Crystal and Molecular Structure of cis-Fluoro-(1,1,1,3,3,3-hexafluoroisopropyl)bis(triphenylphosphine)platinum, $\mathrm{PtF}\left[\mathrm{CH}\left(\mathrm{CF}_{3}\right)_{2}\right]\left(\mathrm{PPh}_{3}\right)_{2}$: Square Planar Metal Fluoro-complex

By Judith Howard and Peter Woodward, Department of Inorganic Chemistry, The University, Bristol BS8 1TS
Crystals of the title compound are monoclinic, space group $P 2_{1} / a$, with $Z=4$ in a unit cell of dimensions: $a=$ $18 \cdot 690(5), b=18 \cdot 662(18), c=9 \cdot 897(15) A, \beta=94 \cdot 7(1)^{\circ}$. The structure was solved by conventional heavy-atom methods and refined by least squares to $R 0.063$ for 1937 independent reflections measured on a diffractometer. The platinum atom is in a square planar configuration. Two adjacent sites are occupied by triphenylphosphine groups, the other two by fluorine and a hexafluoroisopropyl group. The two Pt-P distances are significantly different: that trans to fluorine is $2 \cdot 218(7)$, while that trans to $-\mathrm{CH}\left(\mathrm{CF}_{3}\right)_{2}$ is $2 \cdot 310(7) \AA$. The geometry of the ligands is as expected.

Bis(TRIFLUOROMETHYL)DIAZOMETHANE reacts with a variety of d^{10} complexes of Ni, Pd, and Pt to afford complexes containing the 1,1,4,4-tetrakis(trifluoro-methyl)buta-1,3-azine ligand. ${ }^{1,2}$ During the course of the reaction with Pt (stilbene) $\left(\mathrm{PPh}_{3}\right)_{2}$ some minor products were isolated, and of these one has been shown, mainly by X-ray crystallography, to be the title compound. Another, which is isomeric, is presumably the trans-analogue. It was suggested that these compounds arose by way of attack of traces of HF on an initially formed adduct $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pt} \cdot \mathrm{N} \cdot \mathrm{N} \cdot \mathrm{C}\left(\mathrm{CF}_{3}\right)_{2}$.

EXPERIMENTAL

Crystals of $\mathrm{PtF}\left[\mathrm{CH}\left(\mathrm{CF}_{3}\right)_{2}\right]\left(\mathrm{PPh}_{3}\right)_{2}$ are colourless and grow as needles of flattened hexagonal cross-section with the
${ }^{1}$ J. Clemens, M. Green, and F. G. A. Stone, J.C.S. Dalton, 1973, 1620.
${ }^{2}$ J. Clemens, R. E. Davis, M. Green, J. D. Oliver, and F. G. A. Stone, Chem. Comm., 1971, 1095.
needle axis along a. Lattice parameters were measured from precession photographs by use of a very small crystal. Zirconium-filtered Mo- K_{α} radiation was used throughout. The dimensions ($0.30 \times 0.26 \times 0.14 \mathrm{~mm}$) of the chosen crystal were carefully measured on a binocular microscope so that an accurate absorption correction could be applied. ${ }^{3}$ The crystal was mounted on its b axis. Intensities were measured on a Buerger-Supper-Pace 0.01°-incrementing autodiffractometer with a stationary background- ω-scanstationary background measuring sequence, as described earlier. ${ }^{4}$ Backgrounds were counted for 0.5 min , the scan speed was $\mathrm{l}^{\circ} \mathrm{min}^{-1}$, and the scan intervals were $(2 \cdot 0+$ $0 \cdot 3 / L)^{\circ}$ for layers $0-7,(2 \cdot 0+0 \cdot 5 / L)^{\circ}$ for layers $8-12$, and $(2 \cdot 0+0.6 / L)^{\circ}$ for layers $13-15$, where L is the Lorentz correction. Measurements of the layers $h 0-15 l$ yielded 2021 intensities, of which 1936 were deemed 'observed' according to the criterion $\left[N_{3}-\left(N_{1}+N_{2}\right)\right] /\left(N_{3}+N_{1}+\right.$

