1576

The Phosphorus–Nitrogen Bond. Synthesis, Characterization, and Infrared Studies of Heterocyclic Phosphoryl (Phosphetan) Amides

By John Emsley * and J. K. Williams, Department of Chemistry, King's College, Strand, London WC2R 2LS

Several new amide derivatives of the heterocyclic 2,2,3,4,4-pentamethylphosphetan 1-oxide (1) have been prepared by heating together the corresponding chloride and amine at elevated temperatures. The products have been characterized by ¹H and ¹³P n.m.r. spectroscopy and in particular by i.r. spectroscopy over the range 400-4000 cm⁻¹. In one case a mass spectrum is reported in detail. Evidence for hindered rotation about the P-N bond is discussed and interpreted in terms of $p\pi$ - $d\pi$ contributions to the bonding.

OF all four-membered heterocyclic phosphorus compounds the *trans*-1-chloro-2,2,3,4,4-pentamethylphosphetan 1-oxide (1; X = Cl) is the easiest to prepare ^{1,2} and consequently has been intensively studied. The chlorine atom of $C_8H_{16}P(O)Cl$ is fairly resistant to re-

placement and only a few derivatives such as alkoxyl,¹ methyl,³ and alkyl thio ⁴ have been made by this direct method. Substitution of the Cl by amines has only been achieved with benzylamine (overnight refluxing in benzene⁵); yields were low and chromatographic separation of the product necessary. An alternative route to C₈H₁₆P(O)NHCH₂PH involves reduction of C₈H₁₆P(O)Cl to C₈H₁₆PCl, with polymethylhydrogensiloxane at 130°, followed by treatment with benzylamine to give $C_8H_{16}PNHCH_2Ph$, and finally H_2O_2 oxidation to the desired product C₈H₁₆P(O)NHCH₂Ph.³

The dimethylamino-derivative, C₈H₁₆P(O)NMe₃, has been reported but no preparative details given 6,7 except that in one case ⁷ it was obtained from C₈H₁₆PCl, presumably by the method outlined above.

As part of the study of the phosphorus-nitrogen bond a series of phosphetan amine derivatives have been prepared. The two features of current interest surrounding this particular bond are (i) the possibility of restricted rotation about the P-N bond and (ii) the lack of correlation of P-N vibrational data. Both these effects

J. J. McBride, jun., E. Jungermann, J. V. Killheffer, and R. J. Clutter, J. Org. Chem., 1962, 27, 1833.
² E. Jungermann, J. J. McBride, jun., R. J. Clutter, and A. Maise, J. Org. Chem., 1962, 27, 606.
³ D. J. H. Smith and S. Trippett, Chem. Comm., 1969, 855.

probably have their origin in the donor $N \rightarrow P \ p\pi - d\pi$ bonding which can accompany this bond.

EXPERIMENTAL

Instruments.-Phosphorus-31 n.m.r. spectra were recorded on a Bruker HFX 90 spectrometer operating at 36.43 MHz, and referenced to 85% H₃PO₄; the initial signal lock was provided by CDCl₃. ¹H N.m.r. spectra were recorded on a Perkin-Elmer R12B spectrometer operating at 60 MHz, and referenced to TMS. Molecular weights were determined on samples dissolved in CHCl₃ using a Hitachi-Perkin-Elmer (model 115) osmometer. I.r. spectra were recorded on a Perkin-Elmer 457 spectrometer using CsBr optics. Samples were studied as liquid films, and Nujol or hexachlorobutadiene mulls; chart calibration was checked against the polystyrene band at 1601 cm⁻¹. Mass spectra were recorded on an A.E.I. MS 30 spectrometer operating at 24 eV; samples being introduced as 20-40 w/w % solution in CHCl₃ via a g.l.c. Carbowax column (210-220 °C) except for the ethanediamino-derivative which was introduced directly as a solid.

Materials .--- The amines were standard laboratory reagents suplied by Aldrich [Me2N(CH2)3NH2, Et2N(CH2)3-NH2, Bun2N(CH2)3NH2], Fisons [Et3N, Et2NH, EtNH2, Ph-NH₂, and PhCH₂NH₂], B.D.H. [Me₂NH, PrⁿNH₂, Buⁿ₂NH, $\operatorname{Bu}_{2}^{i}NH$, $C_{5}H_{10}NH$, $NH_{2}(CH_{2})_{2}NH_{2}$, and Hopkins & Williams $[\operatorname{Bu}^{n}NH_{2}]$. These amines and all solvents were dried over molecular sieves before use. Only freshly prepared 1 1-chloro-2,2,3,4,4-pentamethylphosphetan 1-oxide was used and this was recrystallized from petrol (b.p.

