Crystal Structure of Bis[hydroxo(triphenyl)arsonium(v)] Dodeca- μ -chloro-hexachloro-octahedro-hexaniobate(2-)

By Ross Anthony Field, David Leslie Kepert, Bruce William Robinson, and Allan Henry White, Department of Inorganic Chemistry, University of Western Australia, Nedlands 6009, Western Australia

Abstract

The crystal structure of the title compound has been determined by single-crystal photographic X-ray diffraction methods. The structure was solved from photographic data by the heavy-atom method and refined by blockdiagonal least-squares to $R 0.13$ for 2326 reflections. Crystals are monoclinic, space group, $P 2_{1} / n, a=15 \cdot 76(2)$, $b=22 \cdot 25(3), c=8 \cdot 62(1) \AA, \beta=91 \cdot 6(3)^{\circ}, Z=2$. The asymmetric unit is a $\left[\mathrm{Ph}_{3} \mathrm{AsOH}\right]+$ cation and one half of a centrosymmetric $\left[\left(\mathrm{Nb}_{6} \mathrm{Cl}_{12}\right) \mathrm{Cl}_{6}\right]^{2-}$ anionic cluster unit. Bond lengths within the cation agree well with previously determined values for similar species (mean C-C 1.39, mean C-As $1.91 \AA$): As-O is 1.73(2) A. The proximity of this bond to the special position ($\frac{1}{2}, 0,0$) , ($0 \frac{1}{2}, \frac{1}{2}$) and the $0-O^{\prime}$ distance of $2 \cdot 80 \AA$ suggests that the cation oxygens are linked by a pair of hydrogen bonds. The point-symmetry of the cluster does not differ significantly from O_{h}, the octahedron of niobium atoms (mean $\mathrm{Nb}-\mathrm{Nb} 3.01_{6} \AA$) being surrounded by the usual two sets of axial (6) and edge (12) chlorine atoms, (mean $\mathrm{Nb}-\mathrm{Cl} 2.48$ and $2.24 \AA$). These distances differ significantly from those found in clusters of different oxidation state.

EXPERIMENTAL

THE title compound was prepared by dissolving $\left[\left(\mathrm{Nb}_{6} \mathrm{Cl}_{12}\right)\right.$ $\left.\mathrm{Cl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right], 4 \mathrm{H}_{2} \mathrm{O}^{1}$ in warm dry ethanol, filtering to remove any insoluble residue and bubbling dry chlorine through the solution for ca. 3 min . The excess of chlorine was removed by flushing dry nitrogen through the solution for ca. 30 min ; excess of anhydrous triphenylarsine oxide in ethanol was then added and the solution set aside in air. Precipitation of the crystalline solid commenced after $2-3$ weeks and was allowed to continue until the solution was only faintly coloured. The product was filtered, washed with cold ethanol, and dried under vacuum (Found: C, 24.2; H, 2.5;
${ }^{1}$ R. A. Field, D. L. Kepert, and D. Taylor, Inorg. Chim. Acta, 1970, 4, 113.

As, $8 \cdot 9 ; \mathrm{Cl}, 32 \cdot 8 . \quad \mathrm{C}_{36} \mathrm{H}_{32} \mathrm{As}_{2} \mathrm{Cl}_{18} \mathrm{Nb}_{6} \mathrm{O}_{2}$ requires $\mathrm{C}, 23 \cdot 5$; $\mathrm{H}, 1 \cdot 8$; As, $8 \cdot 1$; $\mathrm{Cl}, 34 \cdot 6 \%$). The tantalum analogue was similarly prepared from a solution of anhydrous $\left(\mathrm{Ta}_{6} \mathrm{Cl}_{12}\right) \mathrm{Cl}_{3}$ dissolved in ethanol at $50^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 19 \cdot 2 ; \mathrm{H}, 2 \cdot 1 ; \mathrm{Cl}$, $26 \cdot 4 . \quad \mathrm{C}_{36} \mathrm{H}_{32} \mathrm{As}_{2} \mathrm{Cl}_{18} \mathrm{O}_{2} \mathrm{Ta}_{6}$ requires C , $18 \cdot 2 ; \mathrm{H}, 1 \cdot 4 ; \mathrm{Cl}$, 26.9%). The $\mathrm{Ta}_{6} \mathrm{Cl}_{15}$ was prepared from tantalum pentachloride and aluminium in a $400-200^{\circ} \mathrm{C}$ temperature gradient in anhydrous aluminium chloride solvent (Found: Cl , 32.9. $\mathrm{Ta}_{6} \mathrm{Cl}_{15}$ requires $\mathrm{Cl}, 32 \cdot 9 \%$). Salts of $\left[\left(\mathrm{Nb}_{6} \mathrm{Cl}_{12}\right) \mathrm{Cl}_{6}\right]^{2-},\left[\left(\mathrm{Ta}_{6} \mathrm{Cl}_{12}\right) \mathrm{Cl}_{6}\right]^{2-}$, and $\left[\left(\mathrm{Ta}_{6} \mathrm{Br}_{12}\right) \mathrm{Br}_{6}\right]^{2-}$ with other protonated oxygen containing ligands were prepared similarly. ${ }^{2}$
${ }^{2}$ R. A. Field, Ph.D. Thesis, University of Western Australia, 1972.

