Crystal and Molecular Structure of Trichlorotris(diethylphenylphosphine)rhodium(III)

By Andrzej C. Skapski * and Francis A. Stephens, Chemical Crystallography Laboratory, Imperial College, London SW7 2AY

Abstract

The structure of the title compound has been determined from three-dimensional X-ray data, by Patterson and Fourier methods. Crystals are monoclinic, with unit-cell dimensions $a=10.558(2), b=13.747$ (3), $c=24 \cdot 581(3) \AA, \beta=112 \cdot 45(3)^{\circ}$, space group $P 2_{1} / c$, and $Z=4$. Least-squares refinement, by use of 3037 independent reflections measured on a diffractometer, has reached $R 0.067$. The complex is monomeric and the metal atom has a somewhat distorted octahedral co-ordination, with two pairs of like ligands mutually trans. Rh-P distances are $2 \cdot 325-2 \cdot 415$, and $\mathrm{Rh}-\mathrm{Cl}, 2 \cdot 362-2 \cdot 429 \mathrm{~A}$. The crystal used in the structure determination was doped with ca. $2 \% \mathrm{Os}^{\text {riI }}$ in order to relate the principal axes of the g-tensor found from e.s.r. studies with the directions of the metal-ligand bonds.

Paramagnetic resonance studies on low-spin d^{5} transition-metal complexes can be used to give information about the relation between the magnetic axes and metal-ligand bond directions. Such a study has been carried out by Hill ${ }^{1}$ on $\mathrm{RhCl}_{3}\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)_{3}$, doped with a small amount of $\mathrm{Os}^{\mathrm{III}}$ which forms an isomorphous complex. We have carried out a single-crystal X-ray structure determination of the same material, one of the aims of which was to relate the magnetic axes predicted by Hill with the structural features of the molecule. We find good concordance between the two sets of direction vectors.

EXPERIMENTAL

Thick red plates of trichlorotris(diethylphenylphosphine)rhodium(III) doped with ca. $2 \% \mathrm{Os}^{\mathrm{III}}$ were crystallised from monoglyme. The unit-cell dimensions of the pure rhodium and osmium complexes have been determined by Raspin ${ }^{2}$ from Weissenberg photographs and these are compared in Table 1 with those measured by us on a diffractometer for crystals used in this structure determination.

Table 1

	$\mathrm{RhCl}_{3}\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)_{3}{ }^{*}$	$\mathrm{RhCl}_{3}\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)_{3} \dagger$	$\mathrm{OsCl}_{3}\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)_{3} \dagger$
a	10.558(2)	10.551(5)	$10.586(5)$
b	13.747(3)	13.777(10)	$13 \cdot 800(10)$
c	24.581(3)	24.628(10)	24.628(10)
β	112.45(3)	112.49(4)	112.65(4)
Space			
	* Doped with ca.	2\% Os ${ }^{111}$. \dagger Fro	m ref. 2.

Other Crystal Data $-\mathrm{C}_{30} \mathrm{H}_{45} \mathrm{P}_{3} \mathrm{Cl}_{3} \mathrm{Rh}(\mathrm{Os}), \quad M=707 \cdot 3$, Monoclinic, $U=3297 \cdot 3 \AA^{3}, D_{\mathrm{m}}=1 \cdot 44 \mathrm{~g} \mathrm{~cm}^{-3}$ (sp. gravity bottle), $Z=4, D_{\mathrm{c}}=1.43 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=1466 . \quad \mathrm{Cu}-K_{\alpha}$ radiation, $\lambda=1.5418 \AA ; \mu\left(\mathrm{Cu}-K_{\alpha}\right)=83.3 \mathrm{~cm}^{-1}$.

Intensity data were collected for a crystal ca. $1.0 \times$ $0.55 \times 0.15 \mathrm{~mm}$, mounted about the a axis on a Siemens off-line automatic four-circle diffractometer. $\mathrm{Cu}-K_{\alpha}$ radiation at a take-off angle of 4.5°, a $\mathrm{Ni} \beta$ filter and a $\mathrm{Na}(\mathrm{Tl}) \mathrm{I}$ scintillation counter were used. The intensities of 3047 independent reflections (to $\theta=48^{\circ}$) were measured by use of the $\theta-2 \theta$ scan technique with a ' five-value ' measuring procedure. ${ }^{3}$ Of these, 70 reflections were judged to be

[^0]unobserved having $I<2.58 \sigma(I)$. The 123 reflection was used as a reference every 20 reflections; the net count of this reflection did not change noticeably over the period of data collection (ca. 6 days). The data were adjusted to a common arbitrary scale using the reference reflection, and Lorentz and polarisation corrections were applied. At a later stage an absorption correction was calculated according to the method of Busing and Levy, ${ }^{4}$ using a $10 \times 10 \times 10$ grid with crystal pathlengths determined by the vector analysis procedure of Coppens et al. ${ }^{5}$

Solution and Refinement of the Structure.-The structure was solved by Patterson and Fourier methods. The solution and refinement of the structure was performed by use of the ' X-Ray ' 63 ' system ${ }^{6}$ and calculations were carried out on the Imperial College IBM 7094 and University of London CDC 6600 and Atlas computers. Once all the carbon atoms had been located block-diagonal least-squares refinement was used and the function minimised was $\Sigma_{w} w$ -$\left(F_{\mathrm{o}}-F_{\mathrm{c}}\right)^{2}$. Atomic scattering factors were taken from ref. 7, those for rhodium being adjusted for the small amount of osmium by interpolation, as were also the real and imaginary parts of the anomalous dispersion correction given in ref. 8.