Preparation of 1-(NN-Dimethyl-1,3-propanediamino)-2,2,3,4,4-pentamethylphosphetan 1-Oxide and Similar Amides. -1-Chloro-2,2,3,4,4-pentamethylphosphetan 1-oxide (19.4 g, 0.10 mol) and NN-dimethylamino-1,3-propanediamine (20.4 g, 0.20 mol) were heated in refluxing toluene (150 ml) for 3 h under dry, oxygen-free nitrogen. The solution was 4 J. R. Corfield, R. K. Oram, D. J. H. Smith, and S. Trippett,

J.C.S. Perkin I, 1972, 713. ⁵ W. Hawes and S. Trippett, J. Chem. Soc. (C), 1969, 1465. ⁶ P. Haake and T. Koizumi, Tetrahedron Letters, 1970, 55,

4849.

7 R. K. Oram and S. Trippett, Chem. Comm., 1972, 554.

filtered to remove the NN-dimethyl-1,3-propanediamine dihydrochloride (Found: C, 34.75; H, 8.8; N, 15.65; Cl, 40.5. C₅H₁₆N₂Cl requires C, 34.5; H, 9.0; N, 16.0; Cl, 40.5%). Evaporation of the solvent gave the 1-(NNdimethyl-1,3-propanediamino)-2,2,3,4,4-pentamethylphos-

phetan 1-oxide in almost quantitative yield. The ambercoloured oil was twice taken up in an equal volume of petrol (b.p. 80-100) and evaporated to give an oil which solidified. Recrystallization from petrol (b.p. 80-100) gave white needle-like crystals, m.p. 102-103 °C.

In a similar experiment, with triethylamine in place of excess amine to take up the evolved HCl, quantitative yields were again obtained.

The preparation of the NN-dietlyl and NN-di-n-butyl-1,3-propanediamine derivatives were carried out in the same manner. The amine dihydrochloride salts were filtered off and the solutions evaporated to give almost quantitative yields of the products as oils which did not solidify

Attempts to prepare other amine derivatives by this method gave only minute yields of products even after a day's heating under reflux.

Preparation of 1-Diethylamino-2,2,3,4,4-pentamethylphosphetan 1-Oxide and Other Amides.-1-Chloro-2,2,3,4,4pentamethylphosphetan 1-oxide (9.7 g, 0.05 mol) and diethylamine (7.3 g, 0.1 mol) were dissolved in dry toluene (50 ml) and transferred to a dried thick-walled glass tube which was cooled (CO₂-acetone) and sealed under vacuum. The tube and contents were heated in an electric oven at 215 °C for 5 h. After cooling and opening, diethylamine hydrochloride (5.43 g, 0.05 mol) was removed by filtration and 11.4 g of oil obtained as product after evaporation of the solvent. An equal volume of petrol (b.p. 80-100) was added and removed to give an oil which readily solidified. Recrystallization from petrol (b.p. 80-100) gave white needle-like crystals, m.p. 65-67 °C, of 1-diethylamino-2,2,3,4,4-pentamethylphosphetan 1-oxide.

The preparation of the remaining phosphetan amides listed in Table 1 were carried out in a similar manner. In the case of piperidine, aniline, and benzylamine derivatives triethylamine was used as base to pick up HCl.

Reaction of Phosphetan Anhydride and Diethylamine.-No reaction occurs in ether solution at room temperature after 48 h, or on refluxing. In a Carius tube experiment as described above, the anhydride (4.4 g, 0.014 mol) and diethylamine (2.19 g, 0.045 mol) in toluene (50 ml) gave 2.3 g of the diethylammonium salt of phosphetan acid (0.009 mol), 2.5 g of unreacted anhydride (0.007 mol), plus unidentified product which was not the diethylamino-derivative.

Reaction of Amides with HCl.--A benzene solution of 1ethylamino-2,2,3,4,4-pentamethylphosphetan 1-oxide (0.84 g, 0.041 mol) was saturated with HCl gas and left at room temperature for 24 h, at the end of which time the insoluble ethylamine hydrochloride was filtered off and the solvent evaporated to give a quantitative yield of the phosphetan chloride (0.81 g, 0.041 mol), confirmed by mixed m.p.

Other amino-derivatives were subjected to the same treatment and all gave quantitative yields; these were the PrⁿNH-, BuⁿNH-, Buⁿ₂N-, Buⁱ₂N-, Et₂N(CH₂)₃NH-, Buⁿ₂N-(CH₂)₃NH-, and PhNH-derivatives.

⁸ J. R. Corfield, N. J. De'ath, and S. Trippett, Chem. Comm., 1970, 1502.

⁹ K. Ellis, D. J. H. Smith, and S. Trippett, J.C.S. Perkin I, 1972, 1185.

DISCUSSION

Excellent yields of all types of amines (primary, secondary, aliphatic, aromatic, heterocyclic, etc.) have been achieved by the simple technique of heating in toluene the phosphetan chloride (1) and excess of amine in a sealed tube at 215 °C. In the case of the NN-dialkyl-1,3propanediamino-compounds the reaction can be performed in refluxing toluene, again producing almost quantitative yields. The corresponding reaction with diethylamine produced only a trace of product even after 24 h. The derivatives prepared, method, yields, m.p., m.w.s., m/e, and in some instances elemental analyses are given in Table 1.