The conductivities of $\left(\mathrm{Ph}_{3} \mathrm{AsOH}\right)_{2}\left[\left(\mathrm{Nb}_{6} \mathrm{Cl}_{12}\right) \mathrm{Cl}_{6}\right]$ and the tantalum analogue in PhNO_{2} are typical for 2:1 electrolytes (47, $50 \mathrm{~cm}^{2} \Omega^{-1} \mathrm{~mol}^{-1}$ at $4 \times 10^{-4} \mathrm{M}$-respectively).

The i.r. spectrum of the niobium complex shows no As-O mode at $880 \mathrm{~cm}^{-1}$, typical of triphenylarsine oxide. A band at $1033 \mathrm{~cm}^{-1}$ is tentatively assigned to a deformation hydroxy-mode. All other bands $>400 \mathrm{~cm}^{-1}$ are typical of the organic cation. The spectrum in the region 245-400 cm^{-1} shows strong metal-chlorine absorptions at 353, 299, and $259 \mathrm{~cm}^{-1}$ typical of $\left[\left(\mathrm{Nb}_{6} \mathrm{Cl}_{12}\right) \mathrm{Cl}_{6}\right]^{--}$but not of $\left[\left(\mathrm{Nb}_{6} \mathrm{Cl}_{12}\right)\right.$ $\mathrm{Cl}_{6} 3^{3-}\left(340,290\right.$, and $\left.250 \mathrm{~cm}^{-1}\right)$ or $\left[\left(\mathrm{Nb}_{6} \mathrm{Cl}_{12}\right) \mathrm{Cl}_{6}\right]^{4-}(330,280$, and $\left.240 \mathrm{~cm}^{-1}\right)^{3}$ Similarly, the tantalum compound shows strong absorption at 335,292 , and $257 \mathrm{~cm}^{-1}$ characteristic of $\left[\left(\mathrm{Ta}_{6} \mathrm{Cl}_{12}\right) \mathrm{Cl}_{6}\right]^{2 "}$ but at frequencies significantly higher than for $\left[\left(\mathrm{Ta}_{6} \mathrm{Cl}_{12}\right) \mathrm{Cl}_{6}\right]^{7-}\left(330,285\right.$, and $\left.245 \mathrm{~cm}^{-1}\right)$ and $\left[\left(\mathrm{Ta}_{6} \mathrm{Cl}_{12}\right)\right.$ -$\left.\mathrm{Cl}_{6}\right]^{1^{-}}\left(325\right.$ and $\left.235 \mathrm{~cm}^{-1}\right) .^{3}$

The absorption spectrum of the title compound in ethanol shows bands at $7.9 \mathrm{kk}\left(\varepsilon c a .0 .301 \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} \times 10^{-3}\right.$), 10.35 ($0 \cdot 95$), $17 \cdot 0(0 \cdot 90), 21 \cdot 15$ ($13 \cdot 5$), $33 \cdot 8$ (64), and $42 \cdot 2(8 \cdot 9)$. For the tantalum analogue in PhNO_{2} solution absorption bands are observed at $8 \cdot 6,9 \cdot 05,12 \cdot 0,18 \cdot 8,22.75$, and 27.25 kk . The spectra are clearly diagnostic of $\left(\mathrm{M}_{6} \mathrm{Cl}_{12}\right)^{x+}$ clusters in the $\div 4$ oxidation state. ${ }^{4,5}$ The uncorrected gram susceptibilities of the title complex and the tantalum analogue are -0.174 and -0.284 c.g.s.u. respectively and are temperature-independent in the range $89-310 \mathrm{~K}$. Application of diamagnetic corrections ($-10^{6} \chi_{D}$ c.g.s.u., 220 for $\mathrm{Nb}_{6}, 250$ for $\mathrm{Ta}_{6}, 26$ for Cl , and 204 for $\mathrm{Ph}_{3} \mathrm{AsOH}$) yields corrected molar susceptibilities of 780×10^{-6} and $450 \times$ 10^{-6} respectively. These values and the difference between them are typical of the clusters in the +2 or +4 oxidation states. ${ }^{6}$

Analyses, electronic, and i.r. spectra, conductance and magnetic measurements were made as described preriously. ${ }^{1,7}$
Crystal Structure Determination.-Crystals suitable for λ-ray work were obtained by the slow evaporation of an ethanolic solution of the complex, as flattened rods, elongated along the c and flattened about the b axis. Sections suitable for data collection were cut from larger crystals as rectangular prisms of dimensions $0.05 \times 0.04 \times 0.06 \mathrm{~mm}$. Multiple-film equi-inclination Weissenberg data were obtained for two crystal sections about a and c, because of progressive crystal deterioration (see later); unit-cell climensions were obtained from zero-layer Weissenberg photographs about all axes, calibrated with aluminium powder $\left[a_{298 \mathrm{~K}}(\mathrm{Al}) 4 \cdot 0494 \AA\right]^{8}$
Crystal Data.- $\mathrm{C}_{36} \mathrm{H}_{32} \mathrm{As}_{2} \mathrm{Cl}_{18} \mathrm{Nb}_{6} \mathrm{O}_{2}, \quad M=1842$, Monoclinic, (pseudo-orthorhombic), $a=15 \cdot 76(2), b=22 \cdot 25(3)$, $c=8.62(1) \AA, \quad \beta=91.6(3)^{\circ}, \quad U=3021 \AA^{3}, \quad D_{\mathrm{m}} 2.00(2)$, $Z=2, D_{\mathrm{c}}=2 \cdot 02, F(000)=1764$, Ni-filtered $\mathrm{Cu}-K_{\alpha}$ radiation, $\lambda=1.5418 \AA,{ }^{9} \mu\left(\mathrm{Cu}-K_{\alpha}\right)=184 \mathrm{~cm}^{-1}$, transmission coefficient range $0.37-0.55$. Data layers $0-4 k l, h k 0-5$. 3898 Independent observed reflections. Space group $P 2_{1} / n\left(C_{2 h}^{5}\right.$, No. 14). ${ }^{10}$ Temperature 298 K .
Data were corrected for absorption, ${ }^{11}$ Lorentz and polarization factors, and scaled by internal correlation. ${ }^{12}$

