Structural Studies on Clathro-chelate Complexes. Part III. ${ }^{1,2}$ Trigonal Prismatic Co-ordination of d^{7} Cobalt(II) in Orthorhombic Crystalline $\left[\left\{\mathrm{FB}\left(\mathrm{ONCHC}_{5} \mathrm{H}_{3} \mathrm{~N}\right)_{3} \mathrm{P}_{3} \mathrm{Co}^{\text {II+ }}\right]\left[\mathrm{BF}_{4}^{-}\right], \mathrm{MeCN}\right.$ and a Single-crystal Transformation of Unsolvated Monoclinic [$\left\{\mathrm{FB}\left(\mathrm{ONCHC}_{5} \mathrm{H}_{3} \mathrm{~N}\right)_{3} \mathrm{P}_{\mathbf{~}} \mathrm{Co}^{\mathrm{II}+}\right]\left[\mathrm{BF}_{4}^{-}\right]$

By Melvyn Rowen Churchill,* Department of Chemistry, University of llinois at Chicago Circle, Box 4348, Chicago, Illinois 60680, U.S.A.
Arthur H. Reis (jun.), Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138, U.S.A.

Abstract

$\left\{\right.$ Fluoro- [6, 6', $6^{\prime \prime}$-phosphinidynetris-(pyridine-2-carbaldehyde oximato) (3-)]borato(1-) \}cobalt($1+$) \dagger tetrafluoro-borate-acetonitrile (I) crystallizes in the noncentrosymmetric space group Aba2 with $a=23 \cdot 408(19)$, $b=$ $17.494(15), c=12.090(8) \AA$, and $Z=8$. A single-crystal X-ray diffraction study by Patterson and Fourier methods from diffractometer data has led to the location of all non-hydrogen atoms, with $R 10.5 \%$ for 1126 independent non-zero reflections. The cation has approximate $C_{3 v}$ symmetry, with the central $\mathrm{Co}^{\mathrm{II}}$ atom co-ordinated to six nitrogen atoms. mean $\mathrm{Co}-\mathrm{N}$ (aldoximo) $2.063(18)$ and $\mathrm{Co}-\mathrm{N}$ (pyridyl) 2.118(38) \AA. The co-ordination sphere of the cobalt(II) atom defines a slightly tapered trigonal prism, with N (aldoximo) $\cdots N$ (aldoximo) $2 \cdot 738$ (25) $-2 \cdot 822(29) . N($ pyridyl) $\cdots N$ (pyridyl) $2 \cdot 917(30)-3.050(29) \AA$, and the N (aldoximo) $\cdots N$ (pyridyl) ' bite ' $2.512(30)-2.598(29) \AA$. The triangle defined by the three aldoximo-nitrogen atoms is rotated by only 0.89° relative to that defined by the three pyridyl nitrogens. The unsolvated species $\left[\left\{\mathrm{FB}\left(\mathrm{ONCHC} \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\right)_{3}{\left.\mathrm{P}\} \mathrm{Co}^{\mathrm{II}+}\right]\left[\mathrm{BF}_{4}{ }^{-}\right] \text {(II) crystallizes in the monoclinic space group }}^{\text {a }}\right.\right.$ $P 2_{1} / c$ with $a=13.262(12), b=17.967(4), c=10.656(16) \AA, \beta=108.87(12)^{\circ}$, and $Z=4$. An attempted X-ray crystallographic study of this complex was thwarted by an apparently hydrolytic single-crystal transformation to an unknown species.

Holm and his co-workers have reported the synthesis and properties of $\mathrm{Fe}^{\mathrm{II}}, \mathrm{Co}^{\mathrm{II}}, \mathrm{NiI}$, and $\mathrm{Zn}^{\mathrm{II}}$ complexes $\left[d^{6}, d^{7}, d^{8}, d^{10}\right.$ electronic configuration, respectively $]$ of the bicyclic clathrochelate [or 'encapsulation'] ligand $\left[\mathrm{FB}\left(\mathrm{ONCHC} \mathrm{C}_{5} \mathrm{H}_{3} \ddot{\mathrm{~N}}_{3} \mathrm{P}^{-}\right]^{3-5}\right.$ We have shown previously that the $d^{8} \mathrm{Ni}^{1 \mathrm{I}}$ derivative adopts a conformation such that the metal atom is in essentially trigonal prismatic co-ordination ${ }^{1}$ and that the $d^{6} \mathrm{Fe}^{\text {II }}$ derivative differs in that its co-ordination geometry is intermediate between trigonal prismatic and octahedral with a ' twist angle' of 21.7° between the triangle defined by the pyridyl nitrogen atoms and that defined by the aldoximonitrogen atoms.

We now report the results of X-ray diffraction studies on $\left[\left\{\mathrm{FB}\left(\mathrm{ONCHC}_{5} \mathrm{H}_{3} \mathrm{~N}\right)_{3} \mathrm{P}\right\} \mathrm{Co}^{\mathrm{II}+}\right]\left[\mathrm{BF}_{4}^{-}\right], \mathrm{MeCN}$, (I) and $\left[\left\{\mathrm{FB}\left(\mathrm{ONCHC}_{5} \mathrm{H}_{3} \mathrm{~N}\right)_{3} \mathrm{P}\right\} \mathrm{Co}^{\mathrm{II}}\right]\left[\mathrm{BF}_{4}^{-}\right]$, the unsolvated species (II).
Structural information on these $\mathrm{Co}^{1 \mathrm{II}}$ species is of considerable interest since the central metal atom is expected ${ }^{2}$ to be too large to fit into the encapsulation cavity without causing significant strain elsewhere in the system.

EXPERIMENTAL

Crystal Data.-(a) $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~B}_{2} \mathrm{CoF}_{5} \mathrm{~N}_{7} \mathrm{O}_{3} \mathrm{P}$ [i.e. the MeCN solvate (I) $], M=607 \cdot 907$, Orthorhombic, $a=23 \cdot 408(19)$, $b=17.494(15), \quad c=12 \cdot 090(8) \AA, \quad U=4950.8 \AA^{3}, \quad D_{\mathrm{m}}=$ $1.631(5), Z=8, D_{\mathrm{c}}=1.632, F(000)=2440$. Space group Aba2 ($C_{2 v}^{17}$, No. 41) or $\operatorname{Abam}\left(D_{2 b}^{18}\right.$, No. 64) from systematic absences: $h k l, k+l=2 n+1 ; 0 k l, k=2 n+1$; and $h 0 l$, $h=2 n+1$; space group $A b a 2$ by subsequent successful
\dagger Also known as fluoroborotris-(2-aldoximo-6-pyridyl)phosphine]cobalt ($1+$).
${ }^{1}$ Part I, M. R. Churchill and A. H. Reis, Inorg. Chem., 1972, 11, 1811.
${ }_{2}$ Part II, M. R. Ch. chill and A. H. Reis, Inorg. Chem., 1972, 11, 2299.
${ }^{3}$ J. E. Parks, B. E. Wagner, and R. H. Holm, J. Amer. Chem. Soc., 1970, 92, 3500.
refinement. $\quad \mathrm{Cu}-K_{\alpha}$ radiation, $\bar{\lambda}=1.5418 \AA ; \mu\left(\mathrm{Cu}-K_{\alpha}\right)=$ $69 \cdot 3 \mathrm{~cm}^{-1}$.
(b) $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~B}_{2} \mathrm{CoF}_{5} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{P}$ [unsolvated species (II)], $M=$ 566.858, Monoclinic, $a=13 \cdot 262(12), b=17.967(4), c=$ $10.656(16) \AA, \beta=108.87(12)^{\circ}, U=2402.7 \AA^{3}, D_{\mathrm{m}}=1.65$, $Z=4, D_{\mathrm{c}}=1 \cdot 56, \quad F(000)=1132$. Space group $P 2_{1} / c$. Mo- K_{α} radiation, $\lambda=0.7107 \AA ; \mu\left(\right.$ Mo- $\left.K_{\alpha}\right)=8.86 \mathrm{~cm}^{-1}$.

Collection and Reduction of Data for Monoclinic (II).Crystals of (II) were prepared as described in ref. 4. Diffraction data were collected, but a study of Weissenberg photographs of the 0 kl level taken at the beginning and end of data collection revealed that the crystal, while still a single crystal, was undergoing a transformation, and that the original and final intensities were grossly different [see Appendix].

However, the initial $\mathrm{Co}^{[1}$ species is isomorphous (and,
TAble 1
Unit-cell parameters of some $\left[\left\{\mathrm{FB}\left(\mathrm{ONCHC}_{5} \mathrm{H}_{3} \mathrm{~N}\right)_{3} \mathrm{P}\right\} \mathrm{M}^{\mathrm{IL}+}\right]\left[\mathrm{BF}_{4}^{-}\right]$species

	M		
	Co	Ni a	Zn ${ }^{6}$
a / \AA	13.262	$13 \cdot 296$	13.340
b / \AA	17.967	17.857	17.921
c / \AA	$10 \cdot 656$	10.580	$10 \cdot 662$
$\beta 1^{\circ}$	108.87	$108 \cdot 68$	$108 \cdot 60$
Space group	P21/c	$P 2_{1} / c$	$P 2_{1} / c$
	See ref. 1	ref. 6.	

presumably, isostructural) with the known species [\{FB$\left.\left.\left(\mathrm{ONCHC}_{5} \mathrm{H}_{3} \mathrm{~N}\right)_{3} \mathrm{P}\right\} \mathrm{Ni}^{1 \mathrm{II}}\right]\left[\mathrm{BF}_{4}^{-}\right]^{1}$ and $\left[\left\{\mathrm{FB}\left(\mathrm{ONCHC}_{5} \mathrm{H}_{3} \mathrm{~N}\right)_{3}{ }^{-}\right.\right.$ P $)^{\left.2 \mathrm{Zn}^{\mathrm{II}+}\right]\left[\mathrm{BF}_{4}^{-}\right]^{6} \text { (see Table 1). }}$

Attempts to recrystallize all the existing $\mathrm{Co}^{\mathrm{II}}$ complex

[^0]from spectral-grade acetonitrile under anhydrous conditions produced only crystals of $\left[\left\{\mathrm{FB}\left(\mathrm{ONCHC}_{5} \mathrm{H}_{3} \mathrm{~N}\right)_{3} \mathrm{P}\right\} \mathrm{Co}^{\mathrm{II}+}\right]-$ $\left[\mathrm{BF}_{4}^{-}\right], \mathrm{MeCN}$. We therefore attempted an X-ray structural analysis of this new crystalline species.