A three-dimensional Patterson synthesis gave a straightforward solution for the rhodium atom and least-squares refinement gave the standard agreement factor $R 0.516$. The three chlorine and three phosphorus atoms were located and when these were included in the refinement R was reduced to 0.361 . A difference Fourier then showed the positions of all the carbon atoms, and three further cycles gave $R 0 \cdot 217$. When all atoms were allowed to refine anisotropically R was 0.117 .

At this stage an absorption correction was applied as the crystal was quite large and anisotropic in shape. Refinement as previously reduced R to 0.079 . All the hydrogen atoms were now located from a difference Fourier and were added to the subsequent calculations as a fixed-atom contribution with the isotropic temperature factors of the parent carbon atoms. Ten strong reflections thought to be suffering from extinction were removed and the refinement converged to a final value of $R 0.067$.

In the last stages of refinement a weighting scheme of the type suggested by Hughes ${ }^{9}$ was used, where $w=1$ for

[^1]$F<F^{*}, \sqrt{ } w=F^{*} / F$ for $F>F^{*}$, with $F^{*}=55$ found to be optimum. Although R remained unchanged the standard deviations decreased by ca. 10%. The final difference-Fourier showed a fairly large ripple (up to $1.6 \mathrm{e}^{-3}$) in the immediate vicinity of the rhodium atom. An attempt was made to carry out refinement with different proportions of osmium, but it was found that 2% of osmium, which had been used initially, gave the lowest R factor.

Tables 2 and 3 list the final fractional co-ordinates of the non-hydrogen atoms, the coefficients in the expression for

Table 2
Fractional co-ordinates with estimated standard deviations in parentheses

	x	y	z
Rh	$0 \cdot 12409(7)$	$0.21132(5)$	$0 \cdot 18268(3)$
$\mathrm{Cl}(1)$	$0 \cdot 2771$ (2)	$0.3343(1)$	$0 \cdot 2363(1)$
$\mathrm{Cl}(2)$	-0.0652(2)	$0 \cdot 3241$ (2)	$0 \cdot 1635(1)$
$\mathrm{Cl}(3)$	-0.0393(2)	$0.0937(2)$	$0 \cdot 1295$ (1)
$\mathrm{P}(4)$	$0 \cdot 1002(2)$	0.1765 (2)	$0 \cdot 2746$ (1)
$\mathrm{P}(5)$	$0 \cdot 1427(3)$	$0 \cdot 2803(2)$	0.0971 (1)
P (6)	$0 \cdot 2902(2)$	$0 \cdot 0924(2)$	$0 \cdot 1969(1)$
$\mathrm{C}(11)$	$0.0463(12)$	$0 \cdot 2850$ (8)	$0 \cdot 3050$ (5)
$\mathrm{C}(12)$	$0.0388(16)$	0.2714(12)	$0 \cdot 3644(6)$
$\mathrm{C}(21)$	-0.0252(12)	$0 \cdot 0822(9)$	$0 \cdot 2722(5)$
$\mathrm{C}(22)$	-0.1763(12)	$0 \cdot 1148(11)$	0.2368 (7)
C(31)*	$0 \cdot 2544(12)$	$0 \cdot 1397(7)$	$0 \cdot 3378(4)$
C(32)	$0 \cdot 2680(14)$	$0 \cdot 0493(9)$	$0.3638(5)$
C(33)	$0 \cdot 3870(16)$	$0.0262(10)$	0.4131 (5)
C(34)	$0 \cdot 4915$ (15)	$0 \cdot 0931(11)$	$0 \cdot 4359$ (5)
$\mathrm{C}(35)$	$0.4764(13)$	$0 \cdot 1831(10)$	$0.4105(5)$
$\mathrm{C}(36)$	$0 \cdot 3601(12)$	$0 \cdot 2077$ (8)	0.3622 (5)
$\mathrm{C}(41)$	$0 \cdot 1291(12)$	$0 \cdot 4142$ (8)	$0.0974(5)$
$\mathrm{C}(42)$	$0 \cdot 1730(16)$	$0 \cdot 4673(11)$	$0.0521(7)$
C(51)	$0.0137(13)$	$0 \cdot 2450$ (10)	$0.0243(4)$
$\mathrm{C}(52)$	-0.1342(13)	$0 \cdot 2732(11)$	$0 \cdot 0160(6)$
C(61) *	$0.3036(12)$	$0 \cdot 2645$ (8)	0.0877 (4)
$\mathrm{C}(62)$	$0 \cdot 3097(13)$	$0 \cdot 2243(9)$	0.0368 (5)
C(63)	$0 \cdot 4391$ (14)	0.2156(10)	$0.0309(5)$
$\mathrm{C}(64)$	$0 \cdot 5595(14)$	$0 \cdot 2462$ (10)	0.0770 (5)
C(65)	$0.5506(13)$	$0 \cdot 2867$ (9)	$0 \cdot 1271$ (5)
$\mathrm{C}(66)$	$0 \cdot 4249(11)$	$0 \cdot 2970$ (8)	$0 \cdot 1342$ (5)
$\mathrm{C}(71)$	$0.4591(10)$	$0 \cdot 1323$ (8)	$0 \cdot 2499$ (4)
C (72)	$0 \cdot 5523(10)$	$0.0554(9)$	$0.2923(5)$
C(81)	$0 \cdot 2421(12)$	-0.0227(7)	$0 \cdot 2240$ (5)
$\mathrm{C}(82)$	$0.3134(13)$	-0.1154(8)	0.2131 (6)
C(91) *	$0 \cdot 3196(10)$	0.0474 (7)	$0 \cdot 1334(4)$
$\mathrm{C}(92)$	$0.4502(13)$	$0.0321(9)$	$0.1354(5)$
C (93)	$0 \cdot 4742$ (14)	$-0.0115(10)$	0.0885 (6)
$\mathrm{C}(94)$	$0 \cdot 3609(17)$	-0.0378(10)	$0.0374(6)$
C(95)	$0 \cdot 2303(14)$	-0.0240(9)	0.0352 (5)
$\mathrm{C}(96)$	0.2078(12)	0.0174(8)	$0.0828(4)$