[^0]The structure was solved by the heavy-atom method and refined (as described in ref. 13 ; Nb, As, and Cl atoms assigned anisotropic thermal parameters) by block-diagonal least squares to R, at convergence, $0 \cdot 148$; the significance of introducing anisotropic parameters was tested by a ratio test. ${ }^{14}$ At this stage an agreement analysis revealed a significantly higher value of R for the outer layers of data

Table 1
Final atomic parameters of the asymmetric unit

Atom	x	y	z	B / \AA^{2}
Nb (1)	0.0986(1)	0.0393(1)	0.1413(2)	*
$\mathrm{Nb}(2)$	$0.9072(1)$	0.0426(1)	$0 \cdot 1365(3)$	*
$\mathrm{Nb}(3)$	$0.9982(1)$	0.9236(1)	$0 \cdot 1486(3)$	*
As(1)	0.4909(2)	$0 \cdot 8571$ (1)	0.9713 (4)	*
$\mathrm{Cl}(1)$	0.1089(5)	0.9583(3)	$0.3253(8)$	*
$\mathrm{Cl}(2)$	$0 \cdot 8929$ (5)	$0.9624(3)$	$0 \cdot 3234(8)$	*
$\mathrm{Cl}(3)$	$0.0053(4)$	0.0922(3)	0.3104(7)	*
Cl(4)	$0 \cdot 1125(5)$	$0 \cdot 1312(3)$	0.9934 (8)	*
$\mathrm{Cl}(5)$	$0 \cdot 8981$ (4)	$0 \cdot 1350(3)$	$0 \cdot 9881$ (8)	*
$\mathrm{Cl}(6)$	$0 \cdot 2155(4)$	0.9965 (3)	$0 \cdot 0069$ (8)	*
$\mathrm{Cl}(7)$	$0 \cdot 2138(5)$	$0.0851(3)$	$0 \cdot 3036(9)$	*
${ }^{\mathrm{Cl}}(8)$	$0 \cdot 7980$ (5)	$0.0927(3)$	0.2947 (9)	*
$\mathrm{Cl}(9)$	$0.9967(5)$	0.8344(3)	$0 \cdot 3209(8)$	*
$\mathrm{O}(1)$	$0 \cdot 489$ (1)	0.934(1)	0.975 (2)	$6 \cdot 6(5)$
C(1)	$0 \cdot 392(2)$	$0 \cdot 828$ (1)	$0.086(3)$	$4 \cdot 1(5)$
C(2)	$0 \cdot 349$ (2)	0.871 (1)	$0 \cdot 160(4)$	6-2(7)
C(3)	$0 \cdot 379$ (2)	$0 \cdot 770$ (1)	$0 \cdot 079$ (4)	6-3(7)
C(4)	$0 \cdot 281$ (3)	0.848(2)	$0 \cdot 235(5)$	10-3(12)
C(5)	$0 \cdot 315$ (3)	$0 \cdot 748(2)$	$0 \cdot 158(5)$	9•7(11)
C(6)	$0 \cdot 261$ (2)	$0 \cdot 790$ (2)	0.245(4)	$7 \cdot 1$ (8)
$\mathrm{C}(7)$	$0 \cdot 594(2)$	$0.832(1)$	$0.082(3)$	$4 \cdot 5(5)$
C(8)	$0 \cdot 639$ (2)	$0 \cdot 885$ (1)	$0 \cdot 145(4)$	6-5(8)
$\mathrm{C}(9)$	$0 \cdot 612(2)$	$0 \cdot 775$ (1)	$0 \cdot 100(3)$	$5 \cdot 0(6)$
$\mathrm{C}(10)$	$0 \cdot 720$ (2)	$0 \cdot 860$ (2)	0.231(4)	7-2(8)
C(11)	$0 \cdot 684(2)$	0.754(1)	$0 \cdot 175$ (4)	6.2(7)
C(12)	$0 \cdot 737$ (2)	$0 \cdot 803(1)$	0.247(3)	$5 \cdot 8(7)$
C(13)	$0 \cdot 4.94(2)$	$0 \cdot 830$ (1)	$0 \cdot 772$ (3)	4-7(6)
C(14)	0.413(2)	$0 \cdot 810$ (1)	0.697(3)	$5 \cdot 7(7)$
C(15)	$0 \cdot 570$ (2)	$0 \cdot 828(1)$	$0 \cdot 696$ (4)	$5 \cdot 9(7)$
$\mathrm{C}(16)$	0.418(2)	0.791 (2)	0.551 (4)	7-1(8)
$\mathrm{C}(17)$	$0 \cdot 576(3)$	$0 \cdot 808(2)$	0.545 (5)	$9 \cdot 5(11)$
C(18)	0.506(2)	$0.212(2)$	$0 \cdot 513$ (4)	7.5(9)

* Final anisotropic thermal parameters ($\times 10^{4}$) of the form $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+\beta_{12} h k+\beta_{13} h l+\beta_{23} h l\right)\right]$.