[^0] Ahmed, Munksgaard, Copenhagen, 1970, 271-278.
${ }^{4}$ C. J. Gilmore and P. Woodward, J.C.S. Dalton, 1972, 1387.
$\left.N_{2}\right)^{\frac{1}{2}}>2.5$ and were used in the analysis; N_{3}, N_{1}, and N_{2} are the peak count and the first and second background counts.
Crystal Data.- $\mathrm{C}_{39} \mathrm{H}_{31} \mathrm{~F}_{7} \mathrm{P}_{2} \mathrm{Pt}, \quad M=827 \cdot 7$, Monoclinic, $a=18 \cdot 690(5), b=18 \cdot 662(18), c=9.897(15) \AA, \beta=94.7(1)^{\circ}$, $U=3440 \AA^{3}, D_{\mathrm{m}}$ (by flotation) $=1 \cdot 69, Z=4, D_{\mathrm{c}}=1 \cdot 71$, $F(000)=1624$. Mo- K_{α} radiation, $\lambda=0.7107 \AA ; \mu(\mathrm{Mo}-$ $\left.K_{\alpha}\right)=44 \cdot 8 \mathrm{~cm}^{-1}$. Space group $P 2_{1} / a$.

Structure Solution and Refinement.--The only features of the structure known for certain from chemical and spectroscopic evidence were the presence of one Pt atom, two PPh_{3} groups, and one $-\mathrm{C}\left(\mathrm{CF}_{3}\right)_{2}$ group. The platinum atom was readily located from a three-dimensional Patterson synthesis, and from successive electron-density syntheses were located first the two phosphorus atoms mutually cis ($R 0 \cdot 24$), then the phenyl groups, the other carbon atoms and the two $\left(\mathrm{CF}_{3}\right)$ groups $(R 0 \cdot 10)$. It was clear that the $\mathrm{Pt}-\mathrm{C}={ }_{C}^{\mathrm{C}}$ moiety was non-planar (hence not a carbene), and indeed that a fourth tetrahedral position, seemingly unoccupied, probably carried a hydrogen atom. Moreover, the $\mathrm{Pt}-\mathrm{C}$ bond was coplanar with the two $\mathrm{Pt}-\mathrm{P}$ bonds, trans to one and cis to the other. It was not altogether surprising, therefore, when a further electron-density difference map revealed a clear peak, of some 8 or 9 e , $c a .2 \AA$ from the Pt atom in the fourth position for a square planar complex. In view of doubts about the chemical nature of this atom, three refinements were carried out in which the extra atom was assumed to be nitrogen, oxygen, or fluorine. For these refinements the Pt and P atoms were ascribed anisotropic thermal parameters (β_{22} constant); all other atoms were given isotropic thermal parameters, and separate scale factors for each reciprocal layer were used. At convergence, N gave $R 0.086, B 0 \cdot 6$; O gave $R 0.065$, $B 1 \cdot 1$; and F gave $R 0.063, B 3 \cdot 0$. On the basis of lowest R and most realistic B, therefore, our analysis favours fluorine, a conclusion subsequently confirmed by further analytical and spectroscopic studies. ${ }^{1}$ The weighting scheme used for the least-squares refinement was: $1 / w=$ $\sigma_{F}{ }^{2}+0.01 F$ (where σ_{F} is the standard deviation from counting statistics), devised so as to minimise variation of $w(\Delta F)^{2}$ with ranges of F and $\sin \theta / \lambda$. No hydrogen atoms were included. Positional and thermal parameters are listed in Table 1, and interatomic distances and angles in Table 2. Observed and calculated structure factors are listed in Supplementary Publication No. SUP 20736 (7 pp ., 1 microfiche).* All errors cited are given in parentheses in units of the last significant digit. Interatomic distance errors include cell-parameter errors. All computations were performed on an Atlas computer with the help of the ' X-Ray System' of programmes. ${ }^{5}$ Atomic scattering factors were those of ref. 6 .