That such forcing conditions were required is not totally unexpected in view of the proposed mechanism of nucleophilic substitution.8 The trigonal-bipyramidal configuration of the intermediate state and the greater electronegativity or apicophilicity of the amine group relative to the resident chloride would explain the slow reaction at lower temperatures. In the case of the NNdialkyl-1,3-propanediamino-derivatives one can conclude that these will substitute at the lower temperature because of their reduced apicophilicity relative to Cl. Steric factors may well be operative with the bulkier amines and the two effects may also work against each other.

Unless precautions are taken rigorously to exclude moisture varying amounts of the phosphetan anhydride, C₈H₁₆P(O)OP(O)C₈H₁₆, are produced (unpublished results). Although this ubiquitous compound has so far remained unreported in the phosphetan literature it has remarkable stability with respect to nucleophilic attack, a stability not normally associated with the P-O-P bond. It is stable in cold water.⁸ Its reaction at high temperatures with excess of diethylamine did cause a 50% reaction to amine salt of the acid and unidentified product.

With the primary amines there is the possibility of disubstitution at nitrogen but in no case was this observed, steric factors obviously preventing it.

A selection of the amines were treated with HCl⁹ and regenerated quantitative yields of the phosphetan chloride.

N.M.R. Spectroscopy.—The ³¹P n.m.r. spectra (Table 2 all gave a very broad peak due to extensive coupling with all the methyl protons of the phosphetan ring ¹⁰ and the protons of the amine fragments. Since the environment of the phosphorus varies only as a secondary effect in these derivatives, and considering their general similarity anyway, it is not surprising that all the shifts fall within a narrow range. In order of shift the sequence is $C_5H_{10}N^{-}(2) > -NH(CH_2)_2NH^{-}(9) > PhCH_2NH^{-}(10) =$ $Bu_{2}^{n}N^{-}(1) > Et_{2}N^{-}(8) > Bu_{2}^{i}N^{-}(4) > Pr^{n}NH^{-}(7) > 0$ $Me_2N(CH_2)_3NH^- > Et_2N(CH_2)_3NH^- > Bu^n_2N(CH_2)_3^ NH^- > EtNH^-(6) > Me_2N^-(5) > PhNH^-(11).$ The number in parentheses shows the order of base strengths as measured by the pK_1 values of the amines.¹¹ There is no relationship between the two properties.

¹⁰ S. E. Cremer and B. C. Trivedi, J. Amer. Chem. Soc., 1969,

91, 7200. ¹¹ ' Handbook of Tables for Organic Compound Identification,' 3rd edn., p. 436, Chemical Rubber Co., Cleveland, Ohio, 1967.

The p.m.r. spectra were invariably complex in the δ region 0.80–2.00 p.p.m. In no case was either the primary amide proton, or the single proton attached to the phosphetan ring, observed. The most interesting spectrum was that of the dimethylamino-derivative which showed a pair of doublets centred at 2.63 and 2.71

atmospheric moisture, *etc.*, shows the pair of doublets illustrated in the Figure (a). On exposure to air these degenerate to a single pair [Figure (b)]. A similar effect was noted by Trippett for the CH₂ protons of $C_8H_{16}P(O)NCH_2Ph^{5}$ and he attributed the loss of structure to protonation.

	А	.mino-de	rivatives of 2	,2,3,4,4	-pentan	nethylp	phosphetan	l-oxide					
$C_{o}H_{1o}P(O)X$		Yield M						Analyses d (%)					
$\mathbf{X} =$	Method a	(%)	M.p. (°C)	Calc.	Obs. ^b	m e	Intensity •	С	н	N	\mathbf{P}		
-NHEt	ST	100	111-112	203	203	203	24	$58 \cdot 85$ (59 · 1)	11.05 (10.85)	7·0 (6·80)			
NHPr ⁿ	\mathbf{ST}	98	112-113	217	216	217	20	· ,		. ,			
-NHBu ⁿ	ST	94	96—98	231	230	231	18	$60.10 \\ (62.25)$	$10.95 \\ (11.25)$				
$-NMe_2$	ST	98	94—95	203	203	203	12	59.15 (59.1)	11.15 (10.85)	6·70 (6·90)			
-NEt ₂	ST	97	65 - 67	231	231	231	12	$61 \cdot 95$ (62 \cdot 20)	11.55 (11.25)	`6∙00´ (6∙05)	$13 \cdot 45$ (13 \cdot 40)		
-NBu ⁿ .	ST	97	140141	287	288	287	5	· · · /	()		()		
-NBui	\mathbf{ST}	96	162 - 163	287	287	287	4						
$-\mathrm{NH}(\mathrm{CH}_2)_3\mathrm{NMe}_2$	\mathbf{RT}	96	102103	260	260	260	13	60-00 (60-00)	10·60 (10·30)	10.75 (10.80)	12.15 (12.10)		
$-\mathrm{NH(CH_2)_3NEt_2}$	ST RT	98 95	Oil	288	284	288	2	```	. ,	```	· · ·		
$-\mathrm{NH}(\mathrm{CH}_2)_3\mathrm{NBu}^{\mathrm{n}}{}_2$	ST RT	98 100	Oil	344	339	344	2						
-NHCH2CH2NH-	ST	91	280 °	376	374	376	28	57.05 (57.45)	10.30 (10.10)	7.55 (7.45)			
$-NC_5H_{10}$	ST	84	6971	243	243	243	16	64.15 (63.95)	11.0 (10.65)	5.55			
-NHPh	ST	97	Oil	251	251	251	47	66.25 (66.92)	8·95 (8·35)	5.65 (5.55)			
-NHCH ₂ Ph	ST	94	158—159 ^f	265	267	265	4	(00 02)	(0 00)	(0.00)			