Collection and Reduction of Diffraction Data for the Solvated Crystals, (I).-Diffraction data for levels $0-9 \mathrm{kl}$ and $h 0-13 l$ were collected to $\sin \theta 0.80$ with a Supper-Pace diffractometer, as described in ref. 7. Data were corrected for Lorentz, polarization, and absorption ${ }^{8}$ effects and placed on a common scale via a least-squares procedure. ${ }^{9} \quad R$ for scaling was 8.8%, based on F^{2}. The resulting 1126 reflections for which $I(h k l)>3 \cdot 0[\sigma\{I(h k l)\}]$ were used in a Wilson plot, ${ }^{10}$ from which were determined the approximate absolute scale factor and the overall isotropic thermal parameter ($\bar{B}=1.77 \AA^{2}$).

All calculations were performed by use of CRYSIS (a locally modified version of Marsh's CRYM system of crystallographic subroutines) on the MIT/Harvard IBM 370 computer. Scattering curves for neutral hydrogen, boron, carbon, nitrogen, oxygen, and fluorine were used; ${ }^{11}$ the Hartree-Fock-Slater values for cobalt and phosphorus were corrected for dispersion (Δf^{\prime} and $\Delta f^{\prime \prime}$)..11,12

The function minimized in the least-squares process was $\Sigma w\left(\left|F_{\mathrm{o}}\right|^{2}-\left|F_{\mathrm{c}}\right|^{2}\right)^{2}$.

Solution and Refinement of the Structure.-The positions of the cobalt and phosphorus atoms were determined from a three-dimensional Patterson map. Their different z coordinates indicated that the true space group was the non-centro-symmetric $A b a 2$. A series of three-dimensional Fourier syntheses revealed all non-hydrogen atom positions; refinement of positional and isotropic thermal parameters converged at $R \mathbf{1 3} \mathbf{5} \%$. Refinement was continued with anisotropic thermal parameters for the heavier atoms (i.e. Co, P, F, and O) and isotropic thermal parameters for the lighter atoms (N, C, and B) [this being the only acceptable compromise between isotropic refinement (for which the ratio of observations to parameters is $\mathbf{7 \cdot 2 7 : 1}$) and full anisotropic refinement (for which this ratio is an unacceptably low $3.21: 1$); the compromise leads to the 1126 observations being used to refine 236 parameters (ratio $4 \cdot 77: 1$).]. Nine cycles of refinement led to convergence at $R \quad 10.9 \%$. Finally, all twelve hydrogen atoms of the cation were included in calculated positions (assuming $\mathrm{C}-\mathrm{H}$ $1 \cdot 00 \AA$ and the appropriate trigonal geometry) but were not refined. Two final cycles of refinement led to convergence at $R 10.5 \%$, at which stage $(\Delta / \sigma)_{\max }<0 \cdot 1$ and the structural analysis was adjudged to be complete. A final difference-Fourier synthesis showed no unaccountable regions of electron density.

Final observed and calculated structure factor amplitudes are listed in Supplementary Publication No. SUP 20723 (3 pp., 1 microfiche).*

Atomic positional and thermal parameters, with their estimated standard deviations are listed in Table 2.

* See note concerning Supplementary Publications in Notice to Authors No. 7 in J.C.S. Dalton, 1972, Index issue (items less than 10 pp . will be supplied as full-sized copies).
${ }^{7}$ M. R. Churchill and J. P. Fennessey, Inorg. Chem., 1968, 7, 1123.
${ }^{\text {s }}$ C. W. Burnham, Amer. Mineral., 1966, 51, 159.
${ }^{9}$ A. D. Rae, Acta Cryst., 1965., 19, 683.
10 A. J. C. Wilson, Nature, 1942, 150, 152.
${ }^{11}$ ' International Tables for X-Ray Crystallography,' vol. 3, Kynoch Press, Birmingham, 1962, pp. 202-203, 214.

12 H. P. Hanson, F. Herman, J. D. Lea, and S. Skillman, Acta Cryst., 1964, 17, 1040.

Table 2
(a) Final positional parameters ${ }^{a}$

AtomAtoms			z	B / A^{2}
	n the clat	chelate ca		
Co	$0.33965(16)$	$0 \cdot 48287(21)$	0	
P	$0 \cdot 41783(28)$	$0.57365(43)$	$0 \cdot 20061(74)$	
N(1)	$0 \cdot 2530(7)$	$0 \cdot 4927(9)$	$-0.0366(13)$	0.93(32)
N(1')	$0 \cdot 3495(12)$	$0 \cdot 4840$ (11)	$-0.1682(17)$	2-24(38)
$\mathrm{N}\left(1^{\prime \prime}\right)$	$0 \cdot 3226$ (8)	$0 \cdot 3678(11)$	-0.1480(19)	3-11(46)
N(2)	$0 \cdot 3062(10)$	$0 \cdot 5645(14)$	$0 \cdot 1111(22)$	$3 \cdot 94(53)$
$\mathrm{N}\left(2^{\prime}\right)$	$0 \cdot 4154(7)$	$0 \cdot 5512(10)$	$-0.0253(14)$	$1.54(37)$
$\mathrm{N}\left(2^{\prime \prime}\right)$	$0 \cdot 3806$ (9)	$0.4317(11)$	$0 \cdot 1337(18)$	2.52(41)
C(1)	$0 \cdot 2221$ (10)	$0 \cdot 5365(14)$	$0 \cdot 0148(28)$	$3 \cdot 84(58)$
C(2)	$0 \cdot 2509$ (8)	$0 \cdot 5814(10)$	$0 \cdot 1032(17)$	0.38(34)
$\mathrm{C}(3)$	$0 \cdot 2279$ (13)	$0 \cdot 6318(18)$	$0 \cdot 1761(29)$	4.74(71)
$\mathrm{C}(4)$	$0 \cdot 2553(14)$	$0 \cdot 6683(15)$	$0 \cdot 2586(30)$	4.71(59)
$\mathrm{C}(5)$	$0 \cdot 3145(14)$	$0 \cdot 6503(20)$	$0 \cdot 2525(30)$	5.46(79)
$\mathrm{C}(6)$	$0 \cdot 3435(9)$	$0 \cdot 6009$ (13)	$0 \cdot 1865(21)$	$2 \cdot 04(45)$
$\mathrm{C}\left(1^{\prime}\right)$	$0 \cdot 3914(11)$	$0 \cdot 5167(16)$	-0.2116(22)	3.20(55)
$\mathrm{C}\left(2^{\prime}\right)$	$0 \cdot 4295(11)$	$0 \cdot 5546$ (15)	-0.1308(23)	2.96(56)
$\mathrm{C}\left(3^{\prime}\right)$	$0 \cdot 4704(12)$	$0 \cdot 5998$ (17)	$-0.1565(28)$	4-37(68)
$\mathrm{C}\left(\mathbf{4}^{\prime}\right)$	$0 \cdot 5039(15)$	$0 \cdot 6471$ (19)	$-0.0804(31)$	5.29(72)
$\mathrm{C}\left(5^{\prime}\right)$	$0 \cdot 4873(8)$	$0 \cdot 6371$ (13)	$0 \cdot 0353(19)$	1.94(47)
$\mathrm{C}\left(6^{\prime}\right)$	$0 \cdot 4383(10)$	$0 \cdot 5822(14)$	$0 \cdot 0558(21)$	$2 \cdot 88(56)$
$\mathrm{C}\left(1^{\prime \prime}\right)$	$0 \cdot 3425(11)$	$0 \cdot 3224(14)$	$0 \cdot 0472(22)$	3-25(54)
$\mathrm{C}\left(2^{\prime \prime}\right)$	$0 \cdot 3762(10)$	$0 \cdot 3520$ (13)	$0 \cdot 1352(20)$	1.80 (45)
$\mathrm{C}\left(3^{\prime \prime}\right)$	$0 \cdot 4001(12)$	$0 \cdot 3152(16)$	$0 \cdot 2267(27)$	$4 \cdot 21$ (65)
$\mathrm{C}\left(4^{\prime \prime}\right)$	$0 \cdot 4288(11)$	$0 \cdot 3575(15)$	$0 \cdot 3031(23)$	$2 \cdot 96(54)$
$\mathrm{C}\left(5^{\prime \prime}\right)$	$0 \cdot 4359$ (11)	$0 \cdot 4329(16)$	$0 \cdot 2967(23)$	3.02(55)
$\mathrm{C}\left(6^{\prime \prime}\right)$	$0 \cdot 4126(11)$	$0 \cdot 4639(13)$	$0 \cdot 2104(25)$	3.08(52)
$\mathrm{O}(1)$	$0 \cdot 2269$ (8)	$0 \cdot 4557(11)$	-0.1270(17)	
$\mathrm{O}\left(1^{\prime}\right)$	$0 \cdot 3164(8)$	$0 \cdot 4416$ (13)	-0.2439(17)	
$\mathrm{O}\left(1^{\prime \prime}\right)$	$0 \cdot 2911(8)$	$0 \cdot 3385(11)$	$-0.1038(17)$	
B(1)	$0 \cdot 2673(13)$	$0 \cdot 3946$ (19)	$-0.1842(31)$	3-11(71)
F(1)	0.2417(7)	$0 \cdot 3613$ (8)	-0.2648(13)	