* Phenyl carbon atoms are numbered $\mathrm{C}(m n)$ where m is ring no. and n is the atom no. in the ring; n is such that $\mathrm{C}(m 1)$ is attached to P and other atoms are numbered in succession such that $\mathrm{C}(m 4)$ is para to $\mathrm{C}(m 1)$.
the anisotropic temperature factors $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\right.\right.$ $\left.\left.\beta_{33}{ }^{2}+2 \beta_{12} h k+2 \beta_{13} h l+2 \beta_{23} k l\right)\right]$, and the root-meansquare amplitudes of vibration along the principal axes of the thermal ellipsoid. The standard deviations have been estimated from block-diagonal matrix refinements and are, therefore, a slight underestimate of the true deviations. The co-ordinates of the hydrogen atoms are given in Table 4, while the observed and calculated structure amplitudes are listed in Supplementary Publication No. SUP 20715 (7 pp .).*

[^2]DESCRIPTION OF THE STRUCTURE AND DISCUSSION
The title complex is monomeric and the molecular structure is shown in Figure 1, which also shows the thermal vibration ellipsoids ${ }^{10}$ of the non-hydrogen atoms. The co-ordination about the rhodium atom is distorted octahedral and the two groups of ligands are arranged such that there are two pairs of like ligands trans, leaving the remaining phosphorus atom trans to a chlorine atom. The angles between cis-ligands vary between 85.0 to 95.9°, and in general reflect the mutual repulsion of the bulky cis-diethylphenylphosphine ligands. The most important bond lengths and bond angles are given in Table 5.

The $\mathrm{Rh}-\mathrm{P}$ distances range from 2.325 to $2 \cdot 415 \AA$. There are only two other such $\mathrm{Rh}^{\text {III }}$ distances known

Figure 1 The molecular structure of $\mathrm{RhCl}_{3}\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)_{3}$. Thermal vibration ellipsoids scaled to include 50% probability
to us. Thus in $\mathrm{Rh}_{2} \mathrm{Me}\left(\mathrm{PPh}_{3}\right)_{2}{ }^{11}$ where the triphenylphosphine ligands are trans to each other and therefore comparable to $\mathrm{Rh}-\mathrm{P}(4)$ and $\mathrm{Rh}-\mathrm{P}(5)$, the distance is $2 \cdot 350 \AA$. However, this is a five-co-ordinate complex and one would therefore expect a shortening compared to an octahedral complex. For instance, in the octahedral complex $\mathrm{Re}_{2} \mathrm{O}_{3}\left(\mathrm{~S}_{2} \mathrm{CNEt}_{2}\right)_{4}{ }^{12}$ the average $\mathrm{Re}-\mathrm{S}$ distance is $0.05 \AA$ longer than in the square-pyramidal complex $\operatorname{ReN}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2}{ }^{13}$ It would seem that a similar lengthening occurs here as the average $\mathrm{Rh}-\mathrm{P}$ (trans to P) bond length is $2 \cdot 398 \AA$.
The $\mathrm{Rh}-\mathrm{P}$ bond trans to a chlorine atom is considerably shorter at $2 \cdot 325 \AA$. The other known Rh ${ }^{\text {III }}-\mathrm{P}$ distance found in $\mathrm{RhCl}_{2}(\mathrm{py})_{2} \mathrm{P}\left\{(0 \text {-tolyl })_{2}(0 \text {-benzyl })\right\}^{14}$ is shorter still, $2 \cdot 269 \AA$, but it may not be comparable since this bond is part of a five-membered $\stackrel{r}{\mathrm{Rh}-\mathrm{P}-\mathrm{C}-\mathrm{C}-\mathrm{C}}$ ring, and an unusually large π-bond character has been suggested to explain the short distance.
The two $\mathrm{Rh}-\mathrm{Cl}($ trans to Cl$)$ distances are both $2 \cdot 362 \AA$. These may be compared to an $\mathrm{Rh}-\mathrm{Cl}$ (trans to pyridine) distance of $2 \cdot 339$ in $\mathrm{RhCl}_{2}(\mathrm{Py})_{2} \mathrm{P}\left[(o \text {-tolyl })_{2}(0\right.$-benzyl) $),{ }^{14}$
${ }^{11}$ P. G. H. Troughton and A. C. Skapski, Chem. Comm., 1968, 575 : A. C. Skapski and P. G. H. Troughton, to be published.
${ }_{12}$ S. R. Fletcher, J. F. Rowbottom, A. C. Skapski, and G. Wilkinson, Chem. Comm., 1970, 1572; S. R. Fletcher and A. C. Skapski, J.C.S. Dalton, 1972, 1073.
${ }_{14}^{13}$ S. R. Fletcher and A. C. Skapski, J.C.S. Dalton, 1972, 1079.
14 R. Mason and A. D. C. Towl, J. Chem. Soc. (A), 1970, 1601.
2.34 (trans to Cl) in trans- $\left[\mathrm{Rh}(\mathrm{py})_{4} \mathrm{Cl}_{2}\right] \mathrm{NO}_{3}, \mathrm{HNO}_{3},{ }^{15}$ and a mean value of $2.34 \AA$ for the trans $-\mathrm{Rh}-\mathrm{Cl}$ bonds in trichlorobis-[(0 -methoxyphenyl)dimethylarsine]rhodium(III). ${ }^{16}$ The $\mathrm{Rh}-\mathrm{Cl}$ distance trans to a phosphorus atom is $2.429 \AA$, thus the lengthening caused by the phosphorus trans-influence is $c a .0 .07 \AA$. The variation of the $\mathrm{Rh}-\mathrm{Cl}$ and $\mathrm{Rh}-\mathrm{P}$ bond lengths depending on whether the trans ligand is a chlorine or a phosphorus atom is very similar to those found by Aslanov et al. ${ }^{17}$
molecular non-bonded distances are quoted in Table 6. The three phenyl rings are all planar (Table 7), and in case of ring $\mathrm{C}(9 n)$ the phosphorus attached to it is $0 \cdot 135 \AA$ out of the least-squares plane, which corresponds $\mathrm{P}-\mathrm{C}(m 1)-\mathrm{C}(m 4)$ angle of $c a .176^{\circ}$.