DISCUSSION

In $\mathrm{PtF}\left[\mathrm{CH}\left(\mathrm{CF}_{3}\right)_{2}\right]\left(\mathrm{PPh}_{3}\right)_{2}$ the platinum atom is in a square planar configuration and the two triphenyl-

* For details see Notice to Authors No. 7 in J.C.S. Dalton, 1972, Index issue. (Items less than 10 pp . are sent as full-sized copies.)
${ }^{5}$ J. M. Stewart, F. A. Kundell, and J. C. Baldwin, 'The X-Ray System of Crystallographic Programmes for any Computer, Computer Science Centre, University of Maryland: available at Atlas Computer Laboratory, Chilton, Didcot, Berkshire
phosphine ligands are mutually cis (Figures 1 and 2). The fluorine atom is directly bonded to the platinum atom, trans to $\mathrm{P}(1)$, with $\mathrm{Pt}-\mathrm{F} 2 \cdot 03(1) \AA$; the $\left[\mathrm{CH}\left(\mathrm{CF}_{3}\right)_{2}\right]$

Table 1
Atomic positional and thermal parameters, with estimated standard deviations in parentheses

Atom	x / a	y / b	z / c	B / \AA^{2}
Pt	$0.12837(6)$	$0.17636(6)$	$0.22393(12)$	$*$
$\mathrm{P}(1)$	$0.2463(4)$	$0.1605(3)$	$0.2374(7)$	$*$
$\mathrm{P}(2)$	$0.1260(4)$	$0.2871(4)$	$0.1196(7)$	$*$
$\mathrm{~F}(1)$	$0.0202(6)$	$0.1895(6)$	$0.2071(12)$	$3.0(3)$

Hexafluoroisopropyl groups

$\mathrm{C}(1)$	$0 \cdot 1119(13)$	$0.0774(12)$	$0.3118(27)$	$2 \cdot 7(5)$
$\mathrm{C}(2)$	$0.0950(16)$	$0.0746(16)$	$0.4480(32)$	$4 \cdot 9(7)$
$\mathrm{C}(3)$	$0.0582(19)$	$0.0336(18)$	$0.2253(38)$	$6.6(8)$
$\mathrm{F}(21)$	$0.0868(10)$	$0.0176(10)$	$0.5166(19)$	$8.0(5)$
$\mathrm{F}(22)$	$0.1500(10)$	$0.1084(9)$	$0.5275(19)$	$7.8(5)$
$\mathrm{F}(23)$	$0.0375(10)$	$0.1143(9)$	$0.4761(18)$	$7.6(5)$
$\mathrm{F}(31)$	$0.0602(10)$	$0.0394(9)$	$0.0977(21)$	$7.9(5)$
$\mathrm{F}(32)$	$-0.0104(9)$	$0.0467(8)$	$0.2504(17)$	$6.4(4)$
$\mathrm{F}(33)$	$0.0625(9)$	$-0.0400(9)$	$0.2500(18)$	$7 \cdot 2(4)$