Atoms within the $\mathrm{BF}_{4}{ }^{-}$anion

B(2)	$0.4374(14)$	$0.1417(18)$	$0.0185(34)$	$3.93(68)$
$\mathrm{F}(2)$	$0.4056(9)$	$0.1475(14)$	$0.1107(18)$	
$\mathrm{F}(3)$	$0.4940(9)$	$0.1378(15)$	$0.0462(20)$	
$\mathrm{F}(4)$	$0.4256(12)$	$0.0640(14)$	$-0.0141(22)$	
$\mathrm{F}(5)$	$0.4284(9)$	$0.1936(12)$	$-0.0572(21)$	

Atoms within the acetonitrile molecule				
$\mathrm{Me}(1)$	$0 \cdot 3478(18)$	$0 \cdot 8214(24)$	0.0574(34)	7-39(108)
C(7)	$0 \cdot 3483(15)$	$0 \cdot 7588(16)$	$-0.0057(32)$	4-53(66)
N(3)	$0 \cdot 3438(12)$	$0 \cdot 7060(16)$	$-0.0541(23)$	5-30(61)

Calculated hydrogen atom positions ${ }^{b}$			
$H(1)$	0.1804	0.5418	-0.0014
$\mathrm{H}(3)$	0.1862	0.6424	0.1691
$\mathrm{H}(4)$	0.2376	0.7030	0.3139
$\mathrm{H}(5)$	0.3391	0.6782	0.3064
$\mathrm{H}\left(1^{\prime}\right)$	0.3984	0.5174	-0.2932
$\mathrm{H}\left(3^{\prime}\right)$	0.4810	0.6029	-0.2346
$\mathrm{H}\left(4^{\prime}\right)$	0.5347	0.6828	-0.1049
$\mathrm{H}\left(5^{\prime}\right)$	0.5068	0.6648	0.0967
$\mathrm{H}\left(1^{\prime \prime}\right)$	0.3356	0.2662	0.0379
$\mathrm{H}\left(3^{\prime \prime}\right)$	0.3966	0.2585	0.2356
$\mathrm{H}\left(4^{\prime \prime}\right)$	0.4454	0.3303	0.3685
$\mathrm{H}\left(5^{\prime \prime}\right)$	0.4575	0.4630	0.3537

Atom	β_{11}	β_{22}	β_{33}
Co	10.2(7)	20.9(13)	65.9(33)
P	12.1(13)	35-6(30)	55.2(58)
$\mathrm{O}(1)$	16(4)	38(8)	76(18)
$\mathrm{O}\left(1^{\prime}\right)$	17(3)	46(8)	62(16)
$\mathrm{O}\left(\mathrm{l}^{\prime \prime}\right)$	15(4)	34(7)	55(15)
$\mathrm{F}(1)$	$23(3)$	29(6)	69(15)
$\mathrm{F}(2)$	35(5)	84(10)	98(19)
F(3)	28(4)	104(13)	163(28)
F(4)	61 (7)	58(9)	148(24)
F (5)	$39(5)$	51 (9)	$151(23)$

	Table 2	(Continued)	
	β_{12}	β_{13}	β_{23}
Atom	$1 \cdot 7(20)$	$-3 \cdot 7(35)$	$-9 \cdot 2(54)$
Co	$-7 \cdot 7(35)$	$-21 \cdot 4(58)$	$-20 \cdot 4(80)$
P	$2(9)$	$-26(15)$	$-18(18)$
$\mathrm{O}(1)$	$-7(10)$	$-4(14)$	$28(21)$
$O\left(1^{\prime}\right)$	$-6(8)$	$-8(15)$	$-27(19)$
$\mathrm{O}\left(1^{\prime \prime}\right)$	$-13(8)$	$-35(12)$	$4(18)$
$\mathrm{F}(1)$	$27(13)$	$24(18)$	$18(28)$
$\mathrm{F}(2)$	$13(13)$	$12(13)$	$60(35)$
$\mathrm{F}(3)$	$-5(16)$	$56(26)$	$19(29)$
$\mathrm{F}(4)$	$3(12)$	$-37(22)$	$20(24)$

(c) Principal axes of atomic vibration ellipsoids ${ }^{d}$

	$B_{\text {min. }} / \AA^{(12}$	$B_{\text {med. }} / \AA^{2}$	$B_{\text {max }} / \AA^{\text {a }}$ 2
Atom Co	(dc Minor axis)	(dc Median axis)	(dc Major axis)
	$2 \cdot 17$	$2 \cdot 47$	3.99
	$\left(\begin{array}{c} (0.953,-0.299 \\ 0.050) \end{array}\right.$	$\begin{gathered} (0.271,0.915 \\ 0.300) \end{gathered}$	$\begin{gathered} (-0.136,-0.272 \\ 0.952) \end{gathered}$
P	$1 \cdot 34$	$4 \cdot 07$	$4 \cdot 82$
	$\begin{gathered} (-0.721,-0.326, \\ -0.611) \end{gathered}$	$\begin{gathered} (0.693,-0 \cdot 358 \\ -0.626) \end{gathered}$	$\begin{gathered} (-0.015,-0.874 \\ 0.484) \end{gathered}$
$\mathrm{O}(1)$	$2 \cdot 44$	$\begin{gathered} 4 \cdot 31 \\ 5 . \end{gathered}$	${ }^{6.00}$ - -0.482 ,
	$-0.621)$	$-0.300)$	$0.723)$
$\mathrm{O}\left(1^{\prime}\right)$	$3 \cdot 10$	$3 \cdot 68$	6.43
	$\begin{gathered} \cdot 687,0.426, \\ -0.902) \end{gathered}$	$\begin{gathered} (-0.967,-0 \cdot 192 \\ -0.164) \end{gathered}$	$\begin{gathered} (0.243,-0.884 \\ -0.398) \end{gathered}$
$\mathrm{O}\left(1^{\prime \prime}\right)$	$2 \cdot 08$	$3 \cdot 77$	$5 \cdot 03$
	$\begin{gathered} (-0.464,-0.515, \\ -0.721) \end{gathered}$	$\begin{gathered} (0.874,-0.133 \\ -0.468) \end{gathered}$	$\begin{gathered} (0.145,-0.847 \\ 0.512) \end{gathered}$
$F(1)$	$2 \cdot 31$	3.55	$7 \cdot 02$
	$\begin{gathered} (-0.621,-0.423, \\ -0.661) \end{gathered}$	$\begin{gathered} (0.050,-0.862, \\ 0.504) \end{gathered}$	$\begin{gathered} (0.783,-0.280 \\ -0.556) \end{gathered}$
F(2)	$5 \cdot 03$	6.92	11.94
	$\begin{gathered} (-0.501,0.082, \\ 0.861) \end{gathered}$	$\begin{gathered} (0.691,-0.056 \\ 0.455) \end{gathered}$	$\begin{gathered} (-0.520,-0.820 \\ -0.224) \end{gathered}$
$\mathrm{F}(3)$	$5 \cdot 96$	$8 \cdot 17$	$14 \cdot 41$
	$\begin{gathered} (0.986,-0.118 \\ -0.115) \end{gathered}$	$\begin{gathered} (-0.043,0.491 \\ -0.870) \end{gathered}$	$\begin{gathered} (-0.160,-0.863 \\ -0.479) \end{gathered}$
$F(4)$	$6 \cdot 17$	$8 \cdot 04$	$15 \cdot 08$
	$\begin{gathered} (-0.323,-0.699 \\ 0.638) \end{gathered}$	$\begin{gathered} (-0.304,0.715 \\ 0.629) \end{gathered}$	$\begin{gathered} (-0.896,0.010 \\ -0.443) \end{gathered}$
$F(5)$	$5 \cdot 61$	$7 \cdot 27$	10.94
	$\begin{gathered} (-0.379,0.803 \\ -0.460) \end{gathered}$	$\begin{gathered} (-0.632,0.588 \\ -0.505) \end{gathered}$	$(0.676,-0.099$

a Estimated standard deviations, shown in parentheses, are right-adjusted to the least significant digit in the preceding number. ${ }^{b}$ Hydrogen atoms are numbered similarly to their attached carbon atoms. ${ }^{c}$ In the form: $\exp \left[-\left(\beta_{11} h^{2}+\right.\right.$ $\left.\left.\beta_{22} k^{2}+\beta_{33} l^{2}+\beta_{12} h k+\beta_{13} h l+\beta_{23} k l\right)\right]$. \quad Direction cosines (dc) of the principal axes of the ellipsoids are referred to the natural orthorhombic crystal axes. The length of an axis is defined in terms of B, the normal isotropic thermal parameter. The transformation to root-mean-square displacement is $\left(\overline{U^{2}}\right)^{\frac{1}{2}}=\left[B / 8 \pi^{2}\right]^{\frac{1}{2}}$.