TABLE 1

• ST = Sealed tube; RT = refluxing toluene. • $\pm 2\%$. • % Base peak. • Calculated values in parenthesis. • Decomposes. • Lit., 159–160, ref. 5.

TABLE 2

N.m.r. spectra of the amino-derivatives of 2,2,3,4,4- pentamethylphosphetan 1-oxide

$C_8H_{16}P(O)X$	³¹ P n.m.r.	
$\mathbf{X} =$	δ(p.p.m.) «	¹ H N.m.r. $\delta(p.p.m.)$ ^b [integral, structure, ^c coupling constant, ^d J/Hz] ^c
-NHEt	53.93	0.89 [3H, d, 8]; 1.19 [6H, d, 18); 1.24 [6H, d, 18]; 1.29 [3H, b, 5]; 3.21 [2H, qi, 7];
-NHPr ⁿ	55.71	0.97 [3H, d, 8]; 1.21 [12H, d, 17]; 2.98 [2H, q, 7]; CH ₂ CH ₃ of n-propyl not clearly distinguished
-NHBu ⁿ	56.05	0.90 [3H, d, 7]; 1.18 [6H, d, 17]; 1.24 [6H, d, 17]; 2.98 [2H, q, 7]; $CH_2CH_2CH_3$ of n-butyl not clearly
		distinguished
-Me ₂	53.42	0.89 [3H, m, -]; 1.50 [6H, d, 17]; 1.58 [6H, d, 17]; 2.63 [3H, d, 11]; 2.71 [3H, d, 11]; see text
-NEt ₂	56.23	0·90 [3H, d, 7]; 1·17 [6H, t, 7]; 1·20 [6H, d, 18]; 1·25 [6H, d, 18]; 3·08 [4H, t, 7];
$-NBu_2^n$	56.33	0.86 [3H, d, 7]; 1.25 [12H, d, 18]; 2.95 [4H, q, 8];
⁻ NBu ⁱ ₂	55.77	0.80–2.00 region too complex for identification; 2.80 [4H, q, 8]
$-\mathrm{NH}(\mathrm{CH}_2)_3\mathrm{NMe}_2$	54.85	0.86 [3H, d, 8]; 1.17 [6H, d, 18]; 1.22 [6H, d, 18]; 1.75 [2H, q, 6]; 2.27 [6H, s]; 2.46 [2H, q, 6];
		3·12 [2H, m, –]
$-HN(CH_2)_2NEt_2$	54.83	0.86 [3H, d, 7]; 1.04 [6H, s]; 3.16 [2H, qi, 6];
-NH(CH ₂) ₃ NBu ⁿ ₂	54.27	1·18 [6H, d, 18]; 1·23 [6H, d, 17]; 3·14 [2H, qi, 6];
-NH(CH ₂) ₂ NH-	57.33	0.84 [3H, d, 7]; 1.23 [12H, d, 18]; 3.16 [4H, m, -];
-NC ₅ H ₁₀	57.56	0·87 [3H, d, 7]; 1·23 [6H, d, 17]; 1·27 [6H, d, 17]; 1·58 [6H, m, -]; 3·06 [4H, q, 4]
-NHPh	51.86	0·92 [3H, m, –]; 1·30 [6H, d, 18]; 1·36 [6H, d, 18]; 7·15 [5H, m, –];
-NHCH ₂ Ph	56.33	0·90 [3H, m, -]; 1·18 [6H, d, 18]; 1·28 [6H, d, 18]; 4·22 [2H, t, 7]; 7·38 [5H, s]

• 85% H₃PO₄. • TMS. • s, Singlet; d, doublet; t, triplet; q, quartet; qi, quintet; m, multiplet. • To phosphorus. • Some spectra are too complex for all their peaks to be assigned or reported.

which are the methyl protons of the nitrogen; J(PNCH)10.8 Hz. This distinguishing of the two nitrogen methyl groups is strong evidence for restricted rotation about the P-N bond.

A similar situation can occur for the C–N bond in amides. There is hindered rotation about this bond in NN-dimethylformamide ¹² and at 35 °C two distinct peaks are observed for the two methyls.