Phenyl groups				
C(111)	0.293(1)	0.234(1)	0.341(3)	4.0(6)
$\mathrm{C}(112)$	0.258(1)	$0 \cdot 252(1)$	$0 \cdot 458(3)$	$4 \cdot 6$ (7)
$\mathrm{C}(113)$	$0 \cdot 292(1)$	$0 \cdot 302(1)$	$0 \cdot 546(2)$	$4 \cdot 0(6)$
C(114)	$0 \cdot 355(2)$	$0 \cdot 333(2)$	$0.510(3)$	$5 \cdot 1(7)$
C(115)	0.386(1)	$0 \cdot 320$ (2)	$0 \cdot 398(3)$	$5 \cdot 2(7)$
C(116)	$0 \cdot 358(1)$	0.266(1)	$0 \cdot 306(3)$	4.1(6)
C(121)	$0 \cdot 282(1)$	$0.080(1)$	$0 \cdot 317(3)$	3.3(6)
C(122)	0.276(1)	$0.015(1)$	$0 \cdot 250(2)$	$2 \cdot 4(5)$
C (123)	0.299(1)	-0.045(1)	$0 \cdot 317(3)$	4.7(7)
C (124)	$0 \cdot 327(2)$	-0.047(1)	$0 \cdot 452$ (3)	$5 \cdot 2(7)$
C (125)	$0 \cdot 330$ (1)	0.016 (1)	$0.525(3)$	3.6(6)
$\mathrm{C}(126)$	0-309(1)	$0.081(1)$	$0 \cdot 455(3)$	3.4(6)
C(131)	$0 \cdot 284(1)$	$0 \cdot 154(1)$	$0.073(2)$	3.2(6)
C(132)	$0 \cdot 235(1)$	$0 \cdot 149(1)$	-0.043(2)	4-2(7)
C(133)	$0 \cdot 264(2)$	$0 \cdot 141$ (1)	-0.166(3)	$5 \cdot 5(7)$
C(134)	$0.339(2)$	$0.145(1)$	-0.178(3)	3.9(6)
C (135)	$0.381(2)$	$0.145(1)$	-0.066(3)	5.6(8)
$\mathrm{C}(136)$	$0 \cdot 358(1)$	0.151(1)	$0.072(3)$	3.7(6)
C(211)	$0.073(1)$	$0 \cdot 358(1)$	$0 \cdot 196(2)$	3.0(6)
$\mathrm{C}(212)$	$0 \cdot 036(1)$	$0 \cdot 335(1)$	0.313(3)	4.9(7)
C(213)	-0.007(1)	$0 \cdot 389(1)$	$0 \cdot 377(3)$	5.3(7)
C (214)	-0.015(1)	$0.453(1)$	$0 \cdot 320$ (3)	$4 \cdot 6(7)$
C(215)	$0.018(2)$	$0 \cdot 473(1)$	$0.206(3)$	5.9(8)
C(216)	0.061 (1)	$0 \cdot 422(1)$	$0 \cdot 140(3)$	3.6(6)
C(221)	0.208(1)	0.339(1)	0.097 (3)	$4 \cdot 1(6)$
C(222)	0.230(1)	$0 \cdot 392(1)$	$0 \cdot 199$ (3)	$4 \cdot 7(7)$
$\mathrm{C}(223)$	0.294(1)	$0 \cdot 430$ (1)	0.181(3)	4.3(6)
C (224)	$0 \cdot 333(2)$	$0 \cdot 419(1)$	$0.076(3)$	6.1(8)
C(225)	0.310(2)	$0 \cdot 363(2)$	-0.032(3)	6.6(8)
C(226)	$0 \cdot 248(1)$	$0.321(1)$	-0.010(2)	4.0(5)
C(231)	$0.084(1)$	0.281(1)	-0.047(3)	3.7(6)
C(232)	$0.087(1)$	$0 \cdot 336(1)$	-0.145(2)	3.9(6)
C(233)	$0 \cdot 051(1)$	$0 \cdot 325(2)$	-0.278(3)	$4 \cdot 7$ (6)
C(234)	$0.014(2)$	$0 \cdot 262(1)$	-0.316(3)	5.9(8)
C(235)	$0.008(1)$	$0 \cdot 208(1)$	-0.214(3)	$5 \cdot 1(7)$
C(236)	0.043(1)	0.214(1)	-0.081(3)	5.5(7)