Relationship between Principal Axes of g-Tensor and Metal-Ligand Bond Directions.-In a separate paper Hill describes the measurement of the paramagnetic resonance spectrum of $\mathrm{OsCl}_{3}\left(\mathrm{PEt}_{\mathbf{2}} \mathrm{Ph}\right)_{3}$ molecules in a

Table 3

Anisotropic thermal parameters and root-mean-square amplitudes of vibration (\AA)									
Rh	$\begin{gathered} 10^{5} \beta_{11} \\ 653(9) \end{gathered}$	$\begin{gathered} 10^{5} \beta_{22} \\ 284(5) \end{gathered}$	$\begin{aligned} & 10^{5} \beta_{33} \\ & 122(2) \end{aligned}$	$\begin{array}{r} 10^{5} \beta_{12} \\ 7(6) \end{array}$	$\begin{gathered} 10^{5} \beta_{13} \\ 86(3) \end{gathered}$	$\begin{gathered} 10^{5} \beta_{23} \\ 17(2) \end{gathered}$	Min. $0 \cdot 161$	Inter. $0 \cdot 175$	Max. $0 \cdot 190$
	$10^{4} \beta_{11}$	$10^{4} \beta_{22}$	$10^{4} \beta_{33}$	$10^{4} \beta_{12}$	$10^{4} \beta_{13}$	$10^{4} \beta_{23}$			
$\mathrm{Cl}(1)$	107(4)	37(2)	19(1)	-8(2)	14(1)	$-1(1)$	$0 \cdot 183$	0.219	0.240
$\mathrm{Cl}(2)$	94(4)	48(2)	24(1)	17(2)	15(1)	5(1)	$0 \cdot 184$	0.239	$0 \cdot 260$
$\mathrm{Cl}(3)$	94(4)	49(2)	19(1)	-10(2)	10(1)	-2(1)	$0 \cdot 194$	0.225	$0 \cdot 243$
$\mathrm{P}(4)$	92(4)	41(2)	18(1)	1(2)	16(1)	$2(1)$	$0 \cdot 195$	$0 \cdot 208$	$0 \cdot 218$
$\mathrm{P}(6)$	89(4)	48(2)	16(1)	-5(2)	8(1)	$5(1)$	$0 \cdot 188$	0.203	0.248
	73(4)	39(2)	14(1)	2(2)	11(1)	1(1)	$0 \cdot 183$	0.194	$0 \cdot 196$
	$10^{3} \beta_{11}$	$10^{4} \beta_{22}$	$10^{4} \beta_{33}$	$10^{4} \beta_{12}$	$10^{4} \beta_{13}$	$10^{4} \beta_{23}$			
C(11)	12(2)	66(10)	$21(3)$	22(10)	21(6)	$-5(4)$	$0 \cdot 189$	0.238	$0 \cdot 283$
$\mathrm{C}(12)$	22(3)	123(15)	23(4)	39(16)	45(8)	$-1(6)$	$0 \cdot 194$	0.302	0.374
C(21)	13(2)	65(10)	34(4)	-14(11)	42(7)	5(5)	$0 \cdot 184$	$0 \cdot 265$	$0 \cdot 305$
$\mathrm{C}(22)$	9(2)	96(12)	48(5)	-6(12)	19(7)	0 (6)	0.212	$0 \cdot 304$	0.367
C(31)	16(2)	42 (8)	13(3)	10(9)	17(5)	0 (3)	$0 \cdot 185$	$0 \cdot 197$	$0 \cdot 284$
C(32)	19(2)	62(9)	18(3)	11(11)	20(6)	2(4)	$0 \cdot 213$	$0 \cdot 242$	$0 \cdot 315$
$\mathrm{C}(33)$	$26(3)$	69(10)	20(3)	42(13)	28(7)	$8(4)$	$0 \cdot 210$	0.248	0.374
$\mathrm{C}(34)$	19(3)	110(13)	19(4)	41(14)	21 (7)	-2(5)	$0 \cdot 219$	$0 \cdot 267$	$0 \cdot 365$
$\mathrm{C}(35)$	15(2)	85(11)	22(3)	11(12)	14(6)	$-3(5)$	$0 \cdot 235$	$0 \cdot 265$	$0 \cdot 303$
$\mathrm{C}(36)$	13(2)	62 (9)	19(3)	-2(10)	20 (5)	-1(4)	0.220	0.244	0.250
$\mathrm{C}(41)$	12(2)	56(9)	27(4)	$-5(10)$	15(6)	$8(4)$	0.214	$0 \cdot 240$	$0 \cdot 294$
$\mathrm{C}(42)$	19(3)	88(13)	48(5)	-1(14)	31(9)	30(6)	0.226	$0 \cdot 301$	$0 \cdot 406$
C(51)	14(2)	93(11)	13(3)	-9(18)	9(6)	7(4)	$0 \cdot 179$	$0 \cdot 261$	$0 \cdot 311$
C(52)	$11(2)$	104(13)	29(4)	12(12)	2 (6)	6 (6)	$0 \cdot 208$	0.313	0.323
C(61)	15 (2)	$55(8)$	14(3)	$-10(9)$	24(5)	6 (3)	$0 \cdot 155$	$0 \cdot 236$	$0 \cdot 270$
C (62)	$15(2)$	79(10)	19(3)	-17(11)	$24(6)$	$8(4)$	0.192	$0 \cdot 257$	$0 \cdot 300$
C(63)	17(2)	103(12)	23(3)	-6(13)	38(7)	3 (5)	$0 \cdot 203$	0.295	$0 \cdot 316$
C(64)	17(2)	88(11)	28(4)	$-5(12)$	39(7)	$2(5)$	$0 \cdot 227$	$0 \cdot 293$	$0 \cdot 296$
C (65)	12(2)	69(10)	30(4)	-10(11)	19(6)	$11(5)$	0.220	0.246	$0 \cdot 312$
C(66)	$11(2)$	47(8)	$24(3)$	-3(9)	19(6)	0 (4)	0.211	0.229	0.254
C(71)	10(2)	$50(8)$	21 (3)	$0(9)$	8(5)	$-1(3)$	$0 \cdot 205$	$0 \cdot 218$	$0 \cdot 258$
$\mathrm{C}(72)$	$9(2)$	75(10)	$20(3)$	$20(9)$	8(5)	6 (4)	$0 \cdot 185$	$0 \cdot 250$	$0 \cdot 278$
C(81)	16(2)	36(8)	$22(3)$	-5(9)	21(6)	$6(3)$	$0 \cdot 174$	0.246	$0 \cdot 281$
C(82)	16(2)	$35(8)$	$36(4)$	9 (10)	$30(7)$	$1(4)$	$0 \cdot 180$	0.276	$0 \cdot 307$
$\mathrm{C}(91)$	10(2)	48(8)	17(3)	$2(9)$	24(5)	$0(3)$	$0 \cdot 181$	0.215	$0 \cdot 233$
$\mathrm{C}(92)$	$15(2)$	$64(9)$	$21(3)$	0 (11)	$27(6)$	-4(4)	0.215	0.253	$0 \cdot 272$
$\mathrm{C}(93)$	17(2)	90 (12)	35(4)	11(13)	47(8)	$-3(5)$	0.225	$0 \cdot 299$	0.319
C(94)	$28(3)$	71(11)	$27(4)$	3(14)	47(9)	-11(5)	0.208	$0 \cdot 289$	0.365
$\mathrm{C}(95)$	18(2)	75(10)	23(4)	-19(12)	$26(7)$	-13(5)	0.211	$0 \cdot 278$	$0 \cdot 308$
C(96)	14(2)	57(9)	18(3)	-7(10)	16(6)	-8(4)	$0 \cdot 195$	0.251	0.261