Freshly prepared $C_8H_{16}P(O)NMe_2$, kept free from

If donor $p\pi$ - $d\pi$ N-P bonding, using the non-bonding pair of electrons of the nitrogen, were to supplement the *sigma* bond this could well be responsible for restricted rotation as observed. Protonation of the nitrogen lone pair would destroy the π -system and rotation about the P-N bond would then cause equivalence of the two methyl groups. Other P-N systems have recently been described in which restricted rotation about this ¹² F. A. Bovey, *Chem. Eng. News*, 1965, **43**, 98.

1578

TABLE 3

The i.r. spectra (400–4000 cm⁻¹) of the amino-derivatives of 2,2,3,4,4-pentamethylphosphetan 1-oxide, $C_8H_{18}P(O)X$

							NH(CH ₂) ₃ -1	NH(CH ₂) ₃ -	NH(CH ₂) ₃ -	NH(CH ₂) ₂ -				
NHEt	NHPrn	NHBun	NMe ₂ 395sh	NEt ₃	NBun ₃	NBui ₂	NMe ₂	NEt ₂	NBun,	NH	NC5H10	NHPh	NHCH ₃ P	h
3 98w	398w	398w	403w	400vw	408w	400w	395w	398w	395w 410w	395w	400w	395w 410w	4 00 w	Phosphetan
428w	425w	4 30w	415w 430w 440w	418w 430m	419w 430s	418m 432s	418w 428sh	418sh 425w	418sh 432w	424m 434m	420w 432m	430m	438m	$\delta(\mathrm{NC}_2)$
	455vw	450vw 472w			470m	47 0m	450vw 470w	46 0w	460w 470w		445m 490w	473m	472vw	
518m	515m	518m	504m 518s	505w 524s	498w 505w 523s	500sh 520s	505sh 518s	505sh 520ms	500w 518m	508m	500m 515m	498sh 503m	508m	phosphetan
522 sh	525sh	$525 \mathrm{sh}$	530s	530sh	530 sh	525s	533m	530sh	530sh	528m	525s	520s	524m].
556w	550w	557w	557w 600w	555w	555m 589w	560m 598m	555w	555w	55 3 w	555w	536m 550sh	555vw	555vw	phosphetan
630w 658m	625w 658m	630w 665m	630w 660s	650m 660s	627m 670s	625m 670s	622w,sh 658s 687m	630sh 659s 692m	625sh 660s 690m	630m 655m	615sh 603m 665s	630m 670s 693s	629m 659m 694s	phosphetan phosphetan
		732m	724vs	702s				726s	710w 727s		708s 720s	725m	7975	
750w 776s	745m 760sh	750sh 760sh 785w	756s 800vw	749m 760sh 775m 790ms	750s	755ms	752s	750m 760sh	750m 760sh	748w 769m 793w	755s	750vs	750sh	phosphetan δ(N−H)? see text
830m	835m			100110			828vs	830w	825w,br		815w 832ms	820w	830sh	δ(N-H)?
		855w	850w				843w			845m	85.4mc		845m	See text
927s	880w 895m 925m	890m 925s	890w 930sh	890vw 910m 930vs	895s 932vs.br	900s 930s.br	889m,br 910vw 928s	890m,br 910sh 925m	895s 910sh 927s	888w 915w 925s	890w 985sb	890sh 910vs 925sh	895w 910sh 923m	phosphetan
947s	945w	950m	952vs	940sh	957vs	950m	940m 950m	940w,br	940sh	940m	954vs 955sh	941m	940w	amine
987m	987sh	960sh 980m	979s 985sb	985w			965sh 988m 1005sh	983w	984w	968sh 982m	976w	993m	980w,br	$\int_{\nu(C^{-}C)}^{\text{framework}}$
1015w	10 10w 1025w	1018w 1035m	1018m	1015s	1020m	1017m	1018m 1038s	1015w 1028w	1015w 1026sh	1015w	1020w 1035w	1015sh 1028m	1020m	$\rho(CH_{*})$
1043w	1047m	1050w	1050m	1055w	1048m	1045m	1043sh 1060s	1045m	10 46 m	1044w	1055vs	1048m	1043w	J., "
10685	1090m 1090m 1100m	1070m 1095m	1070m 1103w	1069w 1093w	1075m	1075m 1103w	1072m 1098vs 1105sh	1070sh 1095vs	1080sh 1100vs	1070w 1090m	1075w 1096m	1070m	1068m 1095m 1105m	$\left. \right\}_{\nu \in CN}$
1115s 1159s	1125s 1155vs	1125m 1160vs	1148sh 1156vs	1158s	1150sh 1160s	1152sh	1150vs	1120m 1150sh 1160vs	1150sh 1160s	1145s 1160s	1118w 1140m 1158s	1158s	1150s	$\int_{\nu(PN)}^{bco \ text}$
1195eb	11780	1180cb	11805	1175sn 1190sh 1205w	1910.00	1170s	1182S	1182vs	1180s	1900-ch	1104uc	1185s	1177m	`
1230s	11765 1236s	1205sh 1236s	1236s	1200VS	1210VS 1225sh	1210vs	1132550 1235m	1283s	1234s	1200ssii 1235s	1210sh 1235s	12105 1230s	1236s	v(P=0)
		1255sh	1263m	1282w	1255vs 1265vs	1255vs 1265vs	1265m	1260m	1255m		1255w 1273m	1260s		$\nu_{as}(CPC)$ $\nu(NC_2)$
1278m	1290vw	1295yw	1286m					1288m	1295w	1292m		1278s	1295w	v(CN) of PhNH
1340w	1310vw 1330vw			1335w			1302m	100011		1310w 1330w	1312m 1332m		1355m	J
1365m 1375m	1360sh 1375m	1367m 1378m	1362m 1375m	1360sh 1372s	1365m 1377m	1362m 1379m	1367m 1380m	1360m 1375m	1358sh 1375s	1362m 1374m	1355sh 1370s	1365m 1375m	1367m 1377m	$\delta_{s}(CH_{s})$
1385m	1385m	1390m	1385m	1382sh	1387m	1385m	1388nı	1382sh	1384sh	1382m	1382sh	1387ms 1395m	1389m	ν(C-C) phenyl
1450sh 1460s	1450sh 1460s	1450sh 1465s	1455vs,br	1450sh 1457s 1470sh	1450s 1460s	1450sh 1460s 1470sh	1455bs,br	1460vs,br	1460vs,br	1425m 1445sh 1455vs 1468sh	14555h 14455h 14605 14655h	1450sh 1460s	1450vs 1460sh	$\delta_{as}(CH_s)$
				111031		1585m				1400311	140030	1491s 1598vs	1490m	,
			2480w			2420w	1640w,br			1620w		1620m		
		2670.w	2590w			2560w				9860u				
		2710w	2000m			2740m	2720m 2760s	2710m 2790m	2720w 2790m	2715vw				
2850s	2860s	2860s	2860sh	2860s 2895sh	2855s 2890sh	2860s 2890sh	2810s 2860s	2855s	2860vs	2852s 2880sh	2850s	2855s	2860s	way and w-
2920sh 2960vs	2920sh 2950vs	2930sh 2950vs	2920vs 2970vs	2920s 2970vs	2920sh 2960vs	2920sh 2960vs	2920sh 2950vs	2920sh 2980vs	2920sh 2950vs	2935vs 2960vs	2930vs 2960vs	2920sh 2960vs 3030w 3070w	2920sh 2960vs 3020w 3060w	$ \left. \right\}^{\nu_{3s} \text{ and } \nu_{3}} (CH_{3}) $
3195vs,br	3180vs,br	3200vs,br					3190s,br	3190s,br	3195s,br	3170s 3220sh 3250vs		3200m,br	3080w 3190vs,br	ν(N−H)