	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	${ }_{23}$
Pt	2.62(4)	$2 \cdot 83$	3•41(5)	0.003(10)	$-0 \cdot 10(9)$	0.46(8)
$\mathrm{P}(1)$	2.5(3)	2.4	3-9(4)	0.03(6)	$-0.07(7)$	-0.04(8)
$\mathrm{P}(2)$	2.4(3)	$3 \cdot 8$	2-2(4)	$-0.28(7)$	$-0.09(7)$	$0 \cdot 11(8)$

moiety is directly bonded to the platinum atom, trans to $\mathrm{P}(2), \mathrm{Pt}-\mathrm{C} 2 \cdot 07(2) \AA$. The $\mathrm{Pt}-\mathrm{F}$ distance is equal to
${ }^{6}$ H. P. Hanson, F. Herman, J. D. Lea, and S. Skillman, Acta Cryst., 1964, 17, 1040.
the sum of the covalent radii for $d s p^{2}-\mathrm{Pt}(1 \cdot 31)$ and for F (0.72), according to the values given, with many reservations, in ref. 7. Likewise the $\mathrm{Pt}-\mathrm{C}$ distance

Table 2
Bond lengths (\AA) and angles (${ }^{\circ}$)
(a) Distances

$\mathrm{Pt}-\mathrm{P}(1)$	2-218(7)
$\mathrm{Pt}-\mathrm{P}(2)$	3.310(7)
$\mathrm{Pt}-\mathrm{F}(1)$	2.03(1)
$\mathrm{Pt}-\mathrm{C}(1)$	2.07(2)
Hexafluoroisopropyl group	
$\mathrm{C}(1)-\mathrm{C}(2)$	1-41(4)
$\mathrm{C}(1)-\mathrm{C}(3)$	1-50(4)
$\mathrm{C}(2)-\mathrm{F}(21)$	$1 \cdot 28(3)$
$\mathrm{C}(2)-\mathrm{F}(22)$	$1 \cdot 39(3)$
$\mathrm{C}(2)-\mathrm{F}(23)$	1-35(4)
$\mathrm{C}(3)-\mathrm{F}(31)$	$1 \cdot 27(4)$
$\mathrm{C}(3)-\mathrm{F}(32)$	1.35(4)
$\mathrm{C}(3)-\mathrm{F}(33)$	1-39(4)

Triphenylphosphine groups		$\mathrm{C}(213)-\mathrm{C}(214)$	1-32(4)
		$\mathrm{C}(214)-\mathrm{C}(215)$	1-38(4)
$\mathrm{P}(1)-\mathrm{C}(111)$	$1.88(3)$	$\mathrm{C}(215)-\mathrm{C}(216)$	1-44(4)
$\mathrm{P}(1)-\mathrm{C}(121)$	$1.79(2)$	$\mathrm{C}(216)-\mathrm{C}(211)$	1-33(4)
$\mathrm{P}(1)-\mathrm{C}(131)$	$1.82(3)$		
$\mathrm{P}(2)-\mathrm{C}(211)$	$1.85(3)$	$\mathrm{C}(221)-\mathrm{C}(222)$	1.44(4)
$\mathrm{P}(2)-\mathrm{C}(221)$	$1.85(3)$	$\mathrm{C}(222)-\mathrm{C}(223)$	1.42(4)
$\mathrm{P}(2)-\mathrm{C}(231)$	1.77 (3)	$\begin{aligned} & \mathrm{C}(223)-\mathrm{C}(224) \\ & \mathrm{C}(224)-\mathrm{C}(225) \end{aligned}$	$\begin{aligned} & 1 \cdot 34(4) \\ & 1 \cdot 53(4) \end{aligned}$
$\mathrm{C}(111)-\mathrm{C}(112)$	$1 \cdot 42(4)$	$\mathrm{C}(225)-\mathrm{C}(226)$	1.44(4)
$\mathrm{C}(112)-\mathrm{C}(113)$	1-40(4)	$\mathrm{C}(226)-\mathrm{C}(221)$	1.38(4)
$\mathrm{C}(113)-\mathrm{C}(114)$	$1 \cdot 37(4)$		
$\mathrm{C}(114)-\mathrm{C}(115)$	$1 \cdot 32(4)$	$\mathrm{C}(231)-\mathrm{C}(232)$	1.40(4)
$\mathrm{C}(115)-\mathrm{C}(116)$	$1.43(4)$	$\mathrm{C}(232)-\mathrm{C}(233)$	1.44(4)
$\mathrm{C}(116)-\mathrm{C}(111)$	1-41(4)	$\mathrm{C}(233)-\mathrm{C}(234)$	1.40(4)
		$\mathrm{C}(234)-\mathrm{C}(235)$	1.43 (4)
$\mathrm{C}(121)-\mathrm{C}(122)$	$1 \cdot 39(3)$	$\mathrm{C}(235)-\mathrm{C}(236)$	1-43(4)
$\mathrm{C}(122)-\mathrm{C}(123)$	$1 \cdot 35(4)$	$\mathrm{C}(236)-\mathrm{C}(231)$	$1 \cdot 50(4)$