Atomı	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
$\mathrm{Nb}(1)$	$42(1)$	$15 \cdot 8(4)$	$120(4)$	$-4(1)$	$-50(4)$	$-6(2)$
$\mathrm{Nb}(2)$	$42(1)$	$16 \cdot 7(5)$	$112(4)$	$1(1)$	$-39(4)$	$-4(2)$
$\mathrm{Nb}(3)$	$45(1)$	$14 \cdot 5(4)$	$122(4)$	$0(1)$	$-47(4)$	$2(2)$
$\mathrm{As}(1)$	$55(2)$	$19 \cdot 1(7)$	$205(7)$	$4(2)$	$-60(6)$	$-6(3)$
$\mathrm{Cl}(1)$	$51(3)$	$23(1)$	$114(11)$	$4(3)$	$-67(13)$	$10(5)$
$\mathrm{Cl}(2)$	$52(4)$	$22(1)$	$122(11)$	$-4(3)$	$8(12)$	$4(5)$
$\mathrm{Cl}(3)$	$54(4)$	$19(1)$	$114(10)$	$0(3)$	$-37(11)$	$-22(5)$
$\mathrm{Cl}(4)$	$56(4)$	$19(1)$	$135(11)$	$-10(4)$	$-57(12)$	$-3(6)$
$\mathrm{Cl}(5)$	$58(4)$	$17(1)$	$109(9)$	$4(3)$	$-49(11)$	$-2(5)$
$\mathrm{Cl}(6)$	$38(3)$	$27(2)$	$149(12)$	$2(3)$	$-56(12)$	$-15(7)$
$\mathrm{Cl}(7)$	$57(4)$	$32(2)$	$149(13)$	$-13(4)$	$-121(13)$	$-25(8)$
$\mathrm{Cl}(8)$	$49(3)$	$28(2)$	$174(13)$	$7(4)$	$-9(12)$	$-23(7)$
$\mathrm{Cl}(9)$	$80(5)$	$19(1)$	$146(11)$	$6(4)$	$-57(13)$	$24(5)$

$4 k l$ and $h k 5, R$ being >0.16 for these, probably as a result of crystal deterioration. On removing the suspect data
${ }^{8}$ B. W. Delf, J. Appl. Phys., 1963, 14, 345.

- 'International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962, p. 59.

10 Ref. 9, vol. I, 2nd edn., 1965.
${ }^{11}$ N. W. Alcock, in 'Crystallographic Computing,' Munksgaard, Copenhagen, 1971, p. 271.
12 W. C. Hamilton, J. S. Rollett, and R. A. Sparks, Acta Cryst., 1965, 18, 129.
${ }^{13}$ P. W. G. Newman and A. H. White, J.C.S. Dalton, 1972, 1460 ; J. M. Martin, P. W. G. Newman, B. W. Robinson, and A. H. White, ibid., p. 2233.

14 W. C. Hamilton, Acta Cryst., 1965, 18, 502.
contributed by these two layers, R fell to $0 \cdot 135$ for 2326 reflections. Final weighting scheme parameters were: $a=4.55, b=0.055$ in a weighing scheme of the form $w=$ $\left(a+\left|F_{o}\right|+b\left|F_{o}\right|^{2}\right)^{-1} .^{15}$ We attribute our inability to refine the structure further to non-uniformity of the data, owing to the use of two crystals and their decomposition; under these circumstances we consider the final R value of 0.135
subsequent Tables and discussion, the estimated standard deviations in the final digit, given in parentheses, are derived by a block-diagonal process $(3 \times 3,6 \times 6)$ and are likely to be underestimates.] Unit-cell contents and atomic labelling are given in the Figure; interatomic distances and angles ${ }^{\mathbf{1 6}}$ are given in Table 2. Scattering factors for all atoms except niobium were for the neutral atoms, ${ }^{17}$ those

The contents of the unit cell viewed down the c axis, showing the atom labelling; primed atoms are inversely related to the reference atom
satisfactory. During the final cycle of least-squares refinement, positional and thermal parameter shifts for the anisotropic atoms were 0.05σ and 0.1σ for the remainder. The final set of structure factors for $R 0.135$ is listed in Supplementary Publication No. SUP 20694 (4 pp., 1 microfiche).* No significant peaks were observed in a difference map computed after the final round of least squares. There was no evidence for disorder in the structure. Final atomic positional and thermal parameters, together with estimated standard deviations are given in Table 1. [Here, and in

[^1]for arsenic and chlorine being corrected for anomalous dispersion $\left(\Delta f^{\prime}\right) ;{ }^{\mathbf{1 8}}$ scattering factors for niobium were taken from refs. 19 and 20 and corrected for anomalous dispersion $\left(\Delta f^{\prime}, \Delta f^{\prime \prime}\right) .^{21}$

Computing was carried out on the DEC PDP10 computer at the University of Western Australia.

DISCUSSION

The crystal is composed of two distinct species based respectively on the triphenylarsine oxide and the $\left[\left(\mathrm{Nb}_{6} \mathrm{Cl}_{12}\right) \mathrm{Cl}_{6}\right]$ units.

17 J. A. Ibers, ref. 9, p. 210.
18 D. H. Templeton, ref. 9, p. 213.
${ }^{19}$ D. T. Cromer and J. T. Waber, Acta Cryst., 1965, 18, 104.
${ }^{20}$ D. T. Cromer, Acta Cryst., 1965, 18, 17.
${ }^{21}$ D. T. Cromer, Acta Cryst., 1965, 19, 224.

