Weak Complexes of Sulphur and Selenium. Part II.¹ Complex Species of SO₂, SOCI₂, and SO₂Cl₂ with the Thiocyanate Ligand

By Saad Wasif,* Department of Chemistry, Faculty of Science, University of Libya, Tripoli, Libya S. B. Salama, Department of Chemistry, Faculty of Science, University of Khartoum, Sudan

The formation of 1:1 complex species between SO₂, SOCl₂, and SO₂Cl₂ with the SCN- ligand is reported in dilute solutions. Their thermodynamic constants point to a weak association of a charge-transfer type. The nature of the complex species is discussed in relation to polarisability and basicity of the SCN- ligand.

SEVERAL studies were reported on the interaction of the SCN⁻ ligand with SO₂, SOCl₂, and SO₂Cl₂ acceptors. Charge-transfer species between SCN- and SO₂ have been reported both in solution and in the solid state. Lippincott and Welch² pointed out that the spectra of SCN,4SO₂ indicate a charge-transfer interaction. Others studied the NaSCN,SO₂,³ KSCN,SO₂,³ CsSCN,SO₂,⁴ and RbSCN,SO₂ ⁵ systems. An interaction energy of ca. 9.56kcal mol⁻¹ was reported for all systems.

Foote and Fleischer³ determined an enthalpy of dissociation for KSCN,4SO₂ from vapour-pressure relations in the two-component system to be 9.77 kcal mol⁻¹ which, when compared with the enthalpy of vaporisation of SO₂ (5.95 kcal mol⁻¹) gives ca. 3.82 kcal mol⁻¹ for the enthalpy of interaction in the chargetransfer species (1 cal = $4 \cdot 184$ J). Jander and Mesech⁶ studied the interaction of NH₄SCN with SOCl₂ and reported the formation of thionyl thiocyanate species $SO(SCN)_2$. Dixon⁷ reported the same species from mercuric thiocyanate and thionyl chloride in various solvents. Forbes and Anderson⁸ prepared sulphur monothiocyanate $S_2(SCN)_{2x}$, thionyl thiocyanate $SO(SCN)_{2x}$, and sulphuryl thiocyanate $SO_2(SCN)_{2x}$ by refluxing S₂Cl₂, SOCl₂, and SO₂Cl₂ with AgSCN in benzene.

To explore the nature of these species we restricted this study to dilute solutions in which one complex species was detectable which had the general formula X,SCN⁻ (X = SO₂, SOCl₂, or SO₂Cl₂), *i.e.*, 1:1 type. This made our correlations favourable as species of similar general formulae could be compared and differences and gradations in stabilities noticed.

EXPERIMENTAL

Detection of the Complex Species .- Table 1 includes the absorbance peaks of equimolar mixtures of SO₂, SOCl₂, and $\mathrm{SO}_2\mathrm{Cl}_2$ with KSCN in acetonitrile. Similar peaks were obtained in dimethyl sulphoxide. The same peaks were obtained when tetraethylammonium and trimethylsulphonium thiocyanate were used in place of KSCN. This confirmed that the new spectra resulted from the interaction of the SCN⁻ ligand with SO₂, SOCl₂, and SO₂Cl₂.

¹ Part I, A. Salama, S. B. Salama, M. Sobeir, and Saad Wasif, J. Chem. Soc. (A), 1971, 1112.

² E. R. Lippincott and F. E. Welch, Spectrochim. Acta, 1961, **17**, 123. ³ E. R. Foote and Fleischer, J. Amer. Chem. Soc., 1932, 54,

3902.

⁴ G. Jander and H. Mesech, Z. phys. Chem., 1938, 183, A, 121, 137.

Stoicheiometry of the Complex Species .-- Job's 9 method was adopted. The data for $SO_2 SCN^-$ in Table 2 show that the complex species is of 1:1 type in our conditions. Complex species with $SOCl_2$ and SO_2Cl_2 give similar results.

