Structural Investigations of Metal-Nitrate Complexes. Part VII.t Crystal and Molecular Structure of Aquodinitratobis(quinoline)cadmium(ii)

By A. Forbes Cameron * and Derek W. Taylor, Department of Chemistry, University of Glasgow, Glasgow G12 800
Robert H. Nuttall, Department of Chemistry, University of Strathclyde, Glasgow G1

The structure of the title compound has been determined by three-dimensional X-ray analysis from diffractometer data. Crystals are monoclinic, space group $P 2_{1} / c$, with $Z=4$ in a unit cell of dimensions $a=11 \cdot 018 \pm 0 \cdot 005$, $b=8.585 \pm 0.005, c=23.756 \pm 0.009 \AA, \beta=91.07 \pm 0.02^{\circ}$. The structure was solved by the heavy-atom method and refined by least-squares calculations to a final R of 0.08 for 3697 independent reflexions. The molecule is a seven-co-ordinate monomer with non-equivalent bidentate nitrate groups. The bonding environment of the cadmium is a distorted pentagonal bipyramid, and there is a complex system of intermolecular hydrogen bonding.

Quinoline complexes of the type $\mathrm{M}(\text { quin })_{2}\left(\mathrm{NO}_{3}\right)_{2}$ $\left(\mathrm{M}=\mathrm{Co}^{I I}, \mathrm{Ni}^{I I}, \mathrm{Cu}{ }^{\mathrm{II}}\right.$, and $\mathrm{Zn}^{\text {II }}$) have previously been examined, ${ }^{1}$ and it has been suggested that they possess structures which are closely related to that of $\left(\mathrm{Me}_{3} \mathrm{PO}\right)_{2^{-}}$ $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}{ }^{2}$ It might also be expected that the corresponding cadmium(II) complex would belong to this structural type, although a polymeric species involving bridging nitrato-groups is also possible. However, our attempts to prepare $\mathrm{Cd}(\text { quin })_{2}\left(\mathrm{NO}_{3}\right)_{2}$ proved unsuccessful, and the only crystalline compound which resulted was the mono-hydrated species $\mathrm{Cd}(\text { quin })_{2}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$. We therefore determined the crystal structure of the latter complex, not only in an effort to gain some information about the anhydrous parent compound, but also to examine the geometry of the nitrate group in the presence both of a water molecule and also of a ligand bulkier than pyridine.

EXPERIMENTAL

Preparation of Crystals.-Crystals were prepared from a solution of ethanol-2,2-dimethoxypropane 1:1 containing stoicheiometric amounts of $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}, 4 \mathrm{H}_{2} \mathrm{O}$ and quinoline, as colourless needles with the needle-axis corresponding to b. To avoid atmospheric decomposition in the X-ray

[^0]beam, the crystals were enclosed in thin-walled glass tubes.
Crystal Data.- $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{CdN}_{4} \mathrm{O}_{7}, \quad M=512 \cdot 8$, Monoclinic, $a=11.018 \pm 0.005, \quad b=8.585 \pm 0.005, \quad c=23.756 \pm$ $0.009 \AA, \beta=91.07 \pm 0.02^{\circ}, U=2247 \AA^{3}, \quad D_{\mathrm{m}}=1.51$, $Z=4, \quad D_{\mathrm{c}}=1.52, \quad F(000)=1024$, Space group $P 2_{1} / c$ ($C_{2 h}^{5}$, No. 14) from systematic absences. Mo- $K_{\alpha} X$-rays, $\lambda=0.7107 \AA, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=10.1 \mathrm{~cm}^{-1}$.

Crystallographic Measurements.-Unit-cell parameters were initially determined from oscillation and Weissenberg photographs taken with $\mathrm{Cu}-K_{\alpha}$ radiation ($\lambda=1 \cdot 5418 \AA$), and from precession photographs taken with $\mathrm{Mo}-K_{\alpha}$ radiation. These were subsequently adjusted by leastsquares refinement of θ, χ, and ϕ setting angles of 12 reflexions determined on a Hilger and Watts Y290 diffractometer.

For the intensity measurements, zirconium-filtered molybdenum radiation was used and 3944 reflexions were collected by use of the $\omega-20$ scan technique. Of these, 3697 reflexions were considered observed, having $I \geqslant 1 \sigma(I)$, where σ was determined from counter-statistics. Values of I were corrected for Lorentz-polarisation effects but no corrections for absorption were made.

Structure Determination and Refinement.-The entire structure was determined by conventional Patterson and electron-density calculations with initial phasing appropriate to the cadmium atom. Several cycles of structure-
${ }^{2}$ F. A. Cotton and R. H. Soderberg, J. Amer. Chem. Soc., 1963, 85, 2402.
factor and electron-density calculations effected preliminary refinement and reduced R to $0 \cdot 23$. During these preliminary calculations an overall isotropic vibration parameter $U_{\text {iso }}\left(0.06 \AA^{2}\right)$, was assigned to the atoms.