RESULTS AND DISCUSSION

Description of the Structure.-The crystal consists of discrete $\left[\left\{\mathrm{FB}\left(\mathrm{ONCHC}_{5} \mathrm{H}_{3} \mathrm{~N}\right)_{3} \mathrm{P}\right\} \mathrm{Co}^{\mathrm{II}+}\right]$ cations, $\mathrm{BF}_{4}{ }^{-}$ anions, and MeCN molecules which are mutually separated by normal van der Waals' distances. The packing of these species in the unit cell is shown in Figure 1.
Individual intramolecular distances are in Table 3, and bond angles in Table 4, both with estimated standard deviations. Figure 2 shows the cation projected on (010) and illustrates the scheme used in numbering nonhydrogen atoms. The three aldoximo-pyridyl arms of the clathro-chelate ligand are designated as non-, singlyand doubly-primed. Hydrogen atoms, which have been omitted from this diagram for the sake of clarity, are numbered similarly to their attached carbon atoms.

The $d^{7}{ }{ }^{\text {III }}$ ion is totally encapsulated by the [FB$\left(\mathrm{ONCHC}_{5} \mathrm{H}_{3} \dot{\mathrm{~N}}_{3} \mathrm{P}^{-}\right.$] ligand, resulting in an approximate C_{3} axis defined by $\mathrm{P} \cdots \mathrm{Co} \cdots \mathrm{B}(\mathbf{1})-\mathrm{F}(\mathbf{1})$. The phosphorus and boron atoms act as 'caps' in the formation of this clathro-chelate complex. The cation possesses approximate, but not exact (vide infra) $C_{3 v}$ symmetry.

Table 3
Interatomic distances (\AA)
(a) Distances from cobalt atom

$\mathrm{Co}-\mathrm{N}(1)$	$2 \cdot 083(17)$	$\mathrm{Co}-\mathrm{N}(2)$	$2 \cdot 111(25)$
$\mathrm{Co}-\mathrm{N}\left(1^{\prime}\right)$	$2 \cdot 047(20)$	$\mathrm{Co}-\mathrm{N}\left(2^{\prime}\right)$	$2 \cdot 160(17)$
$\mathrm{Co}-\mathrm{N}\left(1^{\prime \prime}\right)$	$2 \cdot 059(20)$	$\mathrm{Co}-\mathrm{N}\left(2^{\prime \prime}\right)$	$2 \cdot 082(21)$

(b) Distances within non-primed aldoximo-pyridyl ligand

$\mathrm{B}(1)-\mathrm{O}(1)$	$1.588(38)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1 \cdot 422(47)$
$\mathrm{O}(1)-\mathrm{N}(1)$	$1.409(25)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1 \cdot 359(42)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1 \cdot 224(32)$	$\mathrm{C}(6)-\mathrm{N}(2)$	$1 \cdot 414(34)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.488(36)$	$\mathrm{C}(6)-\mathrm{P}$	$1 \cdot 811(23)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.357(38)$	$\mathrm{N}(2)-\mathrm{C}(2)$	$1 \cdot 332(29)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.347(47)$		

(c) Distances within singly-primed ligand

$\mathrm{B}(1)-\mathrm{O}\left(1^{\prime}\right)$	$1 \cdot 586(38)$	$\mathrm{C}\left(\mathbf{4}^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	$1 \cdot 462(43)$
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)$	$1 \cdot 409(31)$	$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	$1 \cdot 516(32)$
$\mathrm{N}\left(1^{\prime}\right)-\mathrm{C}\left(\mathbf{1}^{\prime}\right)$	$1 \cdot 251(36)$	$\mathrm{C}\left(6^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)$	$1 \cdot 242(30)$
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	$1 \cdot 480(38)$	$\mathrm{C}\left(6^{\prime}\right)-\mathrm{P}$	$1 \cdot 823(26)$
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	$1 \cdot 281(39)$	$\mathrm{N}\left(2^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	$1 \cdot 319(32)$
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	$1 \cdot 465(48)$		

(d) Distances within doubly-primed ligand

$\mathrm{B}(1)-\mathrm{O}\left(1^{\prime \prime}\right)$	1-489(39)	$\mathrm{C}\left(4^{\prime \prime}\right)-\mathrm{C}\left(5^{\prime \prime}\right)$	1-332(38)
$\mathrm{O}\left(1^{\prime \prime}\right)-\mathrm{N}\left(1^{\prime \prime}\right)$	$1 \cdot 402(29)$	$\mathrm{C}\left(5^{\prime \prime}\right)-\mathrm{C}\left(6^{\prime \prime}\right)$	$1 \cdot 296(39)$
$\mathrm{N}\left(1^{\prime \prime}\right)-\mathrm{C}\left(1^{\prime \prime}\right)$	$1 \cdot 188(33)$	$\mathrm{C}\left(6^{\prime \prime}\right)-\mathrm{N}\left(2^{\prime \prime}\right)$	$1 \cdot 319(34)$
$\mathrm{C}\left(1^{\prime \prime}\right)-\mathrm{C}\left(2^{\prime \prime}\right)$	$1 \cdot 422(35)$	$\mathrm{C}\left(6^{\prime \prime}\right)-\mathrm{P}$	1-928(25)
$\mathrm{C}\left(2^{\prime \prime}\right)-\mathrm{C}\left(3^{\prime \prime}\right)$	$1 \cdot 396(39)$	$\mathrm{N}\left(\mathbf{2}^{\prime \prime}\right)-\mathrm{C}\left(2^{\prime \prime}\right)$	$1 \cdot 399(30)$
$\mathrm{C}\left(3^{\prime \prime}\right)-\mathrm{C}\left(4^{\prime \prime}\right)$	$1 \cdot 362(41)$		
(c) Boron-fluorine distance within cation			
$\mathrm{B}(1)-\mathrm{F}(1)$	$1.284(38)$		
(f) Boron-fluorine distances within anion			
$\mathrm{B}(2)-\mathrm{F}(2)$	$1 \cdot 343(44)$	$\mathrm{B}(2)-\mathrm{F}(4)$	1-442(41)
$\mathrm{B}(2)-\mathrm{F}(3)$	$1 \cdot 368(40)$	$\mathrm{B}(2)-\mathrm{F}(5)$	1-306(44)
(g) Distances within the acetonitrile			
$\mathrm{Me}(1)-\mathrm{C}(7)$	1-376(52)	$\mathrm{C}(7)-\mathrm{N}(3)$	1.098(42)

(h) Non-bonded contacts within cobalt co-ordination environment

$\mathrm{N}(1) \cdots \mathrm{N}\left(1^{\prime}\right)$	$2 \cdot 766(30)$	$\mathrm{N}(1) \cdots \mathrm{N}(2)$	$3 \cdot 513(29)$
$\mathrm{N}\left(1^{\prime}\right) \cdots \mathrm{N}\left(1^{\prime \prime}\right)$	$2 \cdot 822(29)$	$\mathrm{N}\left(1^{\prime}\right) \cdots \mathrm{N}\left(2^{\prime}\right)$	$2 \cdot 598(29)$
$\mathrm{N}\left(1^{\prime \prime}\right) \cdots \mathrm{N}(1)$	$2 \cdot 738(25)$	$\mathrm{N}\left(1^{\prime \prime}\right) \cdots \mathrm{N}\left(2^{\prime \prime}\right)$	$2 \cdot 512(30)$
$\mathrm{N}(2) \cdots \mathrm{N}\left(2^{\prime}\right)$	$3 \cdot 050(29)$	$\mathrm{Co} \cdots \mathrm{P}$	$3 \cdot 428(8)$
$\mathrm{N}\left(2^{\prime}\right) \cdots \mathrm{N}\left(2^{\prime \prime}\right)$	$2 \cdot 955(27)$	$\mathrm{Co} \cdots \mathrm{B}(1)$	$3 \cdot 196(34)$
$\mathrm{N}\left(2^{\prime \prime}\right) \cdots \mathrm{N}(2)$	$2 \cdot 917(30)$		
(i) Interionic contacts			
$\mathrm{F}(2) \cdots \mathrm{H}\left(1^{\prime \prime}\right)$	$2 \cdot 787$		
$\mathrm{~F}(2) \cdots \mathrm{H}\left(\mathbf{3}^{\prime \prime}\right)$	$2 \cdot 469$	$\mathrm{~F}(4) \cdots \mathrm{H}\left(\mathbf{1}^{\prime \prime}\right)$	$2 \cdot 767$
$\mathrm{~F}(3) \cdots \mathrm{H}\left(3^{\prime \prime}\right)$	$3 \cdot 850$	$\mathrm{~F}(4) \cdots \mathrm{H}\left(\mathbf{3}^{\prime \prime}\right)$	$\mathbf{3 \cdot 7 9 2}$