TABLE 1

Absorption spectra of mixtures of SCN⁻ with SO₂, SOCl₂, and SO₂Cl₂ in acetonitrile

	Absorption peaks, λ_{max}/nm			
	\mathbf{D} onor	Acceptor	Mixture	
SO, SCN-	210	280	34 5	
SOCI, SCN-	210	280	350	
SO2CI2,SCN-	210	275	350	

<i>LABLE</i>	2
---------------------	----------

Mixtures 1 2 3 4	
	5
Volume of SO2 soln./ml $0 \cdot 5$ $1 \cdot 0$ $1 \cdot 25$ $1 \cdot 5$ Volume of KSCN soln./ml $2 \cdot 0$ $1 \cdot 5$ $1 \cdot 25$ $1 \cdot 0$ Volume of acetonitrile/ml $2 \cdot 5$ $2 \cdot 5$ $2 \cdot 5$ $2 \cdot 5$ Mol fraction of SO2 $0 \cdot 2$ $0 \cdot 4$ $0 \cdot 5$ $0 \cdot 6$ d_{obs} $0 \cdot 05$ $0 \cdot 08$ $0 \cdot 10$ $0 \cdot 07$	2·0 0·5 2·5 0·8 0·04

No attempt was made to determine the true molecular formula by Asmus's method ¹⁰ as this was found unnecessary.

Evaluation of Stability Constants of Complex Species.-The complex species are formed between a polar molecule (such as SO₂) and a pseudohalide ion and this required that all the spectra be studied in a polar solvent. Other solvents can be used but acetonitrile was preferred so that our results could be compared with those for halide ions with the same acceptors which were also studied in acetonitrile.

All the complex species had λ_{max} 345—350 nm. Over this spectral range the SCN- ligand had no absorbance but sulphur compounds had, and the spectral data were treated graphically by the Ketelar ¹¹ equation (1), where $E_a =$ the

$$\frac{1}{E_{\rm a} - E_{\rm A}} = \frac{1}{K_{\rm c}[{\rm SCN}]_0(E_{\rm c} - E_{\rm A})} + \frac{1}{E_{\rm c} - E_{\rm A}} \quad (1)$$

observed extinction of the experimental solution and equals $d_{obs}/[S \text{ compound}]_0$; $E_A =$ the extinction of the sulphur compound at λ_{max} of the complex; $E_c =$ the

⁵ F. Ephriam and J. Kornblum, Ber., 1916, 49, 2007.

⁶ G. Jander, 'Die Chemie in Wasseranlichen Losungmitteln,' Springer-Verlag, Berlin, 1949.

⁷ E. A. Dixon, J. Chem. Soc., 1901, 79, 541.
 ⁸ G. D. Forbes and H. H. Anderson, J. Amer. Chem. Soc.,

1943, 65, 2271.

P. Job, Ann. Chim., 1928, 10, 113

¹⁰ E. Asmus, Analyt. Chem., 1960, **178**, 104.
 ¹¹ J. A. A. Ketclar, C. van de Stoppe, A. Goudsmit, and W. Dzcubas, Rec. Trav. chim., 1952, **71**, 1104.

extinction of the complex species (all E values in 1 mol^{-1} cm⁻¹); $K_c =$ the stability constant/l mol⁻¹, and [SCN⁻]₀ = the initial concentration of the SCN⁻ ligand in mol l⁻¹.

TABLE 3

Evaluation of $K_{\rm c}$ for SO_2Cl_,SCN^– species in acetonitrile at 15 and 25 $^{\rm o}{\rm C}$

Solution	1	2	3	
$10^{5}[SO_{2}Cl_{2}]_{0}/M$	9.661	9.661	9.661	
10 ³ [SCN-] ₀ /м	4.704	7.056	9.408	
dobs at 15 °C	0.108	0.120	0.130	
$d_{\rm obs}$ at 25 °C	0.092	0.110	0.150	
$\begin{array}{l} E_{\rm c} = 1663 \ \rm l \ mol^{-1} \ cm^{-1} \\ K_{\rm c} = 409 \cdot 6 \ (15 \ \rm ^{\circ}C), \ 299 \cdot 2 \end{array}$	2 (25 °C) 1	mol ⁻¹ (gra	phically)	
$10^{5}C_{\rm c}/{\rm mol}1^{-1}(15~{\rm ^{\circ}C})$	6.439	7.111	7.683	
$K_{\rm cl} {\rm mol^{-1}} (15 {\rm ^{\circ}C})$	413.1	399.2	415.9	
$10^{5}C_{e}(\text{mol}\ 1^{-1}\ (25^{\circ}\text{C})$	5.650	6.476	7.111	
$K_{\rm e}/{\rm l} \ {\rm mol^{-1}} \ (25^{\circ}{\rm C})$	$303 \cdot 2$	290.8	298.6	
$E(SO_2Cl_2) = 88 \ 1 \ mol^{-1} \ q$ 9.661 × 10 ⁻⁵ M-solution	cm ⁻¹ at 3	50 nm oi	d = 0.008	for