Table 2
Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$. Primed atoms are related to the reference atoms by an inversion
(a) In the cation $\left[\mathrm{Ph}_{3} \mathrm{AsOH}_{3}\right]^{+}$

(i) Distances	
As-O	1•73(2)
As-C(1)	1-98(2)
As-C(7)	1.94(3)
$\mathrm{As}-\mathrm{C}(13)$	$1.83(3)$
$\mathrm{C}(1)-\mathrm{C}(2)$	1-34(4)
$\mathrm{C}(1)-\mathrm{C}(3)$	$1 \cdot 30$ (4)
$\mathrm{C}(2)-\mathrm{C}(4)$	$1 \cdot 37$ (4)
$\mathrm{C}(3)-\mathrm{C}(5)$	1.33(4)
$\mathrm{C}(4)-\mathrm{C}(6)$	1-33(3)
$\mathrm{C}(5)-\mathrm{C}(6)$	1-48(4)
$\mathrm{C}(7)-\mathrm{C}(8)$	1-47(4)
$\mathrm{C}(7)-\mathrm{C}(9)$	1-31(3)
$\mathrm{C}(8)-\mathrm{C}(10)$	1.56(5)
$\mathrm{C}(9)-\mathrm{C}(11)$	1.37(4)
$\mathrm{C}(10)-\mathrm{C}(12)$	$1 \cdot 30$ (3)
$\mathrm{C}(11)-\mathrm{C}(12)$	$1 \cdot 50$ (4)
$\mathrm{C}(13)-\mathrm{C}(14)$	1-48(4)
$\mathrm{C}(13)-\mathrm{C}(15)$	$1 \cdot 38(4)$
$\mathrm{C}(14)-\mathrm{C}(16)$	$1 \cdot 33(4)$
$\mathrm{C}(15)-\mathrm{C}(17)$	$1.38(4)$
$\mathrm{C}(16)-\mathrm{C}(18)$	1.33 (5)
$\mathrm{C}(17)-\mathrm{C}(18)$	1-44(5)
(ii) Angles	
$\mathrm{O}-\mathrm{As}-\mathrm{C}(1)$	108(1)
$\mathrm{O}-\mathrm{As}-\mathrm{C}(7)$	107(1)
$\mathrm{O}-\mathrm{As}-\mathrm{C}(13)$	110(1)
$\mathrm{C}(1)-\mathrm{As}-\mathrm{C}(7)$	109(1)
$\mathrm{C}(1)-\mathrm{As}-\mathrm{C}(13)$	114(1)
$\mathrm{C}(7)-\mathrm{As}-\mathrm{C}(13)$	109(1)
As-C(1)-C(2)	115(2)
$\mathrm{As}-\mathrm{C}(1)-\mathrm{C}(3)$	115(2)
As-C(7)-C(8)	110(2)
$\mathrm{As}-\mathrm{C}(7)-\mathrm{C}(9)$	121(2)
As-C(13)-C(14)) 118(2)
$\mathrm{As}-\mathrm{C}(13)-\mathrm{C}(15)$) 120(2)

Table 2 (Continued)

(c) Other interatomic distances $(<3.9 \AA)$

$\mathrm{Cl}(1) \cdots \mathrm{C}(4)$	3•76(5)	$\mathrm{Cl}(6) \cdots \mathrm{C}(2)$	3•72(4)
$\mathrm{Cl}(2) \cdots \mathrm{C}(10)$	3.62(4)	$\mathrm{Cl}(6) \cdots \mathrm{C}\left(8^{\prime}\right)$	3•76(3)
$\mathrm{Cl}(4) \cdots \mathrm{C}\left(10^{\prime}\right)$	3.32(4)	$\mathrm{Cl}(7) \cdots \mathrm{C}\left(5^{\text {III }}\right)$	3.67(4)
$\mathrm{Cl}(4) \cdots \mathrm{C}\left(12^{\prime}\right)$	3-52(3)	$\mathrm{Cl}(8) \cdots \mathrm{C}\left(11^{\mathrm{III}}\right)$	3.61(3)
$\mathrm{Cl}(4) \cdots \mathrm{C}\left(18 \mathrm{l}^{\text {II }}\right)$	3-88(4)	$\mathrm{Cl}(9) \cdots \mathrm{C}\left(13^{\text {II }}\right)$	3.68(3)
$\mathrm{Cl}(4) \cdots \mathrm{C}\left(16^{\mathrm{III}}\right)$	$3 \cdot 61$ (3)	$\mathrm{Cl}(9) \cdots \mathrm{C}\left(14^{\mathrm{II}}\right)$	3.62(3)
$\mathrm{Cl}(5) \cdots \mathrm{C}\left(4^{\prime}\right)$	$3 \cdot 39$ (5)	$\mathrm{Cl}(9) \cdots \mathrm{C}\left(16^{\text {II }}\right)$	3.82(3)
$\mathrm{Cl}(5) \cdots \mathrm{C}\left(6^{\prime}\right)$	3.58(3)	$\mathrm{Cl}(9) \cdots \mathrm{C}\left(3{ }^{\text {II }}\right)$	3•75(3)
$\mathrm{Cl}(5) \cdots \mathrm{C}\left(18^{\mathrm{III}}\right)$	3•81(4)	$\mathrm{Cl}(9) \cdots \mathrm{C}\left(9^{\text {II }}\right)$	3-85(3)
$\mathrm{Cl}(5) \cdots \mathrm{C}\left(17^{\text {III }}\right)$	3•88(4)		