The least-squares refinement of positional, thermal, and scale parameters converged after 11 cycles, when R was 0.08 and $R^{\prime}\left(=\Sigma w \Delta^{2} / \Sigma w F_{0}{ }^{2}\right)$ was 0.011 . Removal of those planes for which $I \geqslant 2 \sigma(I)$ left 3029 independent data, and a structure-factor calculation using the final parameters resulted in $R 0.06$ and $R^{\prime} 0 \cdot 008$. After cycle 5 , a differenceFourier synthesis was calculated which revealed positions for all the hydrogen atoms. In subsequent cycles these were refined with isotropic temperature factors (for details of the refinement see Table 1). The refinement of anisotropic thermal parameters necessitated the use of the

Table 1

Course of refinement			
cles	Parameters refined	$\underset{R}{\text { Final }}$	$\underset{R^{\prime}}{\text { Final }^{\prime}}$
1-4	$x, y, z, U_{\text {iso }}$ for $\mathrm{Cd}, \mathrm{N}, \mathrm{O}, \mathrm{C}$; layer scale factors, unit weights, full matrix	0.114	$0 \cdot 0433$
5-6	$x, y, z, U_{\text {iso }}$ for $\mathrm{Cd}, \mathrm{N}, \mathrm{O}, \mathrm{C}$; layer scale factors, weighting scheme adjusted, full matrix	$0 \cdot 103$	0.0372
7-8	$x, y, z, U_{\text {iso }}$ for $\mathrm{Cd}, \mathrm{N}, \mathrm{O}, \mathrm{C}, \mathrm{H}$; one overall scale factor, weighting scheme adjusted, full matrix	$0 \cdot 100$	$0 \cdot 0298$
9-11	$x, y, z, U_{i j}(i, j=1,2,3)$ for $\mathrm{Cd}, \mathrm{N}, \mathrm{O}, \mathrm{C}$; weighting scheme, block-diagonal approximation to normal-equation matrix	0.078	0.0112
12	Planes having $I \leqslant 2 \sigma(I)$ removed	0.060	0.0081

block-diagonal approximation to the normal-equation matrix because of computer-store limitations. In all refinement cycles, a weighting scheme of the form: $\sqrt{ } w=$ $\left[\left\{1+\exp \left[-p_{1}(\sin \theta / \lambda)^{2}\right]\right\} /\left(1+p_{2}\left|F_{0}\right|+p_{3}\left|F_{0}\right|^{2}\right)\right]^{\frac{1}{2}} \quad$ was applied. Initially the p parameters were chosen to give unit weights to all reflexions, but were varied in later cycles as indicated by a $\left|F_{0}\right|$ and $(\sin \theta / \lambda)$ analysis of $\Sigma w \Delta^{2}$. Final values are $p_{1} 50, p_{2} 0.001$, and $p_{3} 0.01$.

At the conclusion of the refinement a difference-Fourier synthesis and final electron-density distribution were calculated. These revealed no errors in the structure. In all structure-factor calculations, atomic scattering factors were taken from ref. 3. Observed and calculated structure factors are listed in Supplementary Publication No. SUP 20759 (5 pp., 1 microfiche).*

Fractional co-ordinates of all non-hydrogen atoms are given in Table 2 and anisotropic thermal parameters in Table 3. The positions of the hydrogen atoms and their isotropic thermal parameters are given in Table 4.

Table 5 contains bonded distances, valence angles, and intra- and inter-molecular distances. The estimated standard deviations recorded in Tables 2-5 were derived from the inverse of the least-squares normal-equation matrix, and are best regarded as minimum values. A number of planes were calculated for portions of the molecular framework (Table 6).

The atomic numbering scheme is shown in Figure 1 and the packing arrangement of the molecule in part of the unit cell, showing the hydrogen bonding, is given in Figure 2.

* For details see Notice to Authors No. 7 in J.C.S. Dalton, 1972, Index issue (items less than 10 pp . are supplied as full-size copies).
${ }^{3}$ ' International Tables for X-ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962.

Table 2
Atom positions (fractional co-ordinates)

	x	y	z
Cd	$0 \cdot 13619$ (5)	$0 \cdot 05436(6)$	$0 \cdot 31853$ (2)
C(1)	$0.0118(7)$	-0.2073(8)	$0 \cdot 3771(3)$
C(2)	$0.0704(8)$	$-0.3047(9)$	$0 \cdot 4157(4)$
C(3)	$0 \cdot 0326(8)$	-0.2985(9)	$0 \cdot 4696$ (4)
C(4)	$0.0666(8)$	$-0.1955(10)$	$0 \cdot 4871$ (3)
C(5)	$0 \cdot 1098(9)$	-0.1855(10)	$0.5430(4)$
C(6)	$0 \cdot 2030$ (10)	$-0.0876(12)$	0.5550 (5)
C(7)	$0 \cdot 2574$ (9)	$-0.0007(11)$	0.5142 (4)
C(8)	$0 \cdot 2173$ (8)	$-0.0069(10)$	$0 \cdot 4596$ (4)
C(9)	0.1197(7)	-0.1042(9)	$0 \cdot 4447(3)$
$\mathrm{C}(10)$	$0 \cdot 3969$ (8)	$0 \cdot 1969$ (9)	$0 \cdot 3055$ (4)
C(11)	$0 \cdot 5251$ (8)	$0 \cdot 2216(11)$	$0 \cdot 2993$ (4)
C(12)	$0 \cdot 6004$ (8)	$0 \cdot 0939(12)$	$0 \cdot 3096(4)$
C(13)	$0 \cdot 5522(8)$	$0 \cdot 0476$ (9)	$0 \cdot 3260(4)$
$\mathrm{C}(14)$	$0 \cdot 6250$ (8)	$0 \cdot 1808(12)$	$0 \cdot 3369$ (5)
C(15)	$0 \cdot 5746$ (10)	$0 \cdot 3159(11)$	$0 \cdot 3528(5)$
C(16)	$0 \cdot 4489$ (9)	$0 \cdot 3312(10)$	$0 \cdot 3583$ (5)
C(17)	$0 \cdot 3725$ (8)	$0 \cdot 2053$ (9)	$0 \cdot 3474$ (4)
C(18)	$0 \cdot 4238$ (8)	$0 \cdot 0594(9)$	$0 \cdot 3311(4)$
$\mathrm{O}(1)$	$0 \cdot 1683$ (6)	0.0736(7)	$0 \cdot 2152(3)$
O(2)	$0 \cdot 1517(5)$	$0 \cdot 1564(7)$	$0 \cdot 2508(2)$
$\mathrm{O}(3)$	$0 \cdot 1825$ (7)	0.1299(9)	$0 \cdot 1612(3)$
$\mathrm{O}(4)$	$0 \cdot 1203$ (7)	$0 \cdot 3261$ (7)	$0 \cdot 2972$ (3)
$\bigcirc(5)$	$0 \cdot 1453(7)$	$0 \cdot 2869$ (9)	$0 \cdot 3859$ (3)
$\mathrm{O}(6)$	$0 \cdot 1521$ (8)	$0 \cdot 5226(9)$	$0 \cdot 3526$ (4)
$\mathrm{O}(7)$	0.0663 (6)	0.0536 (7)	$0 \cdot 2862(3)$
N(1)	0.0769 (6)	$0 \cdot 1093$ (8)	$0 \cdot 3893$ (3)
$\mathrm{N}(2)$	0.3475 (7)	0.0648 (8)	$0 \cdot 3198(3)$
$\mathrm{N}(3)$	$0 \cdot 1674(6)$	$0.0685(7)$	$0 \cdot 2075(3)$
N(4)	0•1394(7)	$0 \cdot 3837(9)$	$0 \cdot 3465$ (3)