The Co ${ }^{\text {II }}$ Co-ordination Sphere.-The co-ordination sphere of the central $d^{7} \mathrm{Co}^{1 \mathrm{I}}$ atom consists of six nitrogen atoms, each of which donates two electrons, yielding an outer electronic configuration of nineteen electrons. The observed magnetic moment of 4.91 B.M. ${ }^{4}$ consistent with three unpaired electrons, is indicative of a high-spin situation. The six nitrogen atoms define a slightly tapered trigonal prism with little distortion towards an
octahedral geometry. As shown in Figure 3, and Table 5, the twist angles $\mathrm{N}(1)-\langle\mathrm{N}(1)\rangle-\langle\mathrm{N}(2)\rangle-\mathrm{N}(2), \quad \mathrm{N}\left(1^{\prime}\right)-$ $\langle\mathrm{N}(1)\rangle-\langle\mathrm{N}(2)\rangle-\mathrm{N}\left(2^{\prime}\right)$, and $\mathrm{N}\left(1^{\prime \prime}\right)-\langle\mathrm{N}(1)\rangle-\langle\mathrm{N}(2)\rangle-\mathrm{N}\left(2^{\prime \prime}\right)$ are $0.44,3.24$, and -0.96°. [Here, $\langle N(1)\rangle$ is the centre of the $\mathrm{N}(1)-\mathrm{N}\left(1^{\prime}\right)-\mathrm{N}\left(1^{\prime \prime}\right)$ triangular face and $\langle\mathrm{N}(2)\rangle$ is

Table 4
Individual interatomic angles (deg.)
(a) Angles about cobalt atom

$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(2)$	$73 \cdot 6(0 \cdot 8)$	$\mathrm{N}\left(2^{\prime \prime}\right)-\mathrm{Co}-\mathrm{N}(2)$	9)
$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}\left(2^{\prime}\right)$	$76 \cdot 2(0 \cdot 8)$	$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}\left(2^{\prime \prime}\right)$	$130 \cdot 5(0.7)$
$\mathrm{N}\left(1^{\prime \prime}\right)-\mathrm{Co}-\mathrm{N}\left(2^{\prime \prime}\right)$	$74 \cdot 7(0 \cdot 8)$	$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}\left(2^{\prime}\right)$	136.3(0.6)
$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}\left(1^{\prime}\right)$	$84 \cdot 1(0.9)$	$\mathrm{N}\left(1^{\prime}\right)-\mathrm{Co}-\mathrm{N}\left(2^{\prime \prime}\right)$	$136 \cdot 3(0.9)$
$\mathrm{N}\left(1^{\prime}\right)-\mathrm{Co}-\mathrm{N}\left(1^{\prime \prime}\right)$	$86.8(0 \cdot 8)$	$\mathrm{N}\left(1^{\prime}\right)-\mathrm{Co}-\mathrm{N}(2)$	$131 \cdot 9(0 \cdot 9)$
$\mathrm{N}\left(\mathrm{l}^{\prime \prime}\right)-\mathrm{Co}-\mathrm{N}(1)$	$82 \cdot 8(0.7)$	$\mathrm{N}\left(1^{\prime \prime}\right)-\mathrm{Co}-\mathrm{N}(2)$	$130 \cdot 1(0.9)$
$\mathrm{N}(2)-\mathrm{Co}-\mathrm{N}\left(\mathbf{2}^{\prime}\right)$	$91 \cdot 1(0 \cdot 8)$	$\mathrm{N}\left(1^{\prime \prime}\right)-\mathrm{Co}-\mathrm{N}\left(2^{\prime}\right)$	133•4(0.7)
$\mathrm{N}\left(2^{\prime}\right)-\mathrm{Co}-\mathrm{N}\left(2^{\prime \prime}\right)$	88.3(0.7)		

(b) Angles about the boron atom of the cation

$\mathrm{O}(1)-\mathrm{B}(1)-\mathrm{F}(1)$	$110 \cdot 9(2 \cdot 2)$	$\mathrm{O}(1)-\mathrm{B}(1)-\mathrm{O}\left(1^{\prime}\right)$	$106 \cdot 3(2 \cdot 2)$
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{B}(1)-\mathrm{F}(1)$	$103 \cdot 2(2 \cdot 5)$	$\mathrm{O}\left(1^{\prime}\right)-\mathrm{B}(1)-\mathrm{O}\left(1^{\prime \prime}\right)$	$111 \cdot 6(2 \cdot 1)$
$\mathrm{O}\left(1^{\prime \prime}\right)-\mathrm{B}(1)-\mathrm{F}(1)$	$111 \cdot 8(2 \cdot 5)$	$\mathrm{O}\left(1^{\prime \prime}\right)-\mathrm{B}(1)-\mathrm{O}(1)$	$112 \cdot 5(2 \cdot 5)$

(c) Angles about the phosphorus atom

$\mathrm{C}(6)-\mathrm{P}-\mathrm{C}\left(6^{\prime}\right)$	$98 \cdot 1(1 \cdot 2)$	$\mathrm{C}\left(6^{\prime \prime}\right)-\mathrm{P}-\mathrm{C}(6)$	$101 \cdot 9(1 \cdot 1)$
$\mathrm{C}\left(6^{\prime}\right)-\mathrm{P}-\mathrm{C}\left(6^{\prime \prime}\right)$	$99 \cdot 1(1 \cdot 2)$		

(d) Angles within the non-primed aldoximo-pyridyl ligand

$\mathrm{B}(1)-\mathrm{O}(1)-\mathrm{N}(1)$	$112 \cdot 8(1 \cdot 8)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$108 \cdot 6(2 \cdot 9)$
$\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{C}(1)$	$115 \cdot 0(1 \cdot 0)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$131 \cdot 2(3 \cdot 1)$
$\mathrm{N}(1)-\mathrm{C}(1) \mathrm{C}(2)$	$115 \cdot 3(2.1)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(2)$	$110 \cdot 8(2 \cdot 3)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(2)$	$112 \cdot 0(1 \cdot 9)$	$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(2)$	$123 \cdot 2(2 \cdot 2)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$129 \cdot 1(2 \cdot 1)$	$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{P}$	$122 \cdot 4(1.7)$
$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	$118 \cdot 8(2 \cdot 2)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{P}$	$126 \cdot 4(2 \cdot 1)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$126 \cdot 9(2 \cdot 8)$		

(e) Angles within the singly-primed ligand

$\mathrm{B}(1)-\mathrm{O}\left(1^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)$	$112 \cdot 1(2 \cdot 0)$	$\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$	113.0(2.7)
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	$113 \cdot 6(2 \cdot 1)$	$\mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$	$115 \cdot 7(2 \cdot 2)$
$\mathrm{N}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	113.6(2.4)	$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)$	$118 \cdot 3(2 \cdot 1)$
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)$	117.9(2.2)	$\mathrm{C}\left(6^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	129.4(2.1)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	124.6(2.7)	$\mathrm{N}\left(2^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{P}$	$127 \cdot 5(1 \cdot 8)$
$\mathrm{N}\left(2^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)$	116.7(2.6)	$\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{P}$	114.1(1-7)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	126.6(3.2)		

(f) Angles within the doubly-primed ligand

$\mathrm{B}(1)-\mathrm{O}\left(1^{\prime \prime}\right)-\mathrm{N}\left(1^{\prime \prime}\right)$	$117 \cdot 2(2 \cdot 0)$	$\mathrm{C}\left(3^{\prime \prime}\right)-\mathrm{C}\left(4^{\prime \prime}\right)-\mathrm{C}\left(5^{\prime \prime}\right.$	$124 \cdot 1(2.6)$
$\mathrm{O}\left(1^{\prime \prime}\right)-\mathrm{N}\left(1^{\prime \prime}\right)-\mathrm{C}\left(1^{\prime \prime}\right)$	116.4(2.1)	$\mathrm{C}\left(4^{\prime \prime}\right)-\mathrm{C}\left(5^{\prime \prime}\right)-\mathrm{C}\left(6^{\prime \prime}\right)$	114.1(2.5)
$\mathrm{N}\left(1^{\prime \prime}\right)-\mathrm{C}\left(1^{\prime \prime}\right)-\mathrm{C}\left(2^{\prime \prime}\right)$	116.5(2.3)	$\mathrm{C}\left(5^{\prime \prime}\right)-\mathrm{C}\left(6^{\prime \prime}\right)-\mathrm{N}\left(2^{\prime \prime}\right)$	$128.8(2 \cdot 4)$
$\mathrm{C}\left(1^{\prime \prime}\right)-\mathrm{C}\left(2^{\prime \prime}\right)-\mathrm{N}\left(2^{\prime \prime}\right)$	$113 \cdot 2(2 \cdot 1)$	$\mathrm{C}\left(6^{\prime \prime}\right)-\mathrm{N}\left(2^{\prime \prime}\right)-\mathrm{C}\left(2^{\prime \prime}\right)$	117.2(2.1)
$\mathrm{C}\left(1^{\prime \prime}\right)-\mathrm{C}\left(2^{\prime \prime}\right)-\mathrm{C}\left(3^{\prime \prime}\right)$	130.3(2-2)	$\mathrm{N}\left(2^{\prime \prime}\right)-\mathrm{C}\left(6^{\prime \prime}\right)-\mathrm{P}$	$114.7(1.9)$
$\mathrm{N}\left(2^{\prime \prime}\right)-\mathrm{C}\left(2^{\prime \prime}\right)-\mathrm{C}\left(3^{\prime \prime}\right)$	116.2(2-2)	$\mathrm{C}\left(5^{\prime \prime}\right)-\mathrm{C}\left(6^{\prime \prime}\right)-\mathrm{P}$	$116 \cdot 0(2 \cdot 1)$
C($2^{\prime \prime}$) $\mathrm{C}\left(\mathbf{3}^{\prime \prime}\right)-\mathrm{C}\left(4^{\prime \prime}\right)$	$119.0(2.5)$		16.0 (2-1)

