Crystal Structure of Tetra-arsenic Tetraselenide

By Timothy J. Bastow and Harold J. Whitfield, Divison of Chemical Physics, C.S.I.R.O., P.O. Box 160, Clayton, Victoria, Australia 3168

The title compound has been shown by X-ray single-crystal study to be isostructural with α -realgar, As₄S₄. Leastsquares refinement of the structure gave R 0.11 for 1008 observed photographic reflections. The far-i.r. spectrum consists of As-Se stretching (205-253) and bending bands (93-135 cm⁻¹). Mean distances: As-As 2 565 and As-Se 2.39 Å. Crystals are monoclinic, space group $P2_1/n$, Z = 4, $a = 9.63 \pm 0.02$, $b = 13.80 \pm 0.04$. $c = 6.73 \pm 0.02$ Å, $\beta = 107.8 \pm 0.5^{\circ}$.

THERE exists some confusion in the literature concerning the n.q.r. spectrum of diarsenic triselenide, As₂Se₃, and tetra-arsenic tetraselenide, As_4Se_4 . As_2Se_3 forms a stable semiconducting glass whose optical and electronic properties have been the subject of much study. The glass begins to soften at 180 °C, crystallization occurs at above 280 °C, and melting of the crystals at 380 °C.¹ $\mathrm{As}_2\mathrm{Se}_3$ crystals are isomorphous with $\mathrm{As}_2\mathrm{S}_3,^2$ having a layer structure.

The far-i.r. spectrum of As₂Se₃ has been previously reported.^{3,4} Pen'kov and Safin⁵ observe four n.q.r. resonances (at 79.80, 81.63, 82.02, and 82.38 MHz) for crystals considered to be As₂Se₃, whereas only two resonances are to be expected for the two arsenic atoms in the asymmetric unit of the crystal structure. Kravchenko et al.⁶ observed only two n.q.r. resonances (at 56.07 and 60.25 MHz) for As₂Se₃ crystals at 77 K but found four resonances for As₄Se₄ at 77 K with frequencies identical with those reported by Pen'kov and Safin for As₂Se₃. We have synthesized As₂Se₃ and As₄Se₄ crystals and characterized them by single-crystal X-ray and by far-i.r. spectral study and confirm the n.q.r. results of Kravchenko. As the crystal data and spectra of As_4Se_4 have not previously been recorded we report them here.

EXPERIMENTAL

Sample Preparation .- As₄Se₄ was prepared by allowing arsenic and selenium powders in stoicheiometric proportions to react in an evacuated ampoule at 500 °C, and then annealing for 48 h at 255 °C.

Crystal Data.—As₄Se₄, M = 615.52, Monoclinic, a = 9.63 ± 0.02 , $b = 13.80 \pm 0.04$, $c = 6.73 \pm 0.02$ Å, $\beta =$ $107.8 \pm 0.5^{\circ}$, U = 851.6 Å³, $D_{\rm m} = 4.75 \pm 0.05$ g cm⁻³, Z = 4, $D_{\rm c} = 4.80$ gm cm⁻³, space group $P2_1/n$. Cu- K_{α} radiation, $\lambda = 1.5418$ Å; $\mu(Cu-K_{\alpha}) = 421$ cm⁻¹.

A needle-shaped crystal with dimensions $0.05 \times 0.05 \times$ 0.1 mm was mounted about its longest dimension (parallel to the c axis) and multiple-film equi-inclination Weissenberg data were obtained by use of Ni-filtered Cu- K_{α} radiation for the layers hk0-4. Intensities were estimated visually by comparison with a calibrated series of spots and were corrected for Lorentz, polarization, and spot extension, but

For details see Notice to Authors No. 7 in J.C.S. Dalton, 1972, Index issue. (Items less than 10 pp. are sent as full-sized copies.)

¹ M. Kitao, N. Asakura, S. Yamada, Japan J. Appl. Phys., 1968, **8**, 499.

- A. Vaipolin, Soviet Phys. Cryst., 1968, 10, 509.
 A. J. Whitfield, Austral. J. Chem., 1971, 24, 697.
 I. G. Austin and E. S. Garbett, Phil. Mag., 1971, 23, 17.

not for absorption or extinction. From inspection of Weissenberg photographs it was evident that As₄Se₄ is isostructural with realgar As_4S_4 , whose crystal structure is known.7 Structure factors for As₄Se₄ were calculated by use of the atomic co-ordinates reported for As₄S₄. Leastsquares refinement of these co-ordinates using isotropic temperature factors gave R 0.107 for 1008 observed reflections of As₄Se₄. Observed and calculated structure factors are listed in Supplementary Publication No. SUP 20719 (3 pp., 1 microfiche).

The far-i.r. spectrum in the range 80-400 cm⁻¹ of a finely powdered sample of As₄Se₄ dispersed in yellow petroleum jelly was recorded as described previously.³

The n.q.r. spectra of As_4Se_4 and of a sample of As_2Se_3 characterized by X-ray powder diffraction and far-i.r. spectrum were measured in an apparatus described previously.8

RESULTS AND DISCUSSION

The positional and thermal parameters of the atoms of the asymmetric unit of the unit cell are listed in Table 1, and the interatomic distances and bond angles in Table 2. A view of the molecule is shown in the Figure.