Table 3
(a) Anisotropic temperature factors $\left(\AA^{2} \times 10^{3}\right)^{*}$

	U_{11}	U_{22}	U_{33}	$2 U_{32}$	$2 U_{31}$	$2 U_{12}$
Cd	37	37	37	2	-2	-3
C(1)	50	26	43	11	-10	4
C(2)	47	41	64	2	9	-12
$\mathrm{C}(3)$	51	56	48	30	35	1
C(4)	53	57	33	23	16	35
C(5)	71	62	44	1	-13	20
C(6)	70	98	44	-13	-24	45
$\mathrm{C}(7)$	57	77	45	-8	-37	12
C(8)	45	51	53	-6	-16	-2
C(9)	42	43	38	-2	-2	20
C(10)	48	59	47	7	-16	4
C(11)	48	62	65	1	13	-35
C(12)	33	78	58	-2	-1	-17
C(13)	42	69	37	-24	11	-1
C(14)	44	82	63	-42	-12	23
C(15)	67	56	69	-3	-6	45
C(16)	59	58	68	17	11	37
C(17)	47	40	53	19	4	13
C(18)	41	56	39	4	8	3
$\mathrm{O}(1)$	53	54	52	2	-4	-3
$\bigcirc(2)$	50	38	48	9	-8	-15
$\mathrm{O}(3)$	95	63	45	-22	7	2
$\mathrm{O}(4)$	66	43	66	-16	-30	3
$\mathrm{O}(5)$	70	69	63	9	19	23
$\mathrm{O}(6)$	94	38	99	-41	-23	19
$\mathrm{O}(7)$	43	40	71	1	-5	8
N(1)	38	34	32	1	4	- 5
$\mathrm{N}(2)$	44	48	39	14	4	-14
$N(3)$	38	41	32	-5	-10	-2
N(4)	48	34	67	-7	13	4

(b) Mean estimated standard deviations $\left(\AA^{2} \times 10^{3}\right)$

	U_{11}	U_{22}	U_{33}	$2 U_{32}$	$2 U_{31}$	$2 U_{12}$
Cd	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	1	1	1
C	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{5}$	8	8	8
O	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{3}$	6	7	6
N	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$	6	6	5

* Values of $U_{i j}$ in the expression: $\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+\right.\right.$
$\left.\left.U_{22} k^{2} b^{* 2}+U_{33} l^{2} c^{* 2}+2 U_{25} k l b^{*} c^{*}+2 U_{31} l h c^{*} a^{*}+2 U_{12} h k a^{*} b^{*}\right)\right]$.

Table 4
Hydrogen positions * (fractional co-ordinates) and isotropic temperature factors $\left(\AA^{2}\right)$

	x	y	z	$U_{\text {Iso }}$
$\mathrm{H}(1)[\mathrm{C}(1)]$	$0.030(12)$	$0 \cdot 209(15)$	0.346(5)	0.06 (5)
$\mathrm{H}(2)[\mathrm{C}(2)]$	$0 \cdot 138(12)$	$0 \cdot 396(17)$	3-407(6)	0.07(3)
$\mathrm{H}(3)[\mathrm{C}(3)]$	$0.062(12)$	$0 \cdot 354(16)$	$0 \cdot 491$ (6)	0.06 (3)
$\mathrm{H}(5)[\mathrm{C}(5)]$	$0.081(12)$	$0 \cdot 286(17)$	0.558 (6)	$0.07(3)$
$\mathrm{H}(6)[\mathrm{C}(6)]$	$0 \cdot 225$ (14)	$0 \cdot 084(15)$	0.597 (6)	0.07(4)
$\mathrm{H}(7)[\mathrm{C}(7)]$	$0 \cdot 323(14)$	$0.066(15)$	0.519 (6)	$0.03(4)$
$\mathrm{H}(8)[\mathrm{C}(8)]$	$0 \cdot 241$ (13)	$0 \cdot 064(14)$	$0 \cdot 443$ (6)	0.05 (4)
$\mathrm{H}(10)[\mathrm{C}(10)]$	$0 \cdot 345(12)$	$0 \cdot 281(16)$	$0 \cdot 294$ (5)	$0.05(3)$
$\mathrm{H}(11)[\mathrm{C}(11)]$	$0.549(12)$	$0 \cdot 310$ (15)	$0 \cdot 289$ (5)	0.03 (4)
$\mathrm{H}(12)[\mathrm{C}(12)]$	$0 \cdot 694(14)$	$0 \cdot 077(17)$	$0 \cdot 304(6)$	0.05 (4)
$\mathrm{H}(14)[\mathrm{C}(14)]$	$0 \cdot 723$ (12)	$0 \cdot 171(17)$	$0 \cdot 330$ (6)	0.06(4)
$\mathrm{H}(15)[\mathrm{C}(15)]$	$0 \cdot 635(13)$	$0 \cdot 392(16)$	$0 \cdot 357$ (6)	$0 \cdot 06(4)$
$\mathrm{H}(16)[\mathrm{C}(16)]$	$0 \cdot 429(13)$	$0.443(14)$	$0 \cdot 370$ (6)	0.07 (4)
$\mathrm{H}(17)[\mathrm{C}(17)]$	$0 \cdot 290$ (12)	$0 \cdot 235(16)$	$0 \cdot 361$ (6)	$0 \cdot 07$ (4)
$\mathrm{H}(19)[\mathrm{O}(7)]$	0.065 (8)	$0.011(10)$	$0 \cdot 256$ (4)	$0 \cdot 04(2)$
$\mathrm{H}(20)[\mathrm{O}(7)]$	0.087(9)	0.133(9)	$0 \cdot 274$ (4)	$0 \cdot 10(2)$