† Piperidino.

bond is reported and the presence of a $p\pi - d\pi$ system inferred.13

Infrared Spectroscopy.-It is generally recognized that absorption frequencies of the P-C and P-N bonds do not fall within well defined regions of the infrared spectrum.¹⁴⁻¹⁶ Nevertheless a ring such as the phosphetan ring might be expected to have certain characteristic vibrations associated with the C₃P ring or the CPC fragment. So far no detailed i.r. spectra have been reported or discussed. The study of a series of very similar compounds such as the amides should be capable of bringing such characteristic modes to light as well as

¹H N.m.r. spectra of Me₂N protons of $C_8H_{16}P(O)NMe_2$ (a) initially; (b) on standing in contact with air $[\delta/p.p.m. Me_4Si]$. Both sets of peaks represent 6H relative to the remainder of the spectrum in each case, i.e. the total intensity of the (a) quartet is equal to that of the doublet of (b) on a comparative basis

offering the chance of assigning the elusive P-N stretching vibration. The spectra of Table 3 can be discussed most readily in terms of the following groups.

The Methyl Vibrations.-These, principally of the phosphetan ring, occur in the expected regions: 2850-2970, v_s and v_{as} (CH₃); 1450–1470, δ_{as} (CH₃); 1360– 1390 δ_s (CH₃); and 1015–1075 cm⁻¹ ρ (CH₃). The rocking and symmetrical bending vibrations often occur as a triplet of peaks of similar intensity.

The N-H Vibrations.—The stretching modes are found as strong, broad bands at 3180-3200 cm⁻¹ in the nine derivatives with this group. The broadness indicates H-bonding. The NN'-diaminoethane compound has two strong bands in this region, presumably due to inand out-of-phase combinations.

The N-H bending vibrations are expected 15 at 1400 \pm 30 and ca. 750 cm⁻¹. Like Chittenden and Thomas¹⁶

13 A. Hung and J. W. Gilje, J.C.S. Chem. Comm., 1972, 662 and references therein.

14 F. F. Bentley, D. L. Smithson, and A. L. Rozek, 'Infrared Spectra and Characteristic Frequencies 700-300 cm⁻¹,' Interscience, New York, 1968.