TABLE 4

Evaluation of K_c for SOCl₂,SCN⁻ species in acetonitrile at 15, 25, and 35 °C

Solution	1	2	3	4
10 ⁴ [SOCl ₂] ₀ /M	$4 \cdot 435$	$4 \cdot 436$	$4 \cdot 436$	4.435
10 ³ [SCN-] ₀ /м	$2 \cdot 000$	4.000	6.000	8.000
dobs at 15 °C		0.360	0.455	0.550
dobs at 25 °C	0.250	0.320	0.412	0.500
d _{obs} at 35 °C	0.220	0.270	0.360	0.410
$E_{\rm c} = 29111 {\rm mol^{-1} cm^{-1}}$				
$K_{c} = 89.8 \ (15 \ ^{\circ}\text{C}), \ 76.1 \ (2)$	5 °C), and 59)•3 (35 °C	2) l mol ⁻¹	
(graphically)	,	·	·	
$10^4 C_c / (\text{mol } l^{-1} (15 \text{ °C}))$		1.176	1.544	1.841
$K_{\rm c}/{\rm l \ mol^{-1}} (15 \ {\rm ^{\circ}C})$		$92 \cdot 9$	91.3	90.8
$10^{4}C_{\rm c}/{\rm mol}\ \rm l^{-1}$ (25 °C)		1.036	1.358	1.666
$K_{\rm c}/1 {\rm mol^{-1}} (25 {\rm ^{\circ}C})$		78.2	75.3	76.9
$10^{4}C_{o}/\text{mol}\ l^{-1}$ (35 °C)		0.861	1.176	1.351
K _c /l mol ⁻¹ (35 °C)		61.5	61.3	55.7
E(CO_C1) = #4.1 1-1	-1 / 0			

 $E(\text{SO}_2\text{Cl}_2) = 54 \text{ l mol}^{-1} \text{ cm}^{-1} \text{ at } 350 \text{ nm}$ or d = 0.024 for a $4.436 \times 10^{-4}\text{M}$ -solution

TABLE 5

Evaluation of K_c for SO₂,SCN⁻ species in acetonitrile at 15, 25, and 35 °C

	10, <u>=</u> 0, and 00	•			
Solution	1	2	3	4	
10 ³ [SO ₂] ₀ /м	$2 \cdot 599$	2.599	$2 \cdot 599$	2.599	
10 ³ [SCŇ ⁻] ₀ /м	2.000	4.000	6.000	8.000	
d _{obs} at 15 °C	0.330	0.510	0.620	0.820	
$d_{ m obs}$ at 25 °C	0.278	0.448	0.600	0.743	
$d_{ m obs} { m at} ~ 35 ~^{\circ}{ m C}$		0.390	0.525	0.655	
$E_{\rm c} = 874 \rm l mol^{-1} cm^{-1}$					
$K_{\rm c} = 71.8 (15 {}^{\circ}{\rm C}), 59.7$	(25 °C) and 50.0	(35 °C) 1	mol ⁻¹		
(graphically)					
$10^4 C_c / \text{mol} l^{-1} (15 \ ^\circ\text{C})$		5.748	7.586	9.311	
$K_{c}/l \text{ mol}^{-1} (15 \text{ °C})$		$82 \cdot 9$	78.7	$77 \cdot 9$	
$10^{4}C_{\rm e}/{\rm mol}\ l^{-1}$ (25 °C)		5.035	6.782	8.426	
$K_{\rm c}/{\rm l~mol^{-1}}~(25\ {\rm ^{\circ}C})$		68.7	66.3	67.1	
$10^4 C_{\rm c} / ({\rm mol}1^{-1}(35{}^{\circ}{\rm C}))$		4.368	5.920	7.415	
$K_{\rm c}/{\rm l} {\rm mol^{-1}} (35 {\rm ^oC})$		56.7	$54 \cdot 6$	55.0	
	1				

 $E(SO_2) = 4 \ 1 \ mol^{-1} \ cm^{-1} \ at \ 345 \ nm$

or d = 0.01 for a 2.599 $\times 10^{-3}$ M-solution.