(g) Angles in the $\mathrm{BF}_{4}-$ anion

$\mathrm{F}(2)-\mathrm{B}(2)-\mathrm{F}(3)$	$109 \cdot 7(21)$	$\mathrm{F}(3)-\mathrm{B}(2)-\mathrm{F}(4)$	$101 \cdot 9(25)$
$\mathrm{F}(2)-\mathrm{B}(2)-\mathrm{F}(4)$	$101 \cdot 1(26)$	$\mathrm{F}(3)-\mathrm{B}(2)-\mathrm{F}(5)$	$111 \cdot(28)$
$\mathrm{F}(2)-\mathrm{B}(2)-\mathrm{F}(5)$	$116.0(28)$	$\mathrm{F}(4)-\mathrm{B}(2)-\mathrm{F}(5)$	$115 \cdot 6(31)$

(h) Angles within the acetonitrile
$\mathrm{Me}(1)-\mathrm{C}(7)-\mathrm{N}(3) \quad 173 \cdot 8(3 \cdot 9)$
the centre of the $\mathrm{N}(2)-\mathrm{N}\left(2^{\prime}\right)-\mathrm{N}\left(\mathbf{2}^{\prime \prime}\right)$ face.] The mean twist angle is 0.89° [cf., mean twist angle in the analogous $d^{8} \mathrm{Ni}^{I I}$ species ${ }^{1}$ is $c a .1 \cdot 6^{\circ}$, and in the $d^{6} \mathrm{Fe}^{\mathrm{II}}$ complex ${ }^{2} c a$. 21.7°]. It should be emphasized that one of the twist angles in the present $\mathrm{Co}^{\mathrm{II}}$ complex is in the opposite sense to the other two.

The mean $\mathrm{Co}^{-} \mathrm{N}$ (aldoximo) and $\mathrm{Co}^{-} \mathrm{N}$ (pyridyl) bond

Figure 1 Packing of ions and solvent molecules, viewed down c

Figure 2 The cation viewed down b

Figure 3 The CoN_{6} core, showing 'twist angles '
lengths are $2 \cdot 063(18) *$ and $2 \cdot 118(38) \AA$. Mean distances within the $\mathrm{N}(1) \cdots \mathrm{N}\left(1^{\prime}\right) \cdots \mathrm{N}\left(1^{\prime \prime}\right)$ triangle are $2 \cdot 775(43)$, and in the $\mathrm{N}(2) \cdots \mathrm{N}\left(2^{\prime}\right) \cdots \mathrm{N}\left(2^{\prime \prime}\right)$ system $2 \cdot 974(68) \AA$. The 'bites' of the aldoximo-pyridyl chelate systems average $2 \cdot 541(49) \AA$.

The cobalt-phosphorus and -boron distances of $3 \cdot 428(8)$ and $3 \cdot 196(34) \AA$, are outside normal bonding range.

Angles subtended at the cobalt(II) atom by pairs of adjacent nitrogen atoms define three sets: those of the type $\mathrm{N}(1)-\mathrm{Co}^{-} \mathrm{N}\left(1^{\prime}\right)$ average $84 \cdot 6(2 \cdot 0)^{\circ}$, those of the type

Table 5
Dihedral angles within the molecule (deg.)

$\mathrm{O}(1)-\mathrm{B}(1) \cdots \mathrm{P}-\mathrm{C}(6)$	$1 \cdot 7$
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{B}(1) \cdots \mathrm{P}-\mathrm{C}\left(6^{\prime}\right)$	$1 \cdot 9$
$\mathrm{O}\left(1^{\prime \prime}\right)-\mathrm{B}(1) \cdots \mathrm{P}-\mathrm{C}\left(6^{\prime \prime}\right)$	$0 \cdot 2$
$\mathrm{~B}(1)-\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{C}(1)$	$175 \cdot 1$
$\mathrm{~B}(1)-\mathrm{O}\left(1^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)$	$174 \cdot 4$
$\mathrm{~B}(1)-\mathrm{O}\left(1^{\prime \prime}\right)-\mathrm{N}\left(1^{\prime \prime}\right)-\mathrm{C}\left(1^{\prime \prime}\right)$	$178 \cdot 2$
$\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$174 \cdot 2$
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$	$174 \cdot 1$
$\mathrm{O}\left(1^{\prime \prime}\right)-\mathrm{N}\left(1^{\prime \prime}\right)-\mathrm{C}\left(1^{\prime \prime}\right)-\mathrm{C}\left(2^{\prime \prime}\right)$	$177 \cdot 8$
$\mathrm{~N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(2)$	$0 \cdot 8$
$\mathrm{~N}\left(1^{\prime}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)$	$1 \cdot 0$
$\mathrm{~N}\left(1^{\prime \prime}\right)-\mathrm{C}\left(1^{\prime \prime}\right)-\mathrm{C}\left(2^{\prime \prime}\right)-\mathrm{N}\left\langle 2^{\prime \prime}\right)$	$0 \cdot 3$
$\mathrm{~N}(1)-\langle\mathrm{N}(1)\rangle-\langle\mathrm{N}(2)\rangle-\mathrm{N}(2)$	$0 \cdot 44^{a}$
$\mathrm{~N}\left(1^{\prime}\right)-\langle\mathrm{N}(1)\rangle-\langle\mathrm{N}(2)\rangle-\mathrm{N}\left(2^{\prime}\right)$	$3 \cdot 4^{a}$
$\mathrm{~N}\left(1^{\prime \prime}\right)-\langle\mathrm{N}(1)\rangle-\langle\mathrm{N}(2)\rangle-\mathrm{N}\left(2^{\prime \prime}\right)$	$-0 \cdot 96^{a}$

[^1]$\mathrm{N}(2)-\mathrm{Co}-\mathrm{N}\left(2^{\prime}\right)$ average $89 \cdot 2(1 \cdot 6)^{\circ}$, and the aldoximopyridyl chelate 'bite' angles average $74 \cdot 8(1 \cdot 3)^{\circ}$. The ' non-cis' or ' pseudo-trans ' angles of the type $\mathrm{N}(1)-\mathrm{Co}^{-}-$ $\mathrm{N}\left(2^{\prime \prime}\right)$ range from $130 \cdot 1(0.9)-136 \cdot 3(0.9)^{\circ}$.

Geometry of the Clathro-chelate Ligand.-The leastsquares planes passing through the individual pyridyl rings and the three separate aldoximo-pyridyl systems are defined in Table 6.

The root-mean-square deviations of the constituent atoms from the planes of their pyridyl rings are 0.026 , 0.017 , and $0.028 \AA$. Although the deviations are small, they do seem to show a systematic pattern, with the nitrogen atom and the para-carbon atom being displaced to one side of the least-squares plane, while the remaining atoms are displaced to the other side. (The single exception is atom $C\left(3^{\prime \prime}\right)$ in plane (C), which is displaced by an insignificant $0.003 \AA$ in the 'wrong' direction).

Thus, for plane $(A), \mathrm{N}(2)$ and $\mathrm{C}(4)$ are displaced by -0.033 and $-0.034 \AA$ from the least-squares plane, while $C(2), C(3), C(5)$, and $C(6)$ are displaced by 0.019 , $0.015,0.023$, and $0.010 \AA$, respectively.

A rather more well-defined distortion of a pyridyl ring from a planar, towards a 'boat', conformation

[^2]has been documented in our previous structural investigation of $\left[\left\{\mathrm{FB}\left(\mathrm{ONCHC}_{5} \mathrm{H}_{3} \mathrm{~N}\right)_{3} \mathrm{P}\right\} \mathrm{Fe}^{\mathrm{TI}+}\right]\left[\mathrm{BF}_{4}{ }^{-}\right], \mathrm{CH}_{2} \mathrm{Cl}_{2} .{ }^{2}$

As might be expected, the aldoximo-pyridyl systems also show slight deviations from planarity [see planes

Table 6

Equations of least-squares planes, within the cation, in the form $l x+m Y+n Z=p$, where X, Y, and Z are Cartesian co-ordinates related to the cell co-ordinates by $X=x a, \quad Y=y b, \quad Z=z c$. Deviation (\AA) of atoms from the planes are listed in square brackets