* Hydrogens are bonded to atoms shown in square brackets.

Figure 2 The structure viewed along a showing the hydrogen bonding

Table 5
Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ with estimated standard deviations in parentheses
(a) Bonded distances (\AA)

$\mathrm{Cd}-\mathrm{O}(\mathbf{1})$	2.492(7)	$\mathrm{C}(10)-\mathrm{N}(2)$	$1 \cdot 305(11)$
$\mathrm{Cd}-\mathrm{O}(2)$	$2 \cdot 430$ (8)	$\mathrm{C}(10)-\mathrm{C}(11)$	$1 \cdot 439(13)$
$\mathrm{Cd}-\mathrm{O}(4)$	2.393(7)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.394(11)
$\mathrm{Cd}-\mathrm{O}(5)$	2.559(9)	$\mathrm{C}(12)-\mathrm{C}(13)$	$1 \cdot 385(14)$
$\mathrm{Cd}-\mathrm{O}(7)$	2.346(7)	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.417(14)$
$\mathrm{Cd}-\mathrm{N}(1)$	2.296(7)	$\mathrm{C}(13)-\mathrm{C}(18)$	$1 \cdot 426$ (13)
$\mathrm{Cd}-\mathrm{N}(2)$	$2 \cdot 330$ (7)	$\mathrm{C}(14)-\mathrm{C}(15)$	$1 \cdot 343$ (15)
$\mathrm{C}(1)-\mathrm{N}(1)$	1-318(10)	$\mathrm{C}(15)-\mathrm{C}(16)$	$1 \cdot 400$ (15)
$\mathrm{C}(1)-\mathrm{C}(2)$	$1 \cdot 407(12)$	$\mathrm{C}(16)-\mathrm{C}(17)$	$1 \cdot 391(13)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1 \cdot 340(14)$	C(17)-C(18)	1-431(12)
$\mathrm{C}(3)-\mathrm{C}(4)$	$1 \cdot 460(13)$	$\mathrm{C}(18)-\mathrm{N}(2)$	$1.382(11)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1 \cdot 406(13)$	$\mathrm{N}(3)-\mathrm{O}(1)$	1-233(10)
$\mathrm{C}(4)-\mathrm{C}(9)$	$1 \cdot 411$ (12)	$\mathrm{N}(3)-\mathrm{O}(2)$	$1 \cdot 289(11)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1 \cdot 353(15)$	$\mathrm{N}(3)-\mathrm{O}(3)$	1-235(11)
$\mathrm{C}(6)-\mathrm{C}(7)$	$1 \cdot 370(15)$	$\mathrm{N}(4)-\mathrm{O}(4)$	1-287(10)
$\mathrm{C}(7)-\mathrm{C}(8)$	$1 \cdot 363(15)$	$\mathrm{N}(4)-\mathrm{O}(5)$	$1 \cdot 252(11)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1 \cdot 402(13)$	$\mathrm{N}(4)-\mathrm{O}(6)$	$1 \cdot 209(8)$
$\mathrm{C}(9)-\mathrm{N}(1)$	$1 \cdot 389(11)$	Mean $\mathrm{C}-\mathrm{H}$	0.95
		Mean $\mathrm{O}-\mathrm{H}$	0.85