Equation (1) implies that the plot of $1/(E_a - E_A)$ against $1/[\text{SCN}^-]_0$ is a straight line with intercept $1/(E_c - E_A)$ and slope $1/K_c(E_c - E_A)$. Tables 3—5 include the data.

Equation (2) was also used ¹ to compute K_c for the same

$$K_{\rm c} = C_{\rm c} / [A]_{\rm eqb} [D]_{\rm eqb}$$
(2)

complex species and the data are in Tables 3—5. Here $C_{\rm e}$, [A]_{eqb}, and [D]_{eqb} are the equilibrium molar concentrations of the complex species, the acceptor, and the donor and [A]_{eqb} = [A]₀ – $C_{\rm c}$ and [D]_{eqb} = [D]₀ – $C_{\rm c}$. Table 6 summarises all the mean $K_{\rm c}$ data by the two methods at different temperatures. For SOCl₂,SCN⁻ and SO₂Cl₂-SCN⁻

TABLE 6

Summary of K_c data for SCN⁻ complex species

		$K_{ m c}/{ m l}~{ m mol}^{-1*}$	
	15 °C	25 °C	35 °C
SO2,SCN-	$77\cdot8\pm1\cdot5$	$65{\cdot}4\pm1{\cdot}5$	$54 \cdot 1 \pm 1 \cdot 0$
SOCl2,SCN-	$91 \cdot 2 \pm 0 \cdot 4$	$76 \cdot 6 \pm 0 \cdot 4$	$59 \cdot 4 \pm 0 \cdot 9$
SO₂CĪ₂,SCN⁻	$409{\cdot}4 \pm 2{\cdot}6$	$297 \cdot 9 \pm 1 \cdot 8$	

* A mean value is taken for data from equations (1) and (2).

the error limit did not exceed $\pm 1\%$ [by equations (1) and (2)] but in SO₂,SCN⁻ it was $\pm 2\%$. The constancy of K_c [by equation (2)] is further evidence that all the complex species investigated under our conditions were of 1 : 1 type.

The data in Table 6 were used to determine ΔG° , ΔS° , and ΔH° (Table 7) for the formation of the complexes and they point to a weak association of a charge-transfer type.

TABLE 7

Thermodynamic constants of the complex species in acetonitrile

	$\frac{-\Delta G^{\circ}}{\text{kcal mol}^{-1}}$	$\frac{-\Delta H^{\circ}}{\text{kcal mol}^{-1}}$	$\frac{-\Delta S^{\circ}}{\operatorname{cal}\operatorname{mol}^{-1}\mathrm{K}^{-1}}$
SO, SCN-	$2 \cdot 4$	3.3	2.7
SOČl ₂ ,SCN-	2.6	3.5	$3 \cdot 1$
SO₂CĪ₂,SCN⁻	3.5	$2 \cdot 7$	-2.5

Purification of materials, spectral measurements, and preparation of solutions were as before.¹ Most solutions were prepared immediately before the spectra were measured.

DISCUSSION

The complex species of the SCN⁻ ligand with SO₂, SOCl₂, and SO₂Cl₂ are similar to those with halide ions under similar conditions.¹ Their stabilities will be discussed in relation to the complex species with halide ions, whose nature has been discussed.¹ All data are in Table 8. We summarise the factors thought responsible

TABLE 8

Stability const	ants/l mo	ol ⁻¹ in ac	etonitril	e at 25 °C
$X^- =$	Cl-	Br^{-}	1-	SCN-
SO2,X-	372	160	38	65
SOČl₂,X−	362	241	150	77
SO_2Cl_2, X^-	10	41	77	298

for the order of stabilities among halide ion complexes as: (1) The formation of the complex occurs as a result of Lewis acid-base interaction; (2) Cl⁻, Br⁻, and I⁻ ions are three Lewis bases of varying strengths; (3) SO₂, SOCl₂, and SO₂Cl₂ molecules may be considered three Lewis acids of increasing acceptor character