Crystal Structure of the $\boldsymbol{\beta}$-Form of Tetra-arsenic Trisulphide

By Harold J. Whitfield, Division of Chemical Physics, C.S.I.R.O., P.O. Box 160, Clayton, Victoria, Australia 3168
The crystal structure of synthetic β-dimorphite, $\mathrm{As}_{4} \mathrm{~S}_{3}$, has been determined by a three-dimensional single-crystal X-ray study from photographic data. Crystals are orthorhombic, space group Pnma, with $Z=4$ in a unit cell of dimensions $a=11.21 \pm 0.02, b=9.90 \pm 0.02$, and $c=6.58 \pm 0.01 \AA$. The structure is built of $\mathrm{As}_{4} \mathrm{~S}_{3}$ molecules similar to those observed for α-dimorphite. The structure was solved by Patterson and Fourier methods and refined by least squares to $R 0.09$ for 438 observed reflections.

SCACCHI ${ }^{1}$ in 1849 found that naturally occurring $\mathrm{As}_{4} \mathrm{~S}_{3}$ exists in two forms which he named α - and β-dimorphite. Dimorphite may be synthesized by direct combination of arsenic and sulphur mixed in stoicheiometric proportions, and single crystals of the two forms grown by sublimation in an evacuated ampoule. The β-form is stable at room temperature but is transformed into the
α-form on heating above $130^{\circ} \mathrm{C}$. The structure of β-dimorphite, determined by a single-crystal X-ray study, is presented here, that of α-dimorphite having been reported earlier. ${ }^{2}$

1 ' Dana's System of Mineralogy,' vol. 1, Wiley, New York, 1944, 7th edn., p. 197.
${ }^{2}$ H. J. Whitfield, J. Chem. Soc. (A), 1970, 1800.

Table I

	Positional	rmal para	,* with st	iations in p	
	As(1)	$\mathrm{As}(2)$	As(3)	$\mathrm{S}(1)$	S(2)
x	$0 \cdot 6850(6)$	$0 \cdot 4145(6)$	0.5705(4)	0.7020(9)	$0 \cdot 4868(13)$
y	$0 \cdot 2500$	$0 \cdot 2500$	$0 \cdot 1247(3)$	$0 \cdot 0796$ (8)	$0 \cdot 2500$
z	$0 \cdot 1741(6)$	-0.1045(7)	$-0.2880(4)$	$-0.0456(11)$	$0 \cdot 2097(16)$
$\beta_{x x}$	$0 \cdot 0036(8)$	0.0023 (7)	0.0061 (5)	$0 \cdot 0042$ (12)	$0 \cdot 0010(18)$
$\beta_{y y}$	$0.0085(5)$	0.0070 (5)	$0 \cdot 0038(3)$	$0 \cdot 0043$ (6)	$0 \cdot 0078(11)$
$\beta_{z z}$	$0 \cdot 0065(9)$	$0 \cdot 0117(10)$	0.0094 (6)	$0 \cdot 0127(16)$	$0 \cdot 0067(20)$
$\beta_{x y}$	$0 \cdot 0000$	0.0000	$0 \cdot 0001(3)$	$-0.0031(7)$	0.0000
$\beta_{y z}$	$0 \cdot 0000$	0.0000	$-0.0021(5)$	$-0.0006(9)$	$0 \cdot 0000$
$\beta_{x z}$	$-0.0007(6)$	-0.0016(6)	$-0.0008(3)$	$-0.0001(10)$	-0.0006(14)

* The temperature factor is given by: exp $-\left(\beta_{x x} h^{2}+\beta_{y y} k^{2}+\beta_{z z} l^{2}+2 \beta_{x y} h k+2 \beta_{x z} h l+2 \beta_{y z} k l\right)$.

RESULTS AND DISCUSSION

The positional and thermal parameters of the asymmetric unit are given in Table 1, interatomic distances and bond angles in Table 2, and observed and calculated

Table 2
Bond distances and angles with standard deviations in parentheses
(a) Distances (\AA)

$\mathrm{As}(1)-\mathrm{S}(1) \quad 2$	$2 \cdot 230$ (8)	$\mathrm{As}(2)-\mathrm{S}(2) \quad 2 \cdot 2$	2.221(12)
$\mathrm{As}(1)-\mathrm{S}(2) \quad 2$	2-234(16)	$\mathrm{As}(2)-\mathrm{As}(3) \quad 2.4$	$2 \cdot 460$ (7)
$\mathrm{As}(3)-\mathrm{S}(1) \quad 2$	$2 \cdot 218$ (10)	$\mathrm{As}(3)-\mathrm{As}\left(3^{\prime}\right) \quad 2.4$	$\mathbf{2 \cdot 4 8 0}(7)$
(b) Angles (${ }^{\circ}$)			
$\mathrm{S}(1)-\mathrm{As}(1)-\mathrm{S}(2)$	$98 \cdot 8(0 \cdot 4)$	$\mathrm{As}(2)-\mathrm{As}(3)-\mathrm{As}\left(3^{\prime}\right)$	59.7(0.1)
$\mathrm{S}(1)-\mathrm{As}(1)-\mathrm{S}\left(1^{\prime}\right)$	$98 \cdot 3(0 \cdot 5)$	$\mathrm{As}(3)-\mathrm{As}(2)-\mathrm{As}\left(3^{\prime}\right)$	$60.5(0.2)$
$\mathrm{S}(1)-\mathrm{As}(3)-\mathrm{As}(2)$	$102 \cdot 8(0 \cdot 3)$	$\mathrm{As}(1)-\mathrm{S}(1)-\mathrm{As}(3)$	$105.0(0 \cdot 4)$
$\mathrm{S}(1)-\mathrm{As}(3)-\mathrm{As}\left(3^{\prime}\right)$) $101 \cdot 6(0 \cdot 2)$	$\mathrm{As}(1)-\mathrm{S}(2)-\mathrm{As}(2)$	$105 \cdot 4(0 \cdot 5)$
$\mathrm{S}(2)-\mathrm{As}(2)-\mathrm{As}(3)$	101.4(0.4)		