(b) Interbond angles (${ }^{\circ}$)
$\left.\begin{array}{lrlr} & & \\ \mathrm{O}(1)-\mathrm{Cd}-\mathrm{O}(2) & 52 \cdot 0(2) & \mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8) & 120 \cdot 9(9) \\ \mathrm{O}(1)-\mathrm{Cd}-\mathrm{O}(4) & 74 \cdot 8(2) & \mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9) & 119 \cdot 8(8) \\ \mathrm{O}(1)-\mathrm{Cd}-\mathrm{O}(5) & 124 \cdot 0(2) & \mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(4) & 118 \cdot 4(8) \\ \mathrm{O}(1)-\mathrm{Cd}-\mathrm{O}(7) & 80 \cdot 2(2) & \mathrm{C}(4)-\mathrm{C}(9)-\mathrm{N}(1) & 121 \cdot 4(8) \\ \mathrm{O}(1)-\mathrm{Cd}-\mathrm{N}(1) & 144 \cdot 1(2) & \mathrm{C}(8)-\mathrm{C}(9)-\mathrm{N}(1) & 120 \cdot 2(8) \\ \mathrm{O}(1)-\mathrm{Cd}-\mathrm{N}(2) & 81 \cdot 4(2) & \mathrm{Cd}-\mathrm{N}(2)-\mathrm{C}(10) & 116 \cdot 8(8) \\ \mathrm{O}(2)-\mathrm{Cd}-\mathrm{O}(4) & 126 \cdot 2(3) & \mathrm{Cd}-\mathrm{N}(2)-\mathrm{C}(18) & 125 \cdot 3(5) \\ \mathrm{O}(2)-\mathrm{Cd}-\mathrm{O}(5) & 173 \cdot 0(3) & \mathrm{C}(10)-\mathrm{N}(2)-\mathrm{C}(18) & 117 \cdot 8(7) \\ \mathrm{O}(2)-\mathrm{Cd}-\mathrm{O}(7) & 81 \cdot 9(2) & \mathrm{C}(11)-\mathrm{C}(10)-\mathrm{N}(2) & 124 \cdot 7(8) \\ \mathrm{O}(2)-\mathrm{Cd}-\mathrm{N}(1) & 93 \cdot 1(3) & \mathrm{C}(10-\mathrm{C}(11)-\mathrm{C}(12) & 116 \cdot 7(9) \\ \mathrm{O}(2)-\mathrm{Cd}-\mathrm{N}(2) & 87 \cdot 4(2) & \mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13) & 120 \cdot 6(9) \\ \mathrm{O}(4)-\mathrm{Cd}-\mathrm{O}(5) & 51 \cdot 3(3) & \mathrm{C}(12-\mathrm{C}(3)-\mathrm{C}(14) & 122 \cdot 7(9) \\ \mathrm{O}(4)-\mathrm{Cd}-\mathrm{O}(7) & 82 \cdot 4(3) & \mathrm{C}(12-\mathrm{C}(3)-\mathrm{C}(18) & 118 \cdot 2(8) \\ \mathrm{O}(4)-\mathrm{Cd}-\mathrm{N}(1) & 137 \cdot 0(3) & \mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18) & 119 \cdot 1(8) \\ \mathrm{O}(4)-\mathrm{Cd}-\mathrm{N}(2) & 92 \cdot 0(2) & \mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15) & 120 \cdot 8(9) \\ \mathrm{O}(5)-\mathrm{Cd}-\mathrm{O}(7) & 103 \cdot 5(3) & \mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16) & 121 \cdot 5(9) \\ \mathrm{O}(5)-\mathrm{Cd}-\mathrm{N}(1) & 91 \cdot 6(3) & \mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17) & 120 \cdot 4(9) \\ \mathrm{O}(5)-\mathrm{Cd}-\mathrm{N}(2) & 86 \cdot 2(3) & \mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18) & 119 \cdot 3(8) \\ \mathrm{O}(7)-\mathrm{Cd}-\mathrm{N}(1) & 87 \cdot 5(2) & \mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(13) & 119 \cdot 8(8) \\ \mathrm{O}(7)-\mathrm{Cd}-\mathrm{N}(2) & 161 \cdot 5(2) & \mathrm{C}(13)-\mathrm{C}(18)-\mathrm{N}(2) & 122 \cdot 0(7) \\ \mathrm{N}(1)-\mathrm{Cd}-\mathrm{N}(2) & 108 \cdot 2(3) & \mathrm{C}(17-\mathrm{C}(18)-\mathrm{N}(2) & 119 \cdot 1(8) \\ \mathrm{Cd}-\mathrm{N}(1)-\mathrm{C}(1) & 116 \cdot 7(5) & \mathrm{Cd}-\mathrm{O}(1)-\mathrm{N}(3) & 94 \cdot 5(5) \\ \mathrm{Cd}-\mathrm{N}(1)-\mathrm{C}(9) & 125 \cdot 3(6) & \mathrm{Cd}-\mathrm{O}(2)-\mathrm{N}(3) & 96 \cdot 0(5) \\ \mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(9) & 117 \cdot 7(7) & \mathrm{Cd}-\mathrm{O}(4)-\mathrm{N}(4) & 99 \cdot 9(5) \\ \mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1) & 125 \cdot 7(8) & \mathrm{Cd}-\mathrm{O}(5)-\mathrm{N}(4) & 92 \cdot 9(6) \\ \mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3) & 117 \cdot 5(8) & \mathrm{O}(1)-\mathrm{N}(3)-\mathrm{O}(2) & 117 \cdot 6(8) \\ \mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4) & 120 \cdot 8(8) & \mathrm{O}(1)-\mathrm{N}(3)-\mathrm{O}(3) & 123 \cdot 6(8) \\ \mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5) & 122 \cdot 9(8) & \mathrm{O}(2)-\mathrm{N}(3)-\mathrm{O}(3) & 118 \cdot 9(8) \\ \mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(9) & 116 \cdot 9(7) & \mathrm{O}(4)-\mathrm{N}(4)-\mathrm{O}(5) & 115 \cdot 5(7) \\ \mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(9) & 120 \cdot 2(8) & \mathrm{O}(4)-\mathrm{N}(4)-\mathrm{O}(6) & 120 \cdot 4(8) \\ \mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6) & 118 \cdot 6(9) & \mathrm{O}(5)-\mathrm{N}(4)-\mathrm{O}(6) & 124 \cdot 1(8) \\ \mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7) & 122 \cdot 0(9) & \mathrm{H}(19)-\mathrm{O}(7)-\mathrm{H}(20) & 104(8) \\ & & \mathrm{Mean}(\mathrm{C}-\mathrm{C}-\mathrm{H} & 119\end{array}\right)$
(c) Intramolecular non-bonded distances (\AA) for non-hydrogen atoms