Roman numerals as superscripts refer to the following equivalent positions relative to the reference molecule at x, y, z :
II $\frac{1}{2}+x$, $\frac{1}{2}-y$, $\frac{1}{2}+z \frac{1}{2}-x$, $\frac{1}{2}+y$, $\frac{1}{2}-z$

Interionic distances $<3.9 \AA$ (Table 2) consist of chlorine-carbon contacts which are comparable with the $\mathrm{C}-\mathrm{H} \cdot \mathrm{Cl}$ van der Waal's contact or the aromatic ring-chlorine contact of $3 \cdot 50 \AA .{ }^{22}$

Cation Geometry.-The individual $\mathrm{Ph}_{3} \mathrm{AsO}$ units have no intrinsic symmetry imposed by the requirements of the space group. Within the phenyl groups, the carboncarbon distances vary between $1 \cdot 30$ and 1.50 , mean $1 \cdot 39$ \AA, which compares well with the distance in benzene ($1 \cdot 40 \AA$) and also in triphenylarsine oxide hydrate $(1.38 \AA) .{ }^{23}$ The standard deviations are high, however (ca. $0.04 \AA$), and, in the context of block-diagonal leastsquares estimates, poor data and dominance of the structure by the heavy atoms, it is unlikely that the differences are significant. Carbon-arsenic distances, to which the same factors apply, range from 1.83 to $1.98 \AA$, mean $1.92 \AA$, which agrees with that in triphenylarsine oxide hydrate $[1.907(9) \AA]$ and in $\left[\mathrm{Ph}_{3} \mathrm{AsO}\left(\mathrm{HgCl}_{2}\right)\right]_{2}$ $[1.91(5) \AA] . .^{24} \mathrm{C}-$ As -O angles are $107-114^{\circ}$ and do not differ significantly from the tetrahedral angle. The arsenic-oxygen distance $[1.73(2) \AA]$ is of interest, despite the rather low accuracy. It is longer than the doublebond value of $1 \cdot 644(7)$ found in $\left(\mathrm{Ph}_{3} \mathrm{AsO}\right), \mathrm{H}_{2} \mathrm{O}^{23}$ and $1 \cdot 66(2) \AA$ in $\left[\mathrm{Ph}_{3} \mathrm{AsO}\left(\mathrm{HgCl}_{2}\right)\right]_{2}{ }^{24}$ and more in line with the 'single-bond' values $1.697(14)$, and $1.702(14) \AA$ in
${ }^{22}$ L. Pauling, 'The Nature of the Chemical Bond,' Cornell University Press, Ithaca, New York, 1960 , p. 260.
${ }^{23}$ G. Ferguson and E. W. Macaulay, J. Chem. Soc. (A), 1969, 1. ${ }^{24}$ C-I. Branden, Arkiv Kemi, 1964, 22, 485.
$\left(\mathrm{Ph}_{3} \mathrm{AsOH}\right) \mathrm{Cl},{ }^{25} 1 \cdot 712(12)$ in $\left(\mathrm{Ph}_{3} \mathrm{AsOH}\right) \mathrm{Br}^{26}$ and $1 \cdot 69 \AA$ in o-phenylenediarsine oxide chloride. ${ }^{5}$ The oxygen atom of this species is located close to the special position $\left(0,0, \frac{1}{2}\right),\left(\frac{1}{2}, \frac{1}{2}, 0\right)$, of symmetry $\overline{1}$, and is thus at a distance of $2.80 \AA$ from its inversion image. The proximity of the two oxygens at about the van der Waal's contact of $2.80 \AA$ and a distance comparable with the $\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}$ distance in ice ($2.75 \AA$), , 22,27 suggests the presence of hydrogen bonds between pairs of cations. However, the presence of only four hydrogen bonds in such a large unit cell, coupled with the bulk of both cation and anion presumably prevents the usual infinite polymeric or large cyclic hydrogen bonded network. The symmetry requirements of the special position require a similarly centrosymmetric disposition of the protons. Three possibilities seem the most likely: (i) There are two hydrogen bonds of the type: $\mathrm{O} \cdot{ }_{\cdot \mathrm{H}}^{\mathrm{H} \cdot} \because \mathrm{O}$. We are not aware of any comparable examples of this type of dual hydrogen bridge.
(ii) A proton is sited on the centre of symmetry, $\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}$. There is a precedent for this type in the recently reported ${ }^{28}$ structure of $\left[\left(\mathrm{Ph}_{3} \mathrm{AsO}\right)_{2} \mathrm{H}^{+}\right]_{2^{-}}$ $\left(\mathrm{Hg}_{2} \mathrm{Br}_{6}\right)^{2-}$, in which the oxygen atoms are related in pairs to alternate pairs via a centre of symmetry; within each pair the oxygen-oxygen distance is short $[2 \cdot 40(3) \AA]$. The position of the hydrogen atom is supposed to be midway between these oxygen atoms. The $\mathrm{O} \cdots \mathrm{O}$ distance is rather shorter than ours $(2 \cdot 80 \AA)$ and the As-O distance $[1.68(2) \AA]$ is similar to that $[1.73(2) \AA]$ in the present structure. (There are also comparable difficulties in formulating the cationic species.) If this were, in fact, the species present in the niobium structure, and if the anion is formulated as described, then a second proton must be accounted for. The substantial flatness of the difference Fourier makes it unlikely, even on a basis of partial occupancy, that a solvated proton exists in the lattice; moreover, this would require occupancy of a further special position by the solvated species which would be unlikely to be capable of satisfying the 1 symmetry requirements. There may also be the possibility that the space group $P 2_{1} / n$ is only an approximation to one of lower symmetry; however, any unsymmetric distribution of the final proton would be likely to require an associated distortion of some of the other atoms. This seems unlikely and there is no evidence to suggest that the symmetry is in any way less than that of $P 2_{1} / n$.
(iii) Some dynamic arrangement involving instantaneous asymmetric hydrogen bonding, but which becomes centrosymmetric on a time-averaged basis.