structure factors are listed in Supplementary Publication No. SUP 20718 (3 pp.). \dagger

A perspective view of the molecule
The crystals consist of $\mathrm{As}_{4} \mathrm{~S}_{3}$ molecules (Figure), of molecular symmetry C_{3}, as previously found for the $\alpha-$ form of dimorphite. The bond distances and angles in

[^0]the two forms are not significantly different. The asymmetric unit consists of one half of an $\mathrm{As}_{4} \mathrm{~S}_{3}$ molecule, one of the mirror planes of the molecule being a mirror plane of the crystal. Atoms $\mathrm{As}(1), \mathrm{As}(2)$, and $\mathrm{S}(2)$ lie on the mirror plane in a special four-fold set of positions (c) of the space group Pnma, while atoms $\mathrm{As}(3)$ and $\mathrm{S}(1)$ are in general eight-fold positions $(d) .{ }^{3}$
The shortest intermolecular As \cdots As and As \cdots S distances in $\beta-\mathrm{As}_{4} \mathrm{~S}_{3}$ are $3 \cdot 83$ and $3 \cdot 47 \AA$ compared with values of 3.60 and $3 \cdot 47 \AA$ for the α-form. None of these indicates strongly directional intermolecular bonding as the van der Waals radii for arsenic and sulphur atoms are 2.0 and $1.85 \AA$. Indeed this conclusion is supported by the small differences observed ${ }^{4}$ between the far-i.r. and n.q.r. spectra of the two forms.

EXPERIMENTAL

Crystal Data.-As $\mathrm{A}_{4}, M=395 \cdot 85$, Orthorhombic, $a=$ $11.21 \pm 0.02, \quad b=9.90 \pm 0.02, c=6.58 \pm 0.01 \AA, \quad U=$ $730 \cdot 2 \AA^{3}, D_{\mathrm{m}}=3.55 \pm 0.05, Z=4, D_{\mathrm{c}}=3.57, F(000)=$ 720. $\mathrm{Cu}-K_{\alpha}$ radiation, $\lambda=1.5418 \AA ; \mu\left(\mathrm{Cu}-K_{\alpha}\right)=306$ cm^{-1}. Space group Pnma from systematic absences: $0 k l$ for $k+l$ odd, $h k 0$ for h odd. \ddagger

From a crystal of dimensions $0.1 \times 0.1 \times 0.1 \mathrm{~mm}$ multiple-film equi-inclination Weissenberg data were obtained with Ni -filtered $\mathrm{Cu}-K_{\alpha}$ radiation for layers $0-7 k l$ and $h 0-3 l$. Intensities estimated visually by comparison with a calibrated series of spots were corrected for Lorentz, polarization, and spot extension and scaled by use of reflections common to different layers.

The approximate positions of the arsenic atoms in the unit cell were inferred from a three-dimensional Patterson function. The positions of the sulphur atoms were obtained by a Fourier synthesis using the phases calculated for the trial structure of arsenic atoms. Least-squares refinement of the complete structure using isotropic temperature factors gave $R 0 \cdot 13$. Two further cycles of refinement with anisotropic temperature factors gave $R 0.09$ for the 438 observed $0-7 k l$ reflections.
[2/2813 Received, 14th, December, 1972]
3 ' International Tables for X-Ray Crystallography,' vol. II, Kynoch Press, Birmingham, 1959.
${ }^{4}$ T. J. Bastow, D. C. Campbell, and H. J. Whitfield, Austral. J. Chem., 1972, 25, 2291.
${ }^{5}$ E. R. Howells, D. C. Phillips, and D. Rogers, Acta Cryst., 1950, 3, 210.

[^0]: \dagger See Notice to Authors No. 7 in J.C.S. Dalton, 1972, Index issue. (Items less than 10 pp . are sent as full-sized copies.)
 \ddagger These absences are compatible with space group Pnma or $P n 2_{1} a$, but a statistical test ${ }^{5}$ indicated that the crystal is centrosymmetric and thus space group Pnma is indicated; this was confirmed by the subsequent satisfactory refinement of the structure.