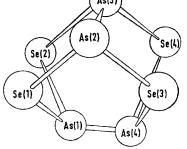
TABLE 1 Positional and thermal parameters with standard deviations in parentheses

detradions in parentheses							
Atom	x/a	y/b	z/c	$B/{ m \AA^2}$			
As(1)	0.1141(4)	0.0182(3)	-0.2452(8)	1.34(8)			
As(2)	0.4271(4)	-0.1405(3)	-0.1367(8)	1.13(7)			
As(3)	0.3256(4)	-0.1312(3)	0.1752(8)	1.28(8)			
As(4)	0.0363(4)	-0.1603(3)	-0.2962(9)	1.37(8)			
Se(1)	0.3485(4)	0.0101(3)	-0.3065(8)	1.33(8)			
Se(2)	0.2132(4)	0.0252(3)	0.1245(8)	$1 \cdot 40(8)$			
Se(3)	0.2414(4)	-0.2323(3)	-0.3729(9)	1.60(8)			
Se(4)	0.1018(5)	-0.2178(3)	0.0526(9)	1.64(8)			

The mean As-As bond distance (2.56_5 Å) in As₄Se₄ is close to the values obtained for α -As₄S₄ (2.59),⁷ β -As₄S₄ (2.60),⁹ As₄S₅ (2.55),⁹ and the As₄S₆²⁻ ion (2.58 Å).¹⁰ The mean value for the As-Se bond (2.39 Å) agrees with the sum of the covalent bond radii of As (1.21) and Se

⁵ I. N. Pen'kov and I. A. Safin, Soviet Phys. Cryst., 1968, 13,

264.
⁶ E. A. Kravchenko, S. A. Dembovskii, A. P. Chernov, and
G. K. Semin, *Phys. Stat. Solidii*, 1969, **31**, K19.
⁷ T. Ito, N. Morimoto, and R. Sadanaga, *Acta Cryst.*, 1952,


- 5, 775. ⁸ T. J. Bastow, I. D. Campbell, and H. J. Whitfield, Austral. J. Chem., 1972, 25, 2291.

⁹ H. J. Whitfield, to be published.
¹⁰ E. J. Porter and G. M. Sheldrick, J. Chem. Soc. (A), 1971, 3130.

TABLE 2

Distances and angles with standard deviations in parentheses

(a) Distances	s (Å)				
As(1)- $As(4)$	$2 \cdot 567(9)$	As(2)-Se(3)	2.365(9)		
As(2) - As(3)	2.575(10)	As(3) - Se(2)	2.392(8)		
As(1) - Se(1)	$2 \cdot 419(8)$	As(3) - Se(4)	2.381(8)		
As(1) - Se(2)	2.379(11)	As(4) - Se(3)	$2 \cdot 404(8)$		
As(2) - Se(1)	2.381(8)	As(4) - Se(4)	2.374(10)		
(b) Angles (° Se(1)-As(1)-Se		As(4)-As(1)-Se(1)	100.5(2)		
Se(1)-As(2)-Se		As(4) - As(1) - Se(2)	100.7(3)		
Se(2) - As(3) - Se		$As(3) \rightarrow As(2) \rightarrow Se(1)$	101.7(3)		
Se(3)-As(4)-Se	(4) 95.0(3)	As(3) - As(2) - Se(3)	100.2(3)		
As(1)-Se(1)-As	(2) 97.7 (3)	As(2) - As(3) - Se(2)	$101 \cdot 3(3)$		
As(1)- $Se(2)$ - As		As(2) - As(3) - Se(4)	$102 \cdot 8(3)$		
As(2)-Se(3)-As		As(1) - As(4) - Se(3)	$101 \cdot 6(2)$		
As(3)- $Se(4)$ - As	(4) $96 \cdot 5(4)$	As(1)-As(4)-Se(4)	$102 \cdot 1(3)$		
(1812)					

Perspective view of the As_4Se_4 molecule

(1.17 Å). Mean values of bond angles are As-Se-As 97.2, As-As-Se 101.5, and Se-As-Se 94.7°.

I.r. absorption frequencies for As_4Se_4 are listed in Table 3, together with the frequencies found for α -realgar, As_4S_4 .

	TABLE 3	
I.r. frequencie	es (cm ⁻¹) for α -As ₄	S_4 and As_4Se_4
$v(As_4S_4)$	$v(As_4Se_4)$	vAs ₄ Se ₄ /vAs ₄ S ₄
168·5s	93s	0.55
$182 \cdot 5 w$	104·5m	0.57
193w	114.5w	0.59
$203 \cdot 5 w$		
210w	129w	0.61
224s	134.5m	0.60
329w	205m	0.62
341vs	220m	0.65
359m	235m	0.65
367m	$241 \cdot 5 vs$	0.66
374 m	$252 \cdot 5 \mathrm{m}$	0.67

The far-i.r. spectrum of As_4Se_4 consists of 10 peaks in the range 93—253 cm⁻¹. The peaks between 205 and 253 cm⁻¹ are assigned to As–Se stretching modes and those between 93 and 135 cm⁻¹ to Se–As–Se bending modes in accord with the assignments of frequencies in arsenic sulphides and arsenic triselenide.^{3,4} Four n.q.r. resonances were observed for As_4Se_4 and two resonances for As_2Se_3 at the frequencies reported by Kravchenko *et al.*⁶

[2/2850 Received, 19th December, 1972]