Anion Geometry.-The anion consists of an octahedron of niobium atoms surrounded by two types of chlorine atoms: ' bridging', above each of the twelve edges of

[^2]the niobium cluster and equidistant from the pair of niobium atoms in that edge, and 'terminal ', along the rectangular set of axes passing through the vertices of the octahedron. The $\left[\left(\mathrm{Nb}_{6} \mathrm{Cl}_{12}\right) \mathrm{Cl}_{6}\right]$ is centrosymmetric about the special position $(0,0,0)$, $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ which has symmetry $\overline{1}$, and in which it is central. Within the cluster, the niobium-niobium distances lie between 3.011 and $3.027 \AA$; as the block-diagonal refinement yields standard deviations of $0.003 \AA$ and the accuracy of the unit-cell calibrations is no better than 0.1% in each dimension, it is unlikely that the differences are significant. The octahedron is therefore apparently regular with a mean niobium-niobium distance of $3.016 \AA$, the opposed cluster distances being substantially equal [$4 \cdot 26(1) \AA]$. Bridging chlorine atoms lie $2 \cdot 42 \AA$ from the niobium atoms, whereas the terminal chlorines are $2.48 \pm 0.01 \AA$. Angles within the cluster are typically those expected for undistorted octahedra, means: $\mathrm{Nb}-\mathrm{Nb}-\mathrm{Nb} 60 \cdot 0$ and $90 \cdot 1, \mathrm{Cl}-\mathrm{Nb}-\mathrm{Nb} 179 \cdot 6, \mathrm{Nb}-\mathrm{Cl}(\mathrm{br})-$ $\mathrm{Nb} 77 \cdot 1$, and $\mathrm{Cl}($ term $)-\mathrm{Nb}-\mathrm{Cl}(\mathrm{br}) 83 \cdot 6^{\circ}$.

Table 3 summarises structural data on $\left(\mathrm{M}_{6} \mathrm{Cl}_{12}\right)^{x+}$

Table 3

Structural data (\AA) available on $\left(\mathrm{M}_{6} \mathrm{Cl}_{12}\right)^{x+}$ cluster compounds				
	Electrons ${ }^{\text {a }}$	M-M	$\mathrm{M}-\mathrm{Cl}(\mathrm{br})$	$\mathrm{M}-\mathrm{Cl}($ term)
$\left(\mathrm{Pt}_{6} \mathrm{Cl}_{12}\right)^{\boldsymbol{b}}$	0 (or 48)	$3 \cdot 36$	$2 \cdot 37$	
$(\mathrm{pyH})_{2}\left[\left(\mathrm{Nb}_{6} \mathrm{Cl}_{12}\right) \mathrm{Cl}_{6}\right]^{\text {c }}$	14	3.02	$2 \cdot 43$	$2 \cdot 48$
$\left(\mathrm{Me}_{4} \mathrm{~N}\right)_{2}\left[\left(\mathrm{Nb}_{6} \mathrm{Cl}_{12}\right) \mathrm{Cl}_{6}\right]{ }^{\text {d }}$	14	$3 \cdot 02$	$2 \cdot 42$	$2 \cdot 46$
$\begin{aligned} & \left(\mathrm { Ph } _ { 3 } \mathrm { AsOH } _ { 2 } \left[\left(\mathrm{Nb}_{6} \mathrm{Cl}_{12}\right)-\right.\right. \\ & \left.\mathrm{Cl}_{a}\right] \text { e } \end{aligned}$	14	$3 \cdot 02$	$2 \cdot 42$	$2 \cdot 48$
$\mathrm{H}_{2}\left[\left(\mathrm{Ta}_{6} \mathrm{Cl}_{12}\right) \mathrm{Cl}_{6}\right], 6 \mathrm{H}_{2} \mathrm{O} /$	14	$2 \cdot 96$	$2 \cdot 41$	2.51
$\left(\mathrm{Ta}_{6} \mathrm{Cl}_{12}\right) \mathrm{Cl}_{6 / 2}{ }^{\circ}$	15	2.92	$2 \cdot 43$	$2 \cdot 56$
$\mathrm{K}_{4}\left[\left(\mathrm{Nb}_{6} \mathrm{Cl}_{12}\right)^{2} \mathrm{Cl}_{6}\right]^{h}$	16	$2 \cdot 91$	$2 \cdot 49$	$2 \cdot 60$
$\left(\mathrm{W}_{6} \mathrm{Cl}_{12}\right) \mathrm{Cl}_{6}{ }^{\text {i }}$	18	$2 \cdot 92$	$2 \cdot 30$	$2 \cdot 5$

${ }^{a}$ No. of electrons available for metal-metal bonding. ${ }^{\boldsymbol{b}} \mathrm{K}$. Brodersen, G. Thiele, and H. G. Schncring, Z. anorg. Chem., 1965, 33\%, 120. ${ }^{\text {c B. Spreckelmeyer and H.-G. v. }}$ Schnering, Z. anorg. Chem., 1971, 386, 27. a F. W. Koknat and R. E. McCarley, Inorg. Chem., 1972, 11, 812. e This work. f C. B. Thaxton and R. A. Jacobson, Inorg. Chem., 1971, 10, 1460. g. Bauer and H.-G. v. Schnering, Z. anorg. Chem., 1968, 361, 259. ${ }^{\text {t A. Simon, H.-G. v. Schnering, and H. }}$ Schafer, Z. anorg. Chem., 1968, 361, 235. i R. Siepmann, H.-G. v. Schnering, and H. Schafer, Angew. Chem. Internat. Edn., 1967, 6, 637.
clusters, in which the ligands in all six terminal sites are equivalent, and hence the cluster is relatively undistorted. ${ }^{1}$