for a series of third-row transition-metal $m e r-\mathrm{MCl}_{3}-$ $\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ complexes (where $\mathrm{M}=\mathrm{Re}^{\mathrm{III}}, \mathrm{Os}^{\mathrm{III}}$, and Ir ${ }^{\text {III }}$).

The mean of nine P-C distances is $1.840 \AA$ and this agrees well with similar distances found in other structures. There is some deviation from $s p^{3}$ geometry at the phosphorus atoms in that the mean $\mathrm{Rh}-\mathrm{P}-\mathrm{C}$ angle is $115 \cdot 2^{\circ}$, while the mean $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angle is $103 \cdot 3^{\circ}$. A similar distortion occurs at the methylene carbon atoms of the ethyl groups where the mean $\mathrm{P}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$ angle is 115.6°. All these distortions are probably the result of packing requirements. Figure 2 is a stereoscopic pair of illustrations of the packing of molecules within the unit cell, and some of the shorter intra- or inter-
${ }^{1 s}$ G. C. Dobinson, R. Mason, and D. R. Russell, Chem. Comm., 1967, 62.
matrix of $\mathrm{RhCl}_{3}\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)_{3}$, whereas we have determined the host $\mathrm{RhCl}_{3}\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)_{3}$ crystal structure. In order for a meaningful comparison to be made between our results and those of Hill one must be satisfied that the rhodium and the osmium complex molecules have essentially the same geometry, and the same orientation in the crystal. Single-crystal photographs clearly show that the two complexes are isomorphous and have almost identical unit-cell dimensions (Table 1 and ref. 2).