$\mathrm{Cd} \cdots \mathrm{C}(1)$	$3 \cdot 12$	$\mathrm{O}(2) \cdots \mathrm{O}(7)$	$3 \cdot 13$
$\mathrm{Cd} \cdots \mathrm{C}(8)$	$3 \cdot 49$	$\mathrm{O}(2) \cdots \mathrm{N}(1)$	$3 \cdot 43$
$\mathrm{Cd} \cdots \mathrm{C}(9)$	$3 \cdot 30$	$\mathrm{O}(2) \cdots \mathrm{N}(2)$	$3 \cdot 29$
$\mathrm{Cd} \cdots \mathrm{C}(10)$	$3 \cdot 14$	$\mathrm{O}(4) \cdots \mathrm{C}(10)$	$3 \cdot 25$
$\mathrm{Cd} \cdots \mathrm{C}(17)$	$3 \cdot 49$	$\mathrm{O}(4) \cdots \mathrm{O}(7)$	$3 \cdot 12$
$\mathrm{Cd} \cdots \mathrm{C}(18)$	$3 \cdot 32$	$\mathrm{O}(4) \cdots \mathrm{N}(2)$	$3 \cdot 40$
$\mathrm{Cd} \cdots \mathrm{N}(3)$	$2 \cdot 87$	$\mathrm{O}(5) \cdots \mathrm{C}(8)$	$3 \cdot 16$
$\mathrm{Cd} \cdots \mathrm{N}(4)$	$2 \cdot 90$	$\mathrm{O}(5) \cdots \mathrm{C}(10)$	$3 \cdot 48$
$\mathrm{O}(1) \cdots \mathrm{O}(4)$	$2 \cdot 97$	$\mathrm{O}(5) \cdots \mathrm{N}(\mathbf{1})$	$3 \cdot 49$
$\mathrm{O}(1) \cdots \mathrm{O}(7)$	$3 \cdot 12$	$\mathrm{O}(5) \cdots \mathrm{N}(2)$	$3 \cdot 35$
$\mathrm{O}(1) \cdots \mathrm{N}(2)$	$3 \cdot 15$	$\mathrm{O}(7) \cdots \mathrm{C}(\mathbf{1})$	$3 \cdot 16$
$\mathrm{O}(2) \cdots \mathrm{C}(17)$	$3 \cdot 34$	$\mathrm{O}(7) \cdots \mathrm{N}(1)$	$3 \cdot 21$
$\mathrm{~N}(2) \cdots \mathrm{N}(3)$	$3 \cdot 49$	$\mathrm{O}(7) \cdots \mathrm{N}(3)$	$3 \cdot 38$

Table 5 (continued)

(d) Intermolecular contacts $<3 \cdot 45 \AA$ including those involved in hydrogen bonding

$\mathrm{O}(1) \cdots \mathrm{C}\left(\mathbf{1}^{1}\right)$	$3 \cdot 34$	$\mathrm{O}(4) \cdots \mathrm{O}\left(7^{\text {I }}\right.$)	$2 \cdot 84$
$\mathrm{O}(1) \cdots \mathrm{C}\left(2^{1}\right)$	$3 \cdot 44$	$\mathrm{O}(4) \cdots \mathrm{N}\left(3^{\text {I }}\right.$)	$3 \cdot 30$
$\mathrm{O}(1) \cdots \mathrm{C}\left(14^{\text {Ir }}\right.$)	$3 \cdot 36$	$\mathrm{O}(4) \cdots \mathrm{H}\left(19^{\mathrm{T}}\right)$	1.97
$\mathrm{O}(1) \cdots \mathrm{C}\left(15^{\text {II }}\right)$	$3 \cdot 42$	$\mathrm{O}(5) \cdots \mathrm{C}\left(5^{\mathrm{VI}}\right)$	$3 \cdot 42$
$\bigcirc(2) \cdots \mathrm{O}\left(4^{\text {III }}\right)$	$3 \cdot 19$	$\mathrm{O}(6) \cdots \mathrm{C}\left(1^{\text {viI }}\right)$	$3 \cdot 00$
$\mathrm{O}(2) \cdots \mathrm{O}(7 \mathrm{III})$	$2 \cdot 80$	$\mathrm{O}(6) \cdots \mathrm{C}\left(2^{\mathrm{vII}}\right)$	$3 \cdot 26$
$\mathrm{O}(2) \cdots \mathrm{H}\left(20^{\mathrm{II}}\right)$	2.03	$\mathrm{O}(6) \cdots \mathrm{C}\left(17^{\mathrm{VII}}\right)$	$3 \cdot 37$
$\mathrm{O}(3) \cdots \mathrm{C}\left(5^{\text {IV }}\right)$	$3 \cdot 31$	$\mathrm{O}(6) \cdots \mathrm{O}\left(7^{\mathrm{I}}\right)$	$3 \cdot 42$
$\mathrm{O}(3) \cdots \mathrm{C}\left(12^{\mathrm{v}}\right)$	$3 \cdot 43$	$\mathrm{O}(6) \cdots \mathrm{N}\left(1^{\mathrm{VII}}\right)$	$3 \cdot 39$
$\mathrm{O}(3) \cdots \mathrm{O}\left(7^{\text {III }}\right)$	$3 \cdot 26$	$\mathrm{O}(7) \cdots \mathrm{N}\left(3^{\mathbf{I}}\right)$	$3 \cdot 43$

Roman numerals as superscripts refer to the following equivalent positions with respect to the reference molecule at x, y, z :

```
I \(-x, \frac{1}{2}+y, \frac{1}{2}-z\)
II \(1-x, \frac{1}{2}+y, \frac{1}{2}-z\)
III \(-x,-\frac{1}{2}+y, \frac{1}{2}-z\)
IV \(x,-\frac{1}{2}-y,-\frac{1}{2}+z\)
V \(1-x,-\frac{1}{2}+y, \frac{1}{2}-z\)
\(\mathrm{VI}-x,-y, 1-z\)
VII \(x, 1+y, z\)
```