It can be seen that the anion geometry in $\left(\mathrm{Ph}_{3} \mathrm{AsOH}\right)_{2^{-}}$ $\left[\left(\mathrm{Nb}_{6} \mathrm{Cl}_{12}\right) \mathrm{Cl}_{6}\right]$ is in good agreement with that found in the pyridinium and the tetramethylammonium salts. The analogous tantalum cluster $\mathrm{H}_{2}\left[\left(\mathrm{Ta}_{6} \mathrm{Cl}_{12}\right) \mathrm{Cl}_{6}\right], 6 \mathrm{H}_{2} \mathrm{O}$ has significantly shorter metal-metal distances (2.96 compared with $3.02 \AA$), which is in line with the expected increase in metal-metal bonding for tantalum compared with niobium compounds. ${ }^{29,30}$ Similarly the metal-

[^3]terminal-chlorine bonds are slightly longer in the tantalum compound (2.51 vs. $2 \cdot 48 \AA$), and if significant reflect the decrease in metal-terminal-ligand bonding as the metal-metal bonding increases. ${ }^{1}$

Table 4 also shows that the metal-metal distances in $\left[\left(\mathrm{Nb}_{6} \mathrm{Cl}_{12}\right) \mathrm{Cl}_{6}\right]^{2-}$ are significantly longer (3.02 vs. $2.91 \AA$) and the metal-chlorine bonds significantly shorter ($2 \cdot 42$ and $2 \cdot 48 \AA$, vs. $2 \cdot 49$ and $2 \cdot 60 \AA$) than in $\left[\left(\mathrm{Nb}_{6} \mathrm{Cl}_{12}\right)\right.$ -$\left.\mathrm{Cl}_{6}\right]^{4-}$, which has two more electrons available for metalmetal bonding. These changes are also reflected in the lower-energy metal-metal bonding to metal-metal antibonding electronic transitions in the visible spectra, and
${ }^{31}$ P. C. Healy, D. L. Kepert, D. Taylor, and A. H. White, J.C.S. Dalton, 1973, 646.
${ }^{32}$ H.-G. v. Schnering, Z. anorg. Chem., 1971, 385, 75.
in the higher-energy niobium-chlorine vibrational frequencies, for the oxidised clusters (see Experimental section).

Clusters containing 24 electrons available for metalmetal bonding however have much shorter metal-metal distances ($2 \cdot 62 \AA$) and adopt a different geometry based on the $\left[\left(\mathrm{M}_{6} \mathrm{Cl}_{8}\right) \mathrm{Cl}_{6}\right]^{2-}$ structure. ${ }^{31,32}$
R. A. F. acknowledges the financial assistance of a Commonwealth post-graduate award. We thank the Australian Research Grants Committee for financial support of part of this work, A. O'Connell, B. O'Connor, and G. B. Robertson for helpful advice, and B. N. Figgis and E. N. Maslen for making programs available.
[2/2771 Received, 8th December, 1972$]$.

[^0]: ${ }^{3}$ P. B. Fleming, J. L. Meyer, W. K. Grindstaff, and R. E. McCarley, Inorg. Chem., 1970, 9, 1769 and references therein.
 ${ }_{5}^{4}$ B. Spreckelmeyer, Z. anorg. Chem., 1969, 365, 225.
 ${ }^{5}$ P. B. Fleming and R. E. McCarley, Inorg. Chem., 1970, 9, 1347.
 ${ }^{6}$ J. G. Converse and R. F. McCarley, Inorg. Chem., 1970, 9, 1361.
 ${ }^{7}$ R. L. Deutscher and D. L. Kepert, Inerg. Chem., 1970, 9, 2305.

[^1]: * See Notice to Authors No. 7 in J.C.S. Dalton, 1972, Index issue (items less than 10 pp . are supplied as full size copies).
 ${ }^{15}$ D. W. Cruickshank, in 'Computing Methods in X-Ray Crystallography,' ed. J. S. Rollett, Pergamon Press, Oxford, 1965, p. 114.
 ${ }^{16}$ M. E. Pippy and F. R. Ahmed, Divn. Pure and Appl. Phys., NRC Ottawa, Canada, Program NRC 12.

[^2]: ${ }^{25}$ G. Ferguson and E. W. Macaulay, Chem. Comm., 1968, 1288.
 ${ }^{26}$ W. R. Cullen and J. Trotter, Canad. J. Chem., 1962, 40, 1113.
 ${ }^{27}$ M. Blackman and N. D. Lisgarten, Proc. Roy. Soc., 1957, A, 239, 93.

[^3]: ${ }^{28}$ G. S. Harris, F. Inglis, J. McKechnie, K. K. Cheung, and G. Ferguson, Chem. Comm., 1967, 442.
 ${ }_{29}$ D. L. Kepert and R. Mandyczewsky, Inorg. Chem., 1968, 7, 2091.
 ${ }^{30}$ D. L. Kepert, 'The Early Transition Metals,' Academic Press, London, 1972.