The important comparison between the structural and e.s.r. results rests on the directions of the principal

[^3]Table 4
Fractional co-ordinates of the hydrogen atoms. The atoms are labelled such that the first two digits are those of the carbons to which they are attached

	x	y	z
H(111)	$0 \cdot 117$	$0 \cdot 342$	0.308
$\mathrm{H}(112)$	-0.055	$0 \cdot 305$	$0 \cdot 275$
H(121)	-0.043	$0 \cdot 224$	$0 \cdot 366$
$\mathrm{H}(122)$	$0 \cdot 113$	$0 \cdot 250$	$0 \cdot 402$
$\mathrm{H}(123)$	$0 \cdot 080$	$0 \cdot 350$	$0 \cdot 395$
H(211)	-0.004	$0 \cdot 019$	$0 \cdot 252$
$\mathrm{H}(212)$	-0.014	0.067	$0 \cdot 317$
$\mathrm{H}(221)$	-0.173	$0 \cdot 186$	$0 \cdot 263$
$\mathrm{H}(222)$	-0.170	$0 \cdot 168$	$0 \cdot 192$
$\mathrm{H}(223)$	-0.220	0.052	$0 \cdot 226$
$\mathrm{H}(32)$	$0 \cdot 188$	-0.004	$0 \cdot 346$
$\mathrm{H}(33)$	0.397	-0.044	$0 \cdot 434$
H(34)	$0 \cdot 584$	0.075	$0 \cdot 472$
$\mathrm{H}(35)$	0.557	0.236	$0 \cdot 429$
$\mathrm{H}(36)$	$0 \cdot 351$	$0 \cdot 279$	0.343
$\mathrm{H}(411)$	$0 \cdot 025$	0.432	$0 \cdot 088$
H(412)	$0 \cdot 194$	$0 \cdot 439$	$0 \cdot 140$
H(421)	$0 \cdot 137$	0.428	$0 \cdot 012$
$\mathrm{H}(422)$	$0 \cdot 133$	0.560	0.060
H(423)	0.273	0.460	0.058
$\mathrm{H}(511)$	$0 \cdot 040$	$0 \cdot 280$	-0.009
H(512)	0.019	$0 \cdot 167$	0.020
H(521)	-0.153	0.358	0.010
$\mathrm{H}(522)$	-0.180	$0 \cdot 210$	0.043
$\mathrm{H}(523)$	-0.153	$0 \cdot 252$	-0.020
H(62)	$0 \cdot 220$	$0 \cdot 198$	0.002
$\mathrm{H}(63)$	0.445	$0 \cdot 185$	-0.008
H(64)	0.657	0.239	0.074
$\mathrm{H}(65)$	$0 \cdot 642$	$0 \cdot 312$	$0 \cdot 161$
$\mathrm{H}(66)$	0.422	0.327	$0 \cdot 174$
H (711)	0.514	$0 \cdot 161$	$0 \cdot 225$
H (712)	0.441	0.188	$0 \cdot 277$
H(721)	0.517	0.020	$0 \cdot 325$
$\mathrm{H}(722)$	$0 \cdot 637$	0.080	0.330
$\mathrm{H}(723)$	0.590	0.080	$0 \cdot 274$
$\mathrm{H}(811)$	$0 \cdot 271$	-0.015	$0 \cdot 271$
$\mathrm{H}(812)$	$0 \cdot 134$	-0.032	$0 \cdot 203$
$\mathrm{H}(821)$	0.433	-0.115	$0 \cdot 220$
H(822)	$0 \cdot 290$	-0.180	$0 \cdot 220$
$\mathrm{H}(823)$	$0 \cdot 277$	-0.130	$0 \cdot 165$
$\mathrm{H}(92)$	0.536	0.055	$0 \cdot 174$
H(93)	$0 \cdot 578$	-0.026	0.092
$\mathrm{H}(94)$	$0 \cdot 377$	-0.069	0.001
$\mathrm{H}(95)$	$0 \cdot 145$	-0.046	-0.003
$\mathrm{H}(96)$	$0 \cdot 104$	$0 \cdot 026$	0.081

bonds in the guest $\mathrm{OsCl}_{3}\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)_{3}$ molecules. Even though there might be small differences between like osmium-ligand and rhodium-ligand bond lengths (these
are unlikely to be $>0.05 \AA$) the main bond directions in the osmium complex molecules will tend to adopt an orientation more similar to that of the host molecules since the packing of molecules in the crystal is primarily influenced by the bulky diethylphenylphosphine ligands. Thus an individual $\mathrm{OsCl}_{3}\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)_{3}$ molecule will be subject to constraint of the host matrix, and the resulting such slight angular readjustments can occur with only minimal energy changes. We therefore feel that a valid

Table 5
Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with standard deviations in parentheses