$\mathrm{C}(123)-\mathrm{C}(124)$	1.39(4)
$\mathrm{C}(124)$ - $\mathrm{C}(125)$	$1.38(4)$
$\mathrm{C}(125)-\mathrm{C}(126)$	1.44 (4)
C(126)-C(121)	1-42(4)
$\mathrm{C}(131)-\mathrm{C}(132)$	1-41(4)
$\mathrm{C}(132)$ - $\mathrm{C}(133)$	$1 \cdot 38(4)$
$\mathrm{C}(133)-\mathrm{C}(134)$	1-41(4)
$\mathrm{C}(134)$-C(135)	1.31(4)
$\mathrm{C}(135)-\mathrm{C}(136)$	1-46(4)
$\mathrm{C}(136)-\mathrm{C}(131)$	$1 \cdot 40$ (4)
$\mathrm{C}(211)-\mathrm{C}(212)$	1-46(4)
$\mathrm{C}(212)-\mathrm{C}(213)$	$1 \cdot 47(4)$
$\mathrm{C}(213)-\mathrm{C}(214)$	1-32(4)
$\mathrm{C}(214)$ - $\mathrm{C}(215)$	$1 \cdot 38(4)$
$\mathrm{C}(215)-\mathrm{C}(216)$	1-44(4)
$\mathrm{C}(216)-\mathrm{C}(211)$	$1 \cdot 33(4)$
$\mathrm{C}(\mathbf{2 2 1})-\mathrm{C}(222)$	1-44(4)
$\mathrm{C}(222)-\mathrm{C}(223)$	1-42(4)
$\mathrm{C}(223)-\mathrm{C}(224)$	$1 \cdot 34(4)$
$\mathrm{C}(224)-\mathrm{C}(225)$	$1.53(4)$
$\mathrm{C}(225)-\mathrm{C}(226)$	1-44(4)
$\mathrm{C}(226)-\mathrm{C}(221)$	1-38(4)
$\mathrm{C}(231)-\mathrm{C}(232)$	1-40(4)
$\mathrm{C}(232)-\mathrm{C}(233)$	$1 \cdot 44(4)$
$\mathrm{C}(233)-\mathrm{C}(234)$	$1 \cdot 40$ (4)
$\mathrm{C}(234)-\mathrm{C}(235)$	1.43(4)
$\mathrm{C}(235)-\mathrm{C}(236)$	1-43(4)
$\mathrm{C}(236)-\mathrm{C}(231)$	$1 \cdot 50(4)$