Table 6
Least-squares best planes through the molecule. The equations are in the form $k X^{\prime}+l Y^{\prime}+m Z^{\prime}=n$, where X^{\prime}, Y^{\prime}, and Z^{\prime} are co-ordinates in \AA with respect to the orthogonalised axial system $a, b, c \sin \beta$. Distances of atoms from planes (\AA) are given in square brackets
$\left.\begin{array}{lccccc} & k & l & m & n \\ \text { Plane (1): } & & l & m & \\ \mathrm{C}(1)-(9), \mathrm{N}(1) & 0.6514 & -0.7341 & -0.1916 & -0.4986 \\ {[\mathrm{C}(1)} & 0.003, & \mathrm{C}(2) & 0.018, & \mathrm{C}(3) & 0.007, \\ -0.012, & \mathrm{C}(4) & -0.006, & \mathrm{C}(5) \\ -0.005, & \mathrm{~N}(1) & -0.011, & \mathrm{C}(7) & 0.018, & \mathrm{C}(8) \\ -0.030, \mathrm{Cd} & -0.311]\end{array}\right)$ $[\mathrm{O}(4) 0.002, \mathrm{O}(5) 0.002, \mathrm{O}(6) 0.002, \mathrm{~N}(4)-0.005, \mathrm{Cd} 0.318]$

Dihedral angles $\left({ }^{\circ}\right)$ between planes

Plane (1)-(2)	71	Plane (2)-(3)	77
Plane (1)-(3)	51	Plane (2)-(4)	85
Plane (1)-(4)	43	Plane (3)-(4)	18

DISCUSSION

Our analysis has revealed a seven-co-ordinate monomeric structure in which the cadmium atom is surrounded by two non-equivalent, but bidentate nitrate groups, by two quinoline molecules, and by a water molecule (Figure 1). While one of the nitrate groups is almost symmetrically bidentate, the other shows slight, but significant asymmetry $[\{\mathrm{M}-\mathrm{O}(5)\}-\{\mathrm{M}-\mathrm{O}(4)\}=\delta=$ $0 \cdot 17 \AA]$, which is of the same order as that observed in $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \quad[\delta=0.14 \AA]^{4}$ and in $\mathrm{Zn}(\mathrm{py})_{3}\left(\mathrm{NO}_{3}\right)_{2}$ $[\delta=0.19 \quad \AA] .5$ The cadmium-oxygen $\quad\left[\mathrm{Cd}-\mathrm{O}\left(\mathrm{NO}_{3}\right)\right.$

[^1]$\left.2 \cdot 393-2 \cdot 559, \mathrm{Cd}-\mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right) 2 \cdot 346(7) \AA\right]$ and cadmiumnitrogen $[\mathrm{Cd}-\mathrm{N} 2 \cdot 296(7), 2 \cdot 330(7) \AA]$ distances are in accord with those values previously reported for sevenand eight-co-ordinate cadmium complexes, ${ }^{6-8}$ although they are slightly longer than those distances normally found in four-, five-, and six-co-ordinate cadmium(II) complexes. ${ }^{7}$ Such lengthening may be explained on the basis of the increased co-ordination number of the cadmium. ${ }^{4-6}$

The stereochemistry of the cadmium atom may be described in a number of ways. One approach is to consider the distortions from pentagonal bipyramidal geometry. In this case the axial sites are occupied by the oxygen of the water $[O(7)]$ and by the nitrogen of one of the quinoline molecules [$\mathrm{N}(2)]$, while the equatorial plane contains the nitrogen of the remaining quinoline molecule $[\mathrm{N}(1)]$, and the oxygens of the two nitratogroups $[O(1), O(2), O(4)$, and $O(5)]$. These last four

Figure 3 A diagrammatic representation of the equatorial plane of the pentagonal bipyramidal geometry of the molecule, showing the distortions from ideal geometry; distances in \AA, angles in deg. Deviations of angles between equatorial atoms axial atoms from 90° :

	$\mathrm{X}-\mathrm{Cd}-\mathrm{N}(2)$	$\mathrm{X}-\mathrm{Cd}-\mathrm{O}(7)$
$\mathrm{N}(1)$	$108 \cdot 2$	$87 \cdot 5$
$\mathrm{O}(2)$	$87 \cdot 4$	$81 \cdot 9$
$\mathrm{O}(1)$	$81 \cdot 4$	$80 \cdot 2$
$\mathrm{O}(4)$	$92 \cdot 0$	$82 \cdot 4$
$\mathrm{O}(5)$	$86 \cdot 2$	$103 \cdot 5$
Deviation of angle at cadmium atom from $180^{\circ}:$		
$\mathrm{N}(2)-\mathrm{Cd}-\mathrm{O}(7)$		

oxygen atoms are virtually coplanar with the cadmium, although $\mathrm{N}(1)$ is displaced $0.88 \AA$ from this plane (Table 6), the displacement being away from the axial quinoline function. The angular distortions within the equatorial plane are shown in Figure 3. Since the angles made by the co-ordinated oxygens of each nitrate group at the cadmium atom are restricted by the nitrate geometry to values $c a .52^{\circ}$, there is a concomitant expansion of the other angles, the largest increases from the ideal value of 72° being observed in those angles involving the nitrogen atom $\mathrm{N}(1)$ [e.g. $\mathrm{O}(2)-\mathrm{Cd}-\mathrm{N}(1)$ $\left.93 \cdot 1(3)^{\circ}\right]$. The atoms $\mathrm{N}(3)$ and $\mathrm{O}(7)$ are distorted from
${ }^{6}$ A. F. Cameron, R. H. Nuttall, and D. W. Taylor, J.C.S. Dalton, $1972,1608$.

7 W. Harrison and J. Trotter, J.C.S. Dalton, 1972, 956.
${ }^{8}$ Chem. Soc. Special Publ., No. 11, 1959; No. 18, 1965.
ideal axial geometry such that the angle $\mathrm{N}(3)-\mathrm{Cd}-\mathrm{O}(7)$ is $161 \cdot 5(2)^{\circ}$. Such distortions may possibly be explained in terms of the steric interactions of the quinoline ligands.