¹⁵ R. A. Nyquist, Spectrochim. Acta, 1963, 19, 713.

16 R. A. Chittenden and L. C. Thomas, Spectrochim. Acta, 1963, 22, 1449.

we have been unable to identify the higher band but the 750 cm⁻¹ band may be seen as a shoulder to a phosphetan framework mode with this frequency. However, not all the nine show this band and its presence in the diethylamino-derivative also weakens the assignment. An alternative choice of bands is at 830 cm⁻¹ but again conclusive proof is lacking.

The Phosphoryl Vibration.—The ν (P=O) mode has been extensively studied since it was shown possible to calculate its position in the spectrum by the use of empirical formulae (1) such as that of Thomas and Chittenden.¹⁷ With $\pi = 4.2$ for the phosphetan ring v(P=O)

$$\nu(P=O) = 930 + 40 \Sigma \pi \,\mathrm{cm}^{-1} \tag{1}$$

are predicted at 1178 and 1186 cm⁻¹ for primary and secondary amides. Inspection of Table 3 shows a range of intense vibrations in the region 1178-1210 cm⁻¹ which are consequently assigned to v(P=O).

In some spectra the phosphoryl band occurs as a shoulder to another intense series of peaks at 1150-1160 cm⁻¹. There is evidence of other shoulders which may be due to the 'phosphoryl doublet' effect variously attributed to conformers 18, 19 or Fermi resonances.20 It seems likely that if the 1150-1160 cm⁻¹ peaks are due to v(PN), as will be argued, then extensive coupling between these two vibrations is occurring.

The Carbon-Nitrogen Vibrations.-This mode is expected ²¹ in the range 1020-1220 cm⁻¹ which can be narrowed to 1076-1144 cm⁻¹ for phosphoryl amides.¹⁶ For phosphoryl anilide derivatives a band at 1266-1316 is assigned to ν (C-N)²¹ and a peak at 1278 cm⁻¹ in $C_8H_{16}P(O)NHPh$ is so allotted. For alkyl amides v(C-N) is not easily assigned but inspection of all the spectra show bands in the region 1076-1144 cm⁻¹. The stretching and bending vibrations of NC₂ should be present in eight of the derivatives and are recognized as falling at 1263—1282 and 315—420 cm⁻¹ respectively.

Phosphetan Framework Vibrations.—In the main these should be unaffected by changes at nitrogen and should therefore fall within a narrow range in all these derivatives. If any of the phosphetan framework modes are sensitive to changes at nitrogen then presumably these involve the phosphorus atom. Furthermore they should also be observed in other phosphetan derivatives of the type $C_8H_{16}P(O)X$ and in this respect derivatives where X is -OR (R = Me, Et, Pr, etc.), -Cl and -OH have been consulted.22

Using these criteria the following bands are chosen as originating in vibrations of the phosphetan framework: 1230-1236, 925-935, 745-756, 655-670, 625-630, 550-560, 515-530 (doublet with shoulders), and 398-408 cm⁻¹. Of these the first is found at 1248-1253 cm⁻¹ in the alkoxides, 1257 and 1242 cm⁻¹ respectively in

17 L. C. Thomas and R. A. Chittenden, Spectrochim. Acta, 1964,

20, 467. ¹⁸ F. S. Mortimer, Spectrochim. Acta, 1957, 9, 270.

J. V. Bell, J. Heisler, H. Tannenbaum, and J. Goldenson, J. Amer. Chem. Soc., 1954, 76, 5185.
L. J. Bellamy and L. Beecher, J. Chem. Soc., 1952, 1701.

- ²¹ N. B. Colthup, J. Opt. Soc. Amer., 1950, 40, 397.
- ²² Unpublished spectra of the authors.

the chloride and acid phosphetan derivatives. This band is the most sensitive to changes at phosphorus and