$$
\begin{aligned}
& \text { Plane (} A \text {): } \mathrm{C}(2)-(6), \mathrm{N}(2) \\
& 0.177 X+0.746 Y-0.642 Z=7.807 \\
& {[\mathrm{C}(2) 0.019, \mathrm{C}(3) 0.015, \mathrm{C}(4)-0.034, \mathrm{C}(5) 0.023, \mathrm{C}(6) 0.010,} \\
& N(2)-0.033] \\
& \text { Plane (} B \text {): } \mathrm{C}\left(2^{\prime}\right)-\left(6^{\prime}\right), \mathrm{N}\left(2^{\prime}\right) \\
& -0.649 X+0.754 Y-0.102 Z=0.972 \\
& {\left[\mathrm{C}\left(2^{\prime}\right)-0.014, \mathrm{C}\left(3^{\prime}\right)-0.007, \mathrm{C}\left(4^{\prime}\right) 0.015, \mathrm{C}\left(5^{\prime}\right)-0.007\right. \text {, }} \\
& \left.\mathrm{C}\left(6^{\prime}\right)-0.014, \mathrm{~N}\left(2^{\prime}\right) 0.026\right] \\
& \text { Planc }(C): C\left(2^{\prime \prime}\right)-\left(6^{\prime \prime}\right), N\left(2^{\prime \prime}\right) \\
& 0.841 X-0.122 Y-0.527 Z=5.762 \\
& {\left[\mathrm{C}\left(2^{\prime \prime}\right) 0.031, \mathrm{C}\left(3^{\prime \prime}\right)-0.003, \mathrm{C}\left(4^{\prime \prime}\right)-0.015, \mathrm{C}\left(5^{\prime \prime}\right) 0.003,\right.} \\
& \left.C\left(6^{\prime \prime}\right) 0.028, N\left(2^{\prime \prime}\right)-0.044\right] \\
& \text { Plane (D): P, C(2)-(6), N(2), B(1), F(1) } \\
& 0.204 X+0.734 Y-0.648 Z=7.833 \\
& {[\mathrm{P}-0.045, \mathrm{C}(2) \quad 0.022, \mathrm{C}(3)-0.012, \mathrm{C}(4)-0.058, \mathrm{C}(5)} \\
& 0.040, \mathrm{C}(6) 0.061, \mathrm{~N}(2) 0.007, \mathrm{C}(1)-0.001, \mathrm{~N}(1)-0.012 \text {, } \\
& \mathrm{O}(1) 0.096, \mathrm{~B}(1)-0.049, \mathrm{~F}(1) 0.033] \\
& \text { Plane (E): P, C(2')-(6'), } \mathrm{N}\left(2^{\prime}\right), \mathrm{B}(1), \mathrm{F}(1) \\
& -0.605 X+0.792 Y-0.083 Z=1.828 \\
& {\left[P-0.001, \mathrm{C}\left(2^{\prime}\right)-0.097, \mathrm{C}\left(3^{\prime}\right)-0.024, \mathrm{C}\left(4^{\prime}\right) 0.080, \mathrm{C}\left(5^{\prime}\right)\right.} \\
& 0.062, \mathrm{C}\left(6^{\prime}\right)-0.027, \mathrm{~N}\left(2^{\prime}\right)-0.049, \mathrm{C}\left(1^{\prime}\right)-0.002, \mathrm{~N}\left(1^{\prime}\right) \\
& \left.0.095, \mathrm{O}\left(1^{\prime}\right) 0.053, \mathrm{~B}(1) 0.036, \mathrm{~F}(1) 0.020\right] \\
& \text { Plane (I) : P, C (2' } \left.\mathbf{2}^{\prime \prime}\right)-\left(6^{\prime \prime}\right), \mathrm{N}\left(\mathbf{2}^{\prime \prime}\right), \mathrm{B}(1), \mathrm{F}(1) \\
& 0.832 X-0.113 Y-0.543 Z=5.694 \\
& {\left[\begin{array}{llll}
\mathrm{P}-0.007, & \mathrm{C}\left(2^{\prime \prime}\right) & 0.051, \mathrm{C}\left(3^{\prime \prime}\right)-0.010, \mathrm{C}\left(4^{\prime \prime}\right)-0.037 \text {, }, ~
\end{array}\right.} \\
& \mathrm{C}\left(5^{\prime \prime}\right)-0.006, \mathrm{C}\left(6^{\prime \prime}\right) 0.044, \mathrm{~N}\left(2^{\prime \prime}\right)-0.012, \mathrm{C}\left(1^{\prime \prime}\right) 0.031 \text {, } \\
& \left.\mathrm{N}\left(1^{\prime \prime}\right)-0.041, \mathrm{O}\left(1^{\prime \prime}\right)-0.013, \mathrm{~B}(1)-0.060, \mathrm{~F}(1) 0.036\right]
\end{aligned}
$$

$(D),(E),(F)$ of Table 6]. In calculating these planes the $\mathrm{C}-\mathrm{N}-\mathrm{O}$ atoms of the aldoximo-functions (which are the most flexible portions of the ligands) have been given zero weight. The root-mean-square deviations of the constituent atoms from these three $\mathrm{P}-\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\right) \cdots \mathrm{B}-\mathrm{F}$ planes are $0.043,0.056$, and $0.037 \AA$.

The principal distortions of the ligand from C_{3} symmetry, may be identified from Table 5 . Thus the dihedral angles $\mathrm{O}(1)-\mathrm{B}(1) \cdots \mathrm{P}-\mathrm{C}(6), \mathrm{O}\left(1^{\prime}\right)-\mathrm{B}(1) \cdots$ $\mathrm{P}-\mathrm{C}\left(6^{\prime}\right)$, and $\mathrm{O}\left(1^{\prime \prime}\right)-\mathrm{B}(1) \cdots \mathrm{P}-\mathrm{C}\left(6^{\prime \prime}\right)$ are $1 \cdot 70,1 \cdot 87$, and $0 \cdot 20^{\circ}$; these should be zero for a ligand of true C_{3} symmetry. Twists about bonds of the type $\mathrm{N}(1)-\mathrm{C}(1)$ average 4.64°, and about $\mathrm{O}(1)-\mathrm{N}(1) 4 \cdot 09^{\circ}$. There is little torsion in $\mathrm{C}(1)-\mathrm{C}(2)$ bonds.

Mean bond lengths within the aldoxime frameworks are $\mathrm{O}-\mathrm{N} 1 \cdot 407(4), \mathrm{N}-\mathrm{C} 1 \cdot 221(30)$, and C (aldoximo)-C (pyridyl) $1 \cdot 463(41) \AA$. The $\mathrm{N}-\mathrm{C}$ distances are shorter than in the other clathro-chelate complexes, $c f$. mean values of $1 \cdot 291(11)$ for the $\mathrm{Fe}^{\mathrm{II}}$ species ${ }^{2}$ and $1 \cdot 303(44) \AA$ for the $\mathrm{Ni}^{\mathrm{II}}$ complex. ${ }^{1}$

Interionic Contacts.-Both the tetrafluoroborate anion [mean $\mathrm{B}-\mathrm{F} 1 \cdot 365(56) \AA$] and the acetonitrile molecule
$[\mathrm{Me}(1)-\mathrm{C}(7) 1 \cdot 376(52), \mathrm{C}(7)-\mathrm{N}(3) \mathrm{l} \cdot 098(42) \AA]$ have the expected geometry. Interionic contacts are listed in section (i) of Table 3. The shortest is $\mathrm{F}(2) \cdots \mathrm{H}\left(3^{\prime \prime}\right)$ $2 \cdot 469$ §.

Conchisions.-The principal effects which may influence when a metal atom will attain a trigonal prismatic, rather than octahedral, co-ordination environment in a clathro-chelate complex are the following: (i) relative sizes of the metal atom and the cavity within the clathrochelate ligand, 5,13,14 and (ii) ligand-field stabilization energy (LFSE). ${ }^{\mathbf{1 5}}$

The accepted ionic radii for $\mathrm{Fe}^{2+}, \mathrm{Co}^{2+}$, and $\mathrm{Ni}^{2+}(0 \cdot 61$, 0.74 , and $0.70 \AA$) are, indeed, closely paralleled by the $\mathrm{M}-\mathrm{N}$ (aldoximo) and $\mathrm{M}-\mathrm{N}$ (pyridyl) distances in the $\left[\left\{\mathrm{FB}\left(\mathrm{ONCHC}_{5} \mathrm{H}_{3} \mathrm{~N}\right)_{3} \mathrm{P}\right\} \mathrm{M}^{[+}\right] \quad(\mathrm{M}=\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni})$ cations (see Table 7). Thus, the overall geometry of the

Table 7

M	$\mathrm{Fe}^{\text {a }}$	Co	$\mathrm{Ni}{ }^{\text {b }}$
$r\left(\mathrm{M}^{2+}\right)$	0.61	$0 \cdot 74$	0.70
$\mathrm{M}-\mathrm{N}$ (aldoximo)	$1.931(11)$	2.063(18)	$2 \cdot 030(21)$
$\mathrm{M}-\mathrm{N}$ (pyridyl)	$1.978(06)$	$2 \cdot 118(38)$	$2 \cdot 043(20)$
M . . P	$3 \cdot 445(03)$	$3 \cdot 428(08)$	3.452(03)
$\mathrm{I} \cdot \cdots \mathrm{B}(1)$	$3 \cdot 035(12)$	3-196(34)	3.089(11)
$\mathrm{N}(1) \cdots \mathrm{N}\left(1^{\prime}\right)$	$2 \cdot 584(11)$	$2.775(43)$	2.678(12)
$\mathrm{N}(2) \cdots \mathrm{N}\left(2^{\prime}\right)$	$2 \cdot 740(21)$	$2.974(69)$	$2 \cdot 848(11)$
$\mathrm{N}(1) \cdots \mathrm{N}(2)$	$2 \cdot 483(11)$	$2 \cdot 541(54)$	$2 \cdot 531$ (11)
$\phi_{\text {axa }}$. ${ }^{\text {e }}$	21.7°	0.9°	$1.6{ }^{\circ}$

${ }_{a}$ See ref. 2. ${ }^{\imath}$ See ref. 1. ${ }^{c}$ This is the average of the three dihedral angles of the type $\mathbf{N}(1)-\langle\mathbf{N}(1)\rangle-\langle\mathbf{N}(2)\rangle-\mathbf{N}(2)$; see Table 5.
clathro-chelate ligand does change in such a way as to allow ' normal ' metal-nitrogen distances.

Unfortunately, LFSE considerations lead to precisely the same order, since an octahedral geometry is favoured over a trigonal prismatic in the order $d^{6}($ low-spin $)>$ $d^{8}>d^{7}$ (see ref. 15).

The two effects cannot, therefore, be separated on the basis of these crystallographic results alone.