$\mathrm{C}(236)-\mathrm{C}(231) \quad 1 \cdot 50(4)$

132)	
$\mathrm{C}(131)-\mathrm{C}(132)-\mathrm{C}(133)$	117
$\mathrm{C}(132)-\mathrm{C}(133)-\mathrm{C}(134)$	122
$\mathrm{C}(133)-\mathrm{C}(134)-\mathrm{C}(135)$	118
(134)-C(135)-C(136)	126
35)-C(136)-C(131)	
$\mathrm{C}(136)-\mathrm{C}(131)-\mathrm{C}(132)$	
$\mathrm{P}(2)-\mathrm{C}(211)-\mathrm{C}(216)$	
$\mathrm{P}(2)-\mathrm{C}(211)-\mathrm{C}(212)$	
$\mathrm{C}(211)-\mathrm{C}(212)-\mathrm{C}(213)$	118
$\mathrm{C}(212)-\mathrm{C}(213)-\mathrm{C}(214)$	
13)-C(214)-C(215)	
$\mathrm{C}(214)-\mathrm{C}(215)-\mathrm{C}(216)$	$120(3)$
$\mathrm{C}(215)-\mathrm{C}(216)-\mathrm{C}(211)$	
C(212)	
$\mathrm{P}(2)-\mathrm{C}(221)-\mathrm{C}(226)$	
$\mathrm{P}(2)-\mathrm{C}(221)-\mathrm{C}(222)$	117 (2)
$\mathrm{C}(221)-\mathrm{C}(222)-\mathrm{C}(223)$	
$\mathrm{C}(222)-\mathrm{C}(223)-\mathrm{C}(224)$	123(3)
$\mathrm{C}(223)-\mathrm{C}(224)-\mathrm{C}(225)$	120(3)
24)-C(225)-C(226)	
(225)-C(226)-C(221)	118(2)
- $-\mathrm{C}(2$	

$\mathrm{P}(2)-\mathrm{C}(231)-\mathrm{C}(236) \quad 116(2)$
$\mathrm{P}(2)-\mathrm{C}(231)-\mathrm{C}(232) \quad 124(2)$
$\mathrm{C}(231)-\mathrm{C}(232)-\mathrm{C}(233) \quad 119(2)$
$\mathrm{C}(232)-\mathrm{C}(233)-\mathrm{C}(234) 123(3)$
$\mathrm{C}(233)-\mathrm{C}(234)-\mathrm{C}(235) \quad 118(3)$
$\mathrm{C}(234)-\mathrm{C}(235)-\mathrm{C}(236) \quad 123(2)$
$\mathrm{C}(235)-\mathrm{C}(236)-\mathrm{C}(231)$ 117(2)
$\mathrm{C}(236)-\mathrm{C}(231)-\mathrm{C}(232) \quad 120(2)$
agrees closely with the sum of the covalent radii for $d s p^{2}-\mathrm{Pt}(1.31)$ and for $s p^{3}-\mathrm{C}(0.77) .{ }^{7}$ As would be expected, the two $\mathrm{Pt}-\mathrm{P}$ distances are significantly different: $\mathrm{Pt}-\mathrm{P}(1)$, trans to F , is much the shorter, $2 \cdot 218(7) \AA$, while $\mathrm{Pt}-\mathrm{P}(2)$, trans to the $\left[\mathrm{CH}\left(\mathrm{CF}_{3}\right)_{2}\right]$ group, is $2 \cdot 310(7) \AA$. The $\mathrm{Pt}-\mathrm{P}(\mathrm{l})$ distance is among the

Figure 1 The molecule as seen along c^{*}, showing the atom numbering system. The phenyl carbon atoms are numbered sequentially around the ring, only positions 1 and 6 being indicated

