) 3 \cdot 27 \AA]$. Such a requirement must interact on the hydrogen bonding and the steric interactions within the crystal.
(ii) $\left[\{\mathrm{Cu}(\text { dien })\}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right]\left(\mathrm{ClO}_{4}\right)_{2}$, (II). Ten hydrogen atoms are available for hydrogen bonding and twelve possible interactions are noted (setting the limit for the $\mathrm{H} \cdots \mathrm{O}$ at $2.5 \AA$). The bonding is not symmetrical as far as the two chelated amines are concerned, there being, for example, bifurcated bonds to $\mathrm{N}(2)$, but only one interaction with the other secondary nitrogen $N(5)$. The primary nitrogen, $\mathrm{N}(6)$, has two bonds, but $\mathrm{N}(3)$ has three. The same situation holds for the perchlorate groups. The ion based on $\mathrm{Cl}(1)$ has seven hydrogenbonding interactions whereas that based on $\mathrm{Cl}(2)$ has only three. It is the $\mathrm{Cl}(1)$ group which also interacts with the oxalate carbon $[\mathrm{C}(9) \cdots \mathrm{O}(1) 2 \cdot 89, \mathrm{C}(9) \cdots \mathrm{O}(2)$ 3.06, $\mathrm{C}(10) \cdots \mathrm{O}(1) 2 \cdot 94, \mathrm{C}(10) \cdots \mathrm{O}(2) 3 \cdot 00 \AA]$ and with the copper atoms $[\mathrm{Cu}(1) \cdots \mathrm{O}(3) 2 \cdot 96, \mathrm{Cu}(2) \cdots \mathrm{O}(4)$
$2.78 \AA$] and suggest that these latter interactions are more a requirement of the molecular, rather than the crystal, structure. The detailed conformation of the chelate rings will thus be a balance between the steric interference imposed by the perchlorate and the increased opportunity for hydrogen bonding presented by the close proximity of its oxygen atoms to the amines. In contrast the other perchlorate clearly has a space-filling role, completing hydrogen bonds where possible.
(iii) $\left[\{\mathrm{Zn}(\mathrm{dpt})\}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}$, (III). Ten non-furcated hydrogen bonds are possible and eight are present. At the $\mathrm{Zn}(2)$ centre the primary amines have two each, the secondary amine none; at $\mathrm{Zn}(1)$ the primary amine $\mathrm{N}(3)$ has two bonds with the other two nitrogens having one bond each. Again there is a close interaction between the perchlorate group based on $\mathrm{Cl}(1)$ and the oxalate bridge $[\mathrm{C}(13) \cdots \mathrm{O}(2) 2.98, \mathrm{C}(13) \cdots \mathrm{O}(4) 2 \cdot 99$, $C(14) \because \cdot O(2) 3 \cdot 13, C(14) \cdot \cdot O(4) 3.04 \AA]$ but this time it is the other perchlorate which bonds to a zinc atom $[\mathrm{Zn}(1) \cdots \mathrm{O}(8) 3 \cdot 11 \AA]$. The hydrogen bonding distribution between anions is still, however, unequal at four and two respectively and again the hydrogen bonding system is three-dimensional.

As already noted the amines at each metal centre are geometrically different, the hydrogen atom on the secondary nitrogen atom being trans to the equatorial oxygen atom, $\mathrm{O}(10)$, at $\mathrm{Zn}(1)$ but cis to $\mathrm{O}(12)$ at $\mathrm{Zn}(2)$. Since this arrangement is unlikely to be a built-in requirement of the complex cation the 'inversion' of one nitrogen must be associated with interactions in the crystal. If there were to be idealised trigonal bipyramidal geometries involving equal metal-nitrogen bond lengths at both zinc centres then the strained back-to-foot arrangement at $\mathrm{Zn}(2)$ would presumably need this stabilisation. However, it is the secondary nitrogen atom at $\mathrm{Zn}(1)$ which is hydrogen bonded, suggesting that it is the back-to-back situation which is unfavoured. This follows if longer bonds to the apical secondary nitrogens be presupposed and indicates that the ' octahedral distortion' takes place at this centre to relieve some of the strain. It could be said, therefore, that the difference in chelate ring conformations is indeed dependent upon hydrogen bonding but that the overall geometrical relationship reflects a number of forces, not the least significant in this complex being the detailed requirements of the metal.