(a) Distances			
$\mathrm{Rh}-\mathrm{Cl}(1)$	2.362(3)	Rh-P(4)	$2 \cdot 415(4)$
$\mathrm{Rh}-\mathrm{Cl}(2)$	2.429(3)	$\mathrm{Rh}-\mathrm{P}(5)$	2.382(4)
$\mathrm{Rh}-\mathrm{Cl}(3)$	2.362(3)	$\mathrm{Rh}-\mathrm{P}(6)$	$2 \cdot 325(3)$
$\mathrm{P}(4)-\mathrm{C}(11)$	1-853(14)	$\mathrm{P}(5)-\mathrm{C}(61)$	$1.813(14)$
$\mathrm{P}(4)-\mathrm{C}(21)$	1.838(14)	$\mathrm{P}(\mathbf{6})-\mathrm{C}(71)$	$1.845(10)$
$\mathrm{P}(4)-\mathrm{C}(31)$	1.841(10)	$\mathrm{P}(6)-\mathrm{C}(81)$	$1.862(12)$
$\mathrm{P}(5)-\mathrm{C}(41)$	1.847(13)	$\mathrm{P}(6)-\mathrm{C}(91)$	1.813(13)
$\mathrm{P}(5)-\mathrm{C}(51)$	$1.852(11)$	Mean	1.840
Mean C-C:			
Ring C(3n)	1.387(18)	Ring C(9n)	1-396(20)
Ring C(6n)	1-408(19)	Ethyl	1-543(20)
(b) Angles			
$\mathrm{Cl}(1)-\mathrm{Rh}-\mathrm{Cl}(2)$	89.31(10)	$\mathrm{Cl}(2)-\mathrm{Rh}-\mathrm{P}(6)$	174.72(10)
$\mathrm{Cl}(1)-\mathrm{Rh}-\mathrm{Cl}(3)$	176.71(11)	$\mathrm{Cl}(3)-\mathrm{Rh}-\mathrm{P}(4)$	93.87(11)
$\mathrm{Cl}(1)-\mathrm{Rh}-\mathrm{P}(4)$	85.00(10)	$\mathrm{Cl}(3)-\mathrm{Rh}-\mathrm{P}(5)$	94-14(10)
$\mathrm{Cl}(1)-\mathrm{Rh}-\mathrm{P}(5)$	86.51(10)	$\mathrm{Cl}(3)-\mathrm{Rh}-\mathrm{P}(6)$	87.21(10)
$\mathrm{Cl}(1)-\mathrm{Rh}-\mathrm{P}(6)$	95.94(9)	$\mathrm{P}(4)-\mathrm{Rh}-\mathrm{P}(5)$	167.97(11)
$\mathrm{Cl}(2)-\mathrm{Rh}-\mathrm{Cl}(3)$	87.53(10)	$\mathrm{P}(4)-\mathrm{Rh}-\mathrm{P}(\mathrm{B})$	93.58(11)
$\mathrm{Cl}(2)-\mathrm{Rh}-\mathrm{P}(4)$	86.37(11)	$\mathrm{P}(5)-\mathrm{Rh}-\mathrm{P}(6)$	95.76(12)
$\mathrm{Cl}(2)-\mathrm{Rh}-\mathrm{P}(5)$	85•03(11)		
Means:			
$\mathrm{Rh}-\mathrm{P}-\mathrm{C}(\mathrm{Ph})$	118.6(3)	$\mathrm{CH}_{2}-\mathrm{P}-\mathrm{C}(\mathrm{Ph})$	102.4(5)
$\mathrm{Rh}-\mathrm{P}-\mathrm{CH}_{2}$	$113.8(4)$	$\mathrm{P}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$	$115 \cdot 6(9)$
$\mathrm{CH}_{2}-\mathrm{P}-\mathrm{CH}_{2}$	105.5(5)		

comparison can be made of the results in these two papers, but bearing in mind the limitations stemming from the assumptions made. As regards the overall accuracy of the rhodium complex structure the presence of 2% osmium is likely to have only a minimal effect on the structural parameters quoted.

Figure 2 A stereoscopic view of the packing of $\mathrm{RhCl}_{3}\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)_{2}$ molecules

In order to compare the structural results with those of Hill it is necessary to define the nomenclature used to describe the various axial systems. Thus, the orthogonal axes X, Y, Z, are related to the crystallographic unit cell as follows: X is parallel to the unit-cell vector \boldsymbol{a}, Y is parallel to \boldsymbol{b}, and Z is perpendicular to both, in a right-handed system. The g-tensor vectors, $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$, are those determined experimentally ${ }^{1}$ by Hill and are not necessarily orthogonal.

The relationship between the principal directions of the g-tensor, the orthogonal axes, and the directions

Table 6
Some shorter non-bonded distances (\AA)

(a) Intramolecular				
$\mathrm{Cl}(1) \cdots \mathrm{C}(36)$	$3 \cdot 362$	$\mathrm{Cl}(3)$	C(21) 3 -	$3 \cdot 459$
$\mathrm{Cl}(1) \cdots \mathrm{C}(41)$	$3 \cdot 352$	$\mathrm{Cl}(3)$.	$\cdots \mathrm{C}(22) \quad 3$	$3 \cdot 472$
$\mathrm{Cl}(1) \cdots \mathrm{C}(66)$	$3 \cdot 465$	$\mathrm{Cl}(3)$.	C(71) $3 \cdot 3$	$3 \cdot 394$
$\mathrm{Cl}(1) \cdots \mathrm{C}(71)$	$3 \cdot 320$	$\mathrm{Cl}(3)$	- C(96) 3 -	3.392
	$\mathrm{Cl}^{(2)} \cdots \cdot \mathrm{C}(11)$	$3 \cdot 263$		
	$\mathrm{Cl}(2) \cdots \mathrm{C}(41)$	$3 \cdot 304$		
	$\mathrm{Cl}(2) \cdots \mathrm{C}(52)$	$3 \cdot 485$		
$\mathrm{C}(11) \cdots \mathrm{C}(22)$	$3 \cdot 286$		$\cdots \mathrm{C}(62) \quad 3$	3.035
$\mathrm{C}(11) \cdots \mathrm{C}(36)$	$3 \cdot 245$	C(61)	$\cdots \mathrm{C}(91) \quad 3$	3-170
$\mathrm{C}(12) \cdots \mathrm{C}(31)$	$3 \cdot 165$	C(62)	$\cdots \mathrm{C}$ (91) 3	$3 \cdot 372$
$\mathrm{C}(12) \cdots \mathrm{C}(21)$	3.345	C(62)	$\cdots \mathrm{C}(96)$	3.385
$\mathrm{C}(32) \cdots \mathrm{C}(81)$	$3 \cdot 485$	C(63)	$\cdots \mathrm{C}(93)$	$3 \cdot 389$
$\mathrm{C}(36) \cdots \mathrm{C}(71)$	$3 \cdot 464$	$\mathrm{C}(71)$	$\cdots \mathrm{C}$ (92) 3	$3 \cdot 102$
$\mathrm{C}(41) \cdots \mathrm{C}(52)$	3.353	C (72)	$\cdots \mathrm{C}(81)$	$3 \cdot 239$
$\mathrm{C}(41) \cdots \mathrm{C}(66)$	$3 \cdot 319$	C(72)	$\cdots \mathrm{C}(82)$	$3 \cdot 452$
C(42) \cdots C(51)	$3 \cdot 429$	C 82	$\cdots \mathrm{C}$ (92)	$3 \cdot 457$
$\mathrm{C}(42) \cdots \mathrm{C}(61)$	3.086	C(82)	$\cdots \mathrm{C}(96)$	$3 \cdot 479$
(b) Intermolecular				
$\mathrm{Cl}(1) \cdots \mathrm{C}$ (72 ${ }^{\text {I }}$)	3.735		. $\cdot \mathrm{C}\left(65^{115}\right)$) $3 \cdot 570$
$\mathrm{Cl}(2) \cdots \mathrm{C}\left(32^{\text {II }}\right.$)) 3.677	$\mathrm{C}(35)$	$\cdots \mathrm{C}\left(63^{\text {rV }}\right.$)) 3.427
		C(52)	$\cdots \mathrm{C}(95 \mathrm{~V})$	3.656