Figure 2 The contents of the monoclinic unit cell seen in projection down b looking towards the origin. For clarity only one carbon atom of each phenyl group is shown
shortest that have been recorded ${ }^{\mathbf{8 - 1 4}}$ for square planar complexes of either Pt^{0} or $\mathrm{Pt}^{\mathrm{II}}$, in accordance with the general observation ${ }^{12}$ that $\mathrm{Pt}^{\mathrm{II}-\mathrm{P}}$ bonds are usually shorter than $\mathrm{Pt}^{0-\mathrm{P}}$ bonds, and that the $\mathrm{Pt}-\mathrm{P}$ distance will be at a minimum when no π-acceptor ligands are
${ }^{7}$ A. F. Wells, 'Structural Inorganic Chemistry,' 3rd edn., Clarendon Press, Oxford, 1962.
${ }^{8}$ G. Bombieri, E. Forsellini, C. Panattoni, R. Graziani, and G. Bandoli, J. Chem. Soc. (A), 1970, 1313.
${ }^{9}$ C. D. Cook, Pei-Tak Cheng, and S. C. Nyburg, J. Amer. Chem. Soc., 1969, 91, 2123.
${ }_{10}$ J. O. Glanville, J. M. Stewart, and S. O. Grim, J. Organometallic Chem., 1967, 7, P9.

11 R. Eisenberg and J. Ibers, Inovg. Chem., 1965, 4, 773.
12 V. G. Albano, G. M. Basso Ricci, and P. L. Bellon, Inorg. Chem., 1969, 8, 2109.
${ }^{13}$ A. C. Skapski and P. G. H. Troughton, J. Chem. Soc. (A), 1969, 2772.
${ }^{14}$ R. Mason and A. I. M. Rae, J. Chem. Soc. (A), 1970, 1767.
present. Bonds which are comparably short occur in $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}\left(\mathrm{OCMe}_{2} \mathrm{OO}\right)^{15} \quad(2 \cdot 24$ and $2 \cdot 27)$, and in $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}\left(\mathrm{CO}_{3}\right)^{16}(2 \cdot 24 \AA)$ where the $\mathrm{Pt}-\mathrm{P}$ bond is trans to an oxygen atom. The longer $\mathrm{Pt}-\mathrm{P}(2)$ bond in $\mathrm{PtF}\left[\mathrm{CH}\left(\mathrm{CF}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right.$ is similar to those found in $\left(\mathrm{Ph}_{3} \mathrm{P}_{2} \mathrm{Pt}\left[\mathrm{NC}\left(\mathrm{CF}_{3}\right)\right)_{2} \mathrm{~N},{ }^{17}(2 \cdot 28\right.$ and $2 \cdot 31 \AA)$.
The geometry of the triphenylphosphine and hexafluoroisopropyl ligands has not been determined sufficiently accurately for us to be able to detect any minor departures from regularity, but within the standard deviations given nothing calls for comment. The structure determination therefore serves to characterise the material unequivocally and to give a measurement
${ }^{15}$ R. Ugo, F. Conti, S. Cenini, R. Mason, and G. R. Robertson, Chem. Comm., 1968, 1498.
${ }^{16}$ F. Cariati, R. Mason, G. B. Robertson, and R. Ugo, Chem. Comm., 1967, 408.
of a $\mathrm{Pt}-\mathrm{F}$ bond length. As far as we are aware, no other crystal structure determinations have been carried out on molecules of this type. ${ }^{18,19}$ The packing of the molecules within the monoclinic unit cell is shown (in projection down b) in Figure 2. None of the intermolecular contacts is notably short.

We thank the S.R.C. for financial support, the Atlas Computer Laboratory for facilities and for help from Mrs. C. Hirst, and John Clemens for the crystals.
[3/455 Received, 1st March, 1973]
17 W. J. Bland, R. D. W. Kemmitt, I. W. Nowell, and D. R. Russell, Chem. Comm., 1968, 1065.

18 R. D. W. Kemmitt, R. D. Peacock, and J. Stocks, J. Chem. Soc. (A), 1971, 846.
19 K. R. Dixon and J. J. McFarland, Chem. Comm., 1972, 1274.

[^0]: ${ }^{3}$ N. W. Alcock, in 'Crystallographic Computing,' ed. F. R.