TABLE 4

Mass spectrum of 1-piperidino-2,2,3,4,4-pentamethyl phosphetan 1-oxide

	P. P.	etter i onnae
mlo	0/ ø	Fragment
11110	/0	Tagment
245	2	M + 2
244	8	M + 1
243	16	$M_1 C_8 H_{16} P(O) N C_5 H_{10}^+$
242	2	M-1
231	1	F + 2
- 230	î	$F \perp 1$
200	9	F C H P(0)NC H +
- 440	2	E_{1}^{1} , $C_{8}^{11}_{16}^{11}$ (0) $C_{4}^{11}_{8}^{11}$
228	ð	$I^{*} = 1$
017		E + 2
217	1	r + z
216	2	F + 1
215	1	$F_{,} C_{8}H_{16}P(O)NC_{3}H_{6}^{+}$
214	1	F-1
203	1	F+2
202	1	F + 1
201	2	$F_{\rm c}$ C ₂ H ₁ , P(O)NC ₂ H ₁ +
200	2	F = 1
200	2	1 1
190	1	E + 9
100	1	r + 2
188	2	F + 1
187	1	$F, C_8H_{16}P(O)NCH_2^+$
186	1	F - 1
	_	
175	7	F+2
174	3	F + 1
173	6	$F_{\rm e} C_{\rm s} H_{\rm he} P(O) N^+$
172	2	$\vec{F} - 1$
	-	
160	2	$F \rightarrow 1$
150	Ā	FCH POt
150	1	E_{1}
108	1	$I^{*} = 1$
144	0	E + 1
1 1 1 1	2	$\Gamma + 1$ E C H D+
143	Z	$F, C_8H_{16}P^+$
142	3	$I^{*} - 1$
199	10	E + 9
100	10	
132	79	r + 1
131	8	$F_{1} P(O) NC_{5} H_{10}^{+}$
130	56	F = 1
129	1	F-2
128	16	F-3
127	10	F-4
126	71	F - 5
	•-	-
118	3	
117	ĩ	E + 2
116	ů	$\tilde{F} \perp \tilde{1}$
118	0 56	
110	00 9	E_{1}^{T} , E_{10}^{T}
114	z	r - 1
113	9	$r - 2 \text{ or } C_8 H_{17}^+$
112	100	$C_{8}H_{16}^{+}$
111	2	$C_{3}H_{15}^{+}$
- 98	10	F + 1
97	100	$F, C_7 H_{13}^+$
		· 1 19
85	4	F + 1
84	34	$F_{\rm NC_sH_{10}^+}$
	1	
• ()†	pase peak. " $P = 1$	tragment. $+z = zH$ and/or

and/or H + ¹³C, etc.

is consequently assigned to v_{a_3} (CPC). The corresponding $v_{s}(CPC)$ cannot with certainty be identified by this method

²³ I. N. Zhumurova, A. A. Kisilenko, and A. A. Kirsanov, J. Gen. Chem. U.S.S.R., 1962, 32, 2544.

since all the remaining phosphetan peaks are remarkably unaffected by changes at phosphorus.

The Phosphorus-Nitrogen Vibration.-There are two claimants to this, a series of bands at 940-957 and another at 1150—1160 cm⁻¹. The former varies greatly in intensity from very weak to very strong and is sometimes a shoulder on the phosphetan band at ca. 930 cm⁻¹. This ' series ' of bands is more likely to be amide framework modes. The latter series is consistently strong to very strong in all derivatives and yet it lies beyond the upper limit for v(PN) of 873-1053 cm⁻¹ found by Chittenden and Thomas.¹⁶ Why is it so high? A likely explanation is again $p\pi - d\pi$ contributions to the N-P bonding.

The location of v(P=N) in those compounds with this bond, e.g. Ph₃P=NR, is put at 1330-1370 cm⁻¹.^{16,23} In the cyclic phosphonitriles, in which a delocalized $p\pi - d\pi$ bonding is present (as shown by equality of ring bond lengths) the v(PN) vibration is at 1175–1438 cm⁻¹, its position dependent upon ring size and the electronegativity of the groups attached to the P atoms.^{24,25} On a comparable basis with Ph₃P=NR the cyclic phenyl phosphonitriles have v(PN) at 1190 $(Ph_2PN)_3$ and 1213 cm⁻¹ (Ph₂PN)₄.

For single P-N bonds there is no correlatable range of values of v(P-N) suggesting that some factor other than electronegative consideration is operative. The cause may well lie with $p\pi$ - $d\pi$ contributions, the larger these are the stronger the bond, the higher the wavenumber. A range of 1150-1160 cm⁻¹ as assigned to the P-N bond in the phosphetan amides suggests a significant π contribution, which in turn would lead to a higher rotational energy barrier.

Mass Spectroscopy.—A mass spectrum was taken for every derivative and in all cases the molecular ion was observed (Table 1). Most spectra were extremely complex especially below m/e 112 (C₈H₁₆⁺). In most spectra no single peak had a relative intensity of more than 5%. The complexity arises partly as a result of a significant percentage of molecules incorporating a ¹³C atom.

In Table 4 the spectrum of the piperidino-derivative is analysed, this compound giving the least complicated spectrum. [Even so below 112 there is a peak for every mass unit although in the range 55-111 only the 4 reported in Table 4 are prominent.] In this, as in other spectra, the fragmentation pattern cannot be accounted for by loss of methyl groups from the phosphetan ring. In the piperidino-derivative loss of such CH₃ would have produced m/e values at 228, 213, 198, 183, and 168. Instead the spectrum can be accounted for by loss of CH_2 units from the amine.

The helpful advice of J. S. Elliott, B. T. Davis, M. F. Crook, and G. J. J. Jayne and the grant from the Burmah Oil Trading Co. Ltd. and the S.R.C. are gratefully acknowledged.

[2/2798 Received, 12th December, 1972]

²⁴ A. C. Chapman, N. L. Paddock, D. H. Paine, H. T. Searle, and D. R. Smith, J. Chem. Soc., 1960, 3608. ²⁵ J. Emsley, J. Chem. Soc. (A), 1970, 109.