An alternative approach is to compare the geometry of the complex with the pseudotetrahedral geometry of $\left(\mathrm{Me}_{3} \mathrm{PO}\right)_{2} \mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}{ }^{2}$ since it has been predicted ${ }^{1}$ that the anhydrous complexes $\mathrm{M}(\text { quin })_{2}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{M}=\mathrm{Co}^{\mathrm{II}}, \mathrm{Ni}^{\mathrm{II}}\right.$, $\mathrm{Cu}^{\mathrm{II}}$, and $\mathrm{Zn}^{\mathrm{II}}$) should belong to this structural class. If the present complex is regarded as a hydrated variant of this structural type, then the nitrate groups and quinoline moieties may be considered to be arranged in a pseudotetrahedral fashion around the cadmium atom, with the water molecule co-ordinating on that side of the cadmium least affected by the steric bulk of the quinoline molecules. Although this picture is fairly arbitrary, it does reflect the increase in co-ordination from Zn to Cd , since, in the four-co-ordinate pseudo-tetrahedral structure of $\mathrm{Zn}(\mathrm{py})_{\mathbf{2}}\left(\mathrm{NO}_{3}\right)_{\mathbf{2}},{ }^{9}$ the nitrate groups are unidentate in contrast to the bidentate nature of the nitrate groups of the present complex.

In discussing the internal geometry of the complex, it must be borne in mind, however, that there is an extensive network of intermolecular hydrogen bonding involving the co-ordinated water molecule and both nitrate groups. Each water molecule closely approaches two oxygen atoms, one from each of two different nitrate groups of different molecules [see Figure 2], the $\mathrm{O} \cdot \mathrm{O}$ distances being $2 \cdot 80 \AA$ and $2 \cdot 84 \AA$, and the $\mathrm{O}\left(4^{\prime}\right) \cdots \mathrm{O}(7)$ $\cdots \mathrm{O}\left(2^{\prime \prime}\right)$ angle having a value of $109 \cdot 2^{\circ}$. Unlike the hydrogen bonding in $\mathrm{Ni}(\mathrm{py})_{2}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2},{ }^{10}$ which involves the terminal oxygens of the nitrate groups, in the present case it is the metal-bonded oxygen atoms of
${ }^{9}$ A. F. Cameron, R. H. Nuttall, and D. W. Taylor, J. Chem. Soc. (A), 1971, 3402.
${ }^{10}$ A. F. Cameron, R. H. Nuttall, and D. W. Taylor, J.C.S. Dalton, 1972, 422.
the nitrate groups which are involved in the interactions with the water molecule.

The internal dimensions of the nitrate groups are slightly different. The nitrate group [$\mathrm{N}(4), \mathrm{O}(4)-(6)]$ which shows the greatest asymmetry in its bonding to the cadmium atom, exhibits the expected ${ }^{11}$ order of bond lengths, with the $\mathrm{N}(4)-\mathrm{O}(4)$ bond $[1 \cdot 287(10) \AA$; adjacent to the shorter $\mathrm{Cd}-\mathrm{O}(4) 2 \cdot 393(7) \AA$ bond] longer than the $\mathrm{N}(4)-\mathrm{O}(5)$ bond $[1 \cdot 252(11) \AA$; adjacent to the longer $\mathrm{Cd}-\mathrm{O}(5) 2 \cdot 559(9) \AA$ bond] and with the terminal $\mathrm{N}(4)-\mathrm{O}(6)$ bond $[1 \cdot 209(8) \AA]$ being the shortest. However, in the more symmetric nitrate group $[\mathrm{N}(3)$, $\mathrm{O}(\mathrm{I})-(3)]$ although the $\mathrm{N}(3)-\mathrm{O}(2)$ bond $[1 \cdot 289(\mathrm{I} 1) \AA]$ is associated with the (slightly) shorter $\mathrm{Cd}-\mathrm{O}(2)$ bond $[2 \cdot 430(8) \AA]$ the $\mathrm{N}(3)-\mathrm{O}(1)[1 \cdot 233(10) \AA]$ and $\mathrm{N}(3)-\mathrm{O}(3)$ $[1 \cdot 235(11) \AA]$ distances are experimentally identical. It may be relevant, however, that the oxygen atoms $\mathrm{O}(4)$ and $\mathrm{O}(2)$ of each nitrate group which are involved in the longest $\mathrm{N}-\mathrm{O}$ bonding, are also those oxygens which participate in the intermolecular hydrogen bonding.

The internal dimensions of the quinoline ring systems are in accord with literature values. 8,12 Although both ligands are planar, in neither case is the cadmium atom coplanar with the rings (Table 6). This may be expected to arise from the stereochemical considerations of packing bulky ligands around the cadmium atom. The dihedral angle between the quinoline planes is 71°.

Computations were performed on the Glasgow University KDF 9 computer, with programs developed by the Glasgow Group.
[3/639 Received, 27th March, 1973]
${ }^{11}$ C. C. Addison, N. Logan, S. C. Wallwork, and C. D. Garner, Quart. Rev., 1972, 26, 289.
${ }_{12}$ T. N. Tarkhova and A. V. Ablov, Kristallogyafya, 1968, 13, 611.

[^0]: \dagger Part VI, ref. 6.
 ${ }^{1}$ A. B. P. Lever, Inorg. Chem., 1965, 4, 1042.

[^1]: ${ }^{4}$ B. Matkono, B. Ribar, B. Zelenco, and S. W. Peterson, Acta Cryst., 1966, 21, 719.
 5_{5} A. F. Cameron, R. H. Nuttall, and D. W. Taylor, Chem. Comm., 1971, 129; A. F. Cameron, R. H. Nuttall, and D. W. Taylor, J.C.S. Dalton, 1972, 1603.