The interaction between the oxoanions and the carbon atoms of the oxalate bridge is also a feature of apparent significance, this time in all complexes. We assume that it is electrostatic in nature since it seems probable that the carbons will have a slight positive charge as a result of the electronegativity of their bonded (and co-ordinated) oxygen atoms.
[2/1506 Received, 27th June, 1972]

[^0]: \dagger dien $=\mathrm{Di}$ - $\left(2\right.$-aminoethyl)amine, $\left\{\mathrm{NH}_{2} \cdot\left[\mathrm{CH}_{2}\right]_{2}\right\}_{2} \mathrm{NH}$.
 $\ddagger \mathrm{dpt}=\mathrm{Di}$-(3-aminopropyl)amine, $\left\{\mathrm{NH}_{2} \cdot\left[\mathrm{CH}_{2}\right]_{3} \cdot\right\}_{2} \mathrm{NH}$.

[^1]: ${ }^{3}$ E. J. Corey and J. C. Bailar, J. Amer. Chem. Soc., 1959, 81, 2620.
 ${ }^{4}$ E. N. Baker, D. Hall, and T. N. Waters, J. Chem. Soc. (A), 1970, 400.
 ${ }_{5} 5$ F. A. Cotton and R. C. Elder, Inorg. Chem., 1964, 3, 297.
 ${ }^{6}$ F. A. Cotton and R. M. Wing, Inorg. Chem., 1965, 4, 314.
 ${ }^{7}$ S. Biagini and M. Cannas, J. Chent. Soc. (A), 1970, 2398.
 ${ }^{8}$ F. S. Stephens, J. Chen. Soc. (A), 1969, 2233.
 ${ }^{9}$ F. S. Stephens, J. Chem. Soc. (A), 1969, 883.
 ${ }^{10}$ F. S. Stephens, J. Chem. Soc. (A), 1969, 2493.

[^2]: ${ }^{11}$ G. Davey and F. Stephens, J. Chem. Soc. (A), 1971, 103.
 12 D. A. House, P. R. Ireland, I. A. Maxwell, and W. T. Robinson, Inovg. Chim. Acta, 1971, 5, 397.

 13 P. R. Ireland, D. A. House, and W. T. Robinson, Inorg. Chim. Acta, 1970, 4, 137.

 14 S. Biagini and M. Cannas, J. Chem. Soc. (A), 1970, 2398.
 ${ }^{15}$ B. W. Skelton, T. N. Waters, and N. F. Curtis, J.C.S. Dalton, 1972, 2133.
 ${ }_{16}$ W. R. Busing and H. A. Levy, Acta Cyyst., 1957, 10, 180. 17 ' International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962.

[^3]: * For details see Notice to Authors No. 7 in J.C.S. Dalton,

 1972, Index issue (items less than 10 pp . are supplied as full size copies).
 ${ }^{18}$ W. C. Hamilton, Acta Cryst., 1965, 18, 502.

[^4]: ${ }^{30}$ S. F. A. Kettle, Inorg. Chem., 1965, 4, 1661.

[^5]: ${ }^{32}$ Mazhur-Ul-Haque, C. N. Caughlan, and K. Emerson,

[^6]: ${ }^{33}$ Y. Komiyama and E. C. Lingafelter, Acta Cryst., 1964, 17, 1145.

[^7]: ${ }^{34}$ G. D. Andreeti, P. C. Jain, and E. C. Lingafelter, J. Amer. Chem. Soc., 1969, 91, 411.

[^8]: ${ }^{35}$ F. W. B. Einstein and B. R. Penfold, Acta Cryst., 1966, 20, 924.