The ionic radius for Ni^{2+} is $0.70 \AA$ and the $\mathrm{Ni}^{\mathrm{II}}$ derivative already has a trigonal prismatic geometry. It would appear, then, that the metal ion in the $\mathrm{Co}^{\mathrm{If}}$ complex $\left[r\left(\mathrm{Co}^{2+}\right) 0.74 \AA\right]$ is 'too large' to fit symmetrically into the cavity of the hexadentate encapsulation ligand. There is substantial evidence that this is, in fact, the case: (a) $\mathrm{Co}^{-} \mathrm{N}$ (pyridyl) distances vary from $2 \cdot 082(21)-2 \cdot 160(17) \AA$; (b) N (pyridyl) $\cdots \mathrm{N}$ (pyridyl) contacts range from $2 \cdot 917(30)$ to $3 \cdot 050(29) \AA$; and (c) at a lower level of significance, N (aldoximo) $\cdot \cdots \mathrm{N}$ (aldoximo) and N (aldoximo) $\cdots \mathrm{N}$ (pyridyl) distances also show some variations.

APPENDIX

Single-crystal Transformation of Monoclinic [\{FB$\left.\left(\mathrm{ONCHC}_{5} \mathrm{H}_{3} \mathrm{~N}\right)_{3} \mathrm{P}_{3} \mathrm{Co}^{\mathrm{II}+}\right]\left[\mathrm{BF}_{4}^{-}\right]$.-As outlined earlier, X -
${ }^{13}$ B. E. Wagner, Ph.D. Thesis, Chemistry Department, Massachusetts Institute of Technology, 1971.
${ }_{14}$ E. I. Stiefel and G. F. Brown, Inorg. Chem., 1972, 11, 434.
ray diffraction data were first collected from monoclinic crystals of the unsolvated $\mathrm{Co}^{\text {II }}$ complex (II). Since we had no evidence that the complex was air- or moisture-sensitive, the crystals were exposed to the atmosphere during data collection.

We subsequently noticed that some diffraction peaks appeared to have shoulders (as monitored on a chart recorder), so zero-level $0 k l$ Weissenberg photographs of the crystal were retaken. However, we found no sign of the (expected) elongated diffraction spots that might be caused by crystal deterioration but, rather, observed the development of a totally new diffraction pattern.

The new diffraction pattern, which was monitored for $c a$. 15 months via $0 k l$ Weissenberg photographs, shows definite twinning characteristics, with certain reflections close together and at irregular intervals.

Upon being viewed through a microscope, the modified crystals appear opaque with small cracks on their surfaces. (The original crystals were clear orange plates.)

Possible reactions that the $\mathrm{Co}^{\mathrm{II}}$ complex (II) might undergo include the following: (i) a simple phase-transition with no chemical changes; (ii) simple hydration of the crystal lattice; (iii) hydrolysis of a $\mathrm{B}-\mathrm{F}$ bond to give $\mathrm{B}-\mathrm{OH}$; (iv) hydrolysis of one or more aldoxime $\mathrm{C}=\mathrm{N}$ bonds; and (v) formation of a $\mathrm{Co}^{\mathrm{r}}-\mathrm{O}_{2}$ complex.

The experimental information is meagre. An i.r. spectrum of a sample of the complex which had been exposed to the atmosphere for 18 months showed only two new absorptions, relative to that of the authentic complex (cf. ref. 4). These were a broad weak band at 3615 and a weak band at $3530 \mathrm{~cm}^{-1}$. These could be $\mathrm{O}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ stretching frequencies, which might have resulted from addition of $\mathrm{H}_{2} \mathrm{O}$ to a $\mathrm{C}=\mathrm{N}$ bond without cleavage, i.e. formation of an α-hydroxyamine. No $\mathrm{C}=\mathrm{O}$ stretch is observed, so cleavage of a $\mathrm{C}=\mathrm{N}$ bond can probably be ruled out.

Thus, possibility (iv) seems to be the most likely process; it is also consistent with crystallographic information on the relative stabilities of the various $\left[\left\{\mathrm{FB}\left(\mathrm{ONCHC}_{5} \mathrm{H}_{3} \mathrm{~N}\right)_{3} \mathrm{P}\right\}-\right.$ $\mathrm{M}^{\mathrm{II}+}$] cations. Thus the $\mathrm{Co}^{\mathrm{II}}$ and $\mathrm{Zn}^{\mathrm{II}}$ (ref. 6) complexes have longer $\mathrm{M}-\mathrm{N}$ and $\mathrm{N} \cdots \mathrm{N}$ distances than do the $\mathrm{Ni}^{\mathrm{II}}$ (ref. 1) and $\mathrm{Fe}^{\mathrm{II}}$ (ref. 2) derivatives. While the $\mathrm{Ni}^{\mathrm{II}}$ and $\mathrm{Fe}^{\mathrm{II}}$ species seem fairly stable, the $\mathrm{Co}^{\text {II }}$ complex undergoes a slow solid-state reaction (vide supra) and the $\mathrm{Zr}^{\mathrm{II}}$ complex also appears to be susceptible to hydrolysis. [It decomposes slowly (ca. 10 min) in water. Crystals also become opaque and show surface cracks upon exposure to the atmosphere.]

These observations seem to correlate with the amount of strain in the ligand system. The $\mathrm{Mn}^{\mathrm{II}}$ complex cannot be made, ${ }^{4}$ probably because the ionic radius of $\mathrm{Mn}^{2+}(0.80 \AA)$ renders it too large to fit into the cavity within the clathrochelate ligand. Thus the series $\mathrm{Mn}^{\mathrm{II}}>\mathrm{Zn}^{\mathrm{II}} \sim \mathrm{Co}^{\mathrm{II}}>$ $\mathrm{Ni}^{\mathrm{II}}>\mathrm{Fe}^{\mathrm{II}}$ represents the change in ionic radius, the strain in the cation, and the readiness of the ligand to undergo a hydrolysis reaction.

The addition of $\mathrm{H}_{2} \mathrm{O}$ across a $\mathrm{C}=\mathrm{N}$ bond would give rise to an increase in the size of the cage (since the carbonnitrogen distance will increase) and the strain in the cation would also be reduced by the resultant flexibility of the $s p^{3}$ hybridized carbon and nitrogen atoms, allowing a rotation of the $\mathrm{N}(1)-\mathrm{N}\left(1^{\prime}\right)-\mathrm{N}\left(1^{\prime \prime}\right)$ relative to the $\mathrm{N}(2)-\mathrm{N}\left(2^{\prime}\right)-$ $\mathrm{N}\left(2^{\prime \prime}\right)$ triangular face and leading to a more stable stereochemical configuration. Such an effect has previously been
${ }^{15}$ W. O. Gillum, R. A. D. Wentworth, and R. F. Childers, Inorg. Chem., 1970, 9, 1825.
reported by Wentworth, ${ }^{16}$ who found that the reaction of the trigonal prismatic complexes $\left[c i s, c i s-1,3,5-\mathrm{C}_{6} \mathrm{H}_{9}-\right.$ $\left.\left(-\ddot{\mathrm{N}}=\mathrm{CH}-\mathrm{C}_{5} \mathrm{H}_{4} \ddot{\mathrm{~N}}\right)_{3} \mathrm{M}^{\mathrm{IT} 2+}\right]\left(\mathrm{M}=\mathrm{Mn}^{\mathrm{II}}, \mathrm{Zn}^{\mathrm{II}}, \mathrm{Co}^{\mathrm{II}}\right)$ with $\mathrm{BH}_{4}{ }^{-}$ gave rise to the octahedral hydrogenation products [cis,cis-$\left.1,3,5-\mathrm{C}_{6} \mathrm{H}_{9}\left(-\dot{\mathrm{N}} \mathrm{H}-\mathrm{CH}_{2}-\mathrm{C}_{5} \mathrm{H}_{4} \ddot{\mathrm{~N}}\right)_{3} \mathrm{M}^{\mathrm{II} 2+}\right]$.
${ }^{16}$ R. A. D. Wentworth, Inorg. Chem., 1971, 10, 2615.

A gross rearrangement of the cation is consistent with the abrupt changes observed in the diffraction pattern of our present $\mathrm{Co}^{I I}$ complex.

We thank Professor R. H. Holm for supplying the crystals.
[2/2613 Received, 20th November, 1972]

[^0]: 4 J. E. Parks, B. E. Wagner, and R. H. Holm, Inorg. Chem., 1971, 10, 2472.
 ${ }^{5}$ E. Larsen, G. N. LaMar, B. E. Wagner, J. E. Parks, and R. H. Holm, Inorg. Chem., 1972, 11, 2652.

 6 A. H. Reis, Ph.D. Thesis, Department of Chemistry. Harvard University, 1972; M. R. Churchill and A. H. Reis, Inorg. Chem., in press.

[^1]: ${ }^{a}\langle\mathrm{~N}(1)\rangle$ and $\langle\mathrm{N}(2)\rangle$ are defined as the centres of the triangles $\mathrm{N}(1), \mathrm{N}\left(1^{\prime}\right), \mathrm{N}\left(1^{\prime \prime}\right)$ and $\mathrm{N}(2), \mathrm{N}\left(2^{\prime}\right), \mathrm{N}\left(2^{\prime \prime}\right)$.

[^2]: * Estimated standard deviations for mean distances or angles are calculated by use of the 'scatter' equation: $\left.\sigma=\left[\sum_{i=l}^{i=N}\left(\chi_{i}-\tilde{\chi}\right)^{2}\right\} /(N-1)\right]^{\frac{1}{2}}$, where χ_{i} is the i th value and $\bar{\chi}$ is the mean of N equivalent values.