Roman numerals as superscripts refer to atoms in the following positions:

$$
\begin{array}{lc}
\text { I } 1-x, 1 / 2+y, 1 / 2-z & \text { IV } x, 1 / 2-y, 1 / 2+z \\
\text { II }-x, 1 / 2+y, 1 / 2-z & \text { V }-x,-y,-z \\
\text { III } 1-x, y-1 / 2,1 / 2-z &
\end{array}
$$

Table 7
Planarity of phenyl rings
(Mean dev./A \quad Max. dev./A $\left.\begin{array}{c}\text { Distance of P } \\ \text { atom from } \\ \text { least-squares } \\ \text { plane }\end{array}\right\}$
of the principal bonds is expressed in terms of the direction cosines in Table 8, and is shown schematically in Figure 3. This Table also shows the divergence in degrees between the metal-ligand vectors and the axes of the g-tensor. The coincidence is quite good, especially in view of the fact that the co-ordination about the metal atom is distorted and the angles between trans-ligands
are not 180°. If one takes the mean direction of the pairs of trans-ligand vectors the discrepancy with its predicted g-tensor axes is $4 \cdot 6,9 \cdot 7$, and 6.8° for $\boldsymbol{z}, \boldsymbol{x}$, and \boldsymbol{y} respectively. Hill's \boldsymbol{x} axis makes an angle

Table 8

Relationship, expressed in terms of direction cosines and deg., between the g-tensor vectors and the metalligand bond directions. The eigenvalues and eigenvectors of the g-tensor are taken from Table 1 of ref. $1\left(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}\right.$ are as defined in the text, and $l_{\boldsymbol{X}}$, l_{Y}, and l_{Z} are the values of the direction cosines relative to the X, Y, and Z axes)

Figure 3 Relation between principal directions of the g-tensor ($\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{x}$) and the directions of the principal bonds. In the interests of clarity for this diagram the axial origins have been shifted to coincide with a rhodium atom
with b of $56 \pm 5^{\circ}$, whereas for the mean $\mathrm{Cl}(2)-\mathrm{Rh}-\mathrm{P}(6)$ vector the angle is $54 \cdot 6(1)^{\circ}$, and similarly the values for \boldsymbol{y} and $\mathrm{P}(4)-R h-P(5)$ are 70 ± 5 and $67 \cdot 0(1)^{\circ}$, and for \boldsymbol{z} and $\mathrm{Cl}(1)-\mathrm{Rh}-\mathrm{Cl}(3)$ are 41 ± 2 and $43 \cdot 4(1)^{\circ}$ respectively.

We thank Dr. N. J. Hill for providing the crystals and for discussions, and Professor D. Rogers for the use of a diffractometer.
[2/051 Received, 11th January, 1972]

[^0]: ${ }^{1}$ N. J. Hill, J.C.S. Faraday II, 1972, 68, 427.
 ${ }^{2}$ K. A. Raspin, Ph.D. Thesis, Cambridge University, 1967.
 ${ }^{3}$ A. C. Skapski and P. G. H. Troughton, Acta Cryst., 1970, $B, 26,716$.
 ${ }^{4}$ W. R. Busing and H. A. Levy, Acta Cryst., 1957, 10, 180.

[^1]: ${ }^{5}$ P. Coppens, L. Leiserowitz, and D. Rabinovich, Acta Cryst., 1965, 18, 1035.
 ' ' X-Ray ' 63 ,' J. M. Stewart, University of Maryland Technical Report, TR 646.

 7 D. T. Cromer and J. T. Waber, Acta Cryst., 1965, 18, 104.
 ${ }^{8}$ D. T. Cromer, Acta Cryst., 1965, 18, 17.

 - E. W. Hughes, J. Amer. Chem. Soc., 1941, 63, 1737.

[^2]: * For details see Notice to Authors No. 7 in J.C.S. Dalton, 1972, Index issue. (Items less than 10 pp . are sent as full-sized copies.)
 ${ }^{10}$ C. K. Johnson, ORTEP thermal ellipsoid plotting program, Oak Ridge National Laboratory Report, 1965, ORNL 3794.

[^3]: ${ }^{16}$ R. Graziani, G. Bombieri, L. Volponi and C. Panattoni, Chem. Comm., 1967, 1284.
 ${ }^{17}$ L. Aslanov, R. Mason, A. G. Wheeler, and P. O. Whimp, Chem. Comm., 1970, 30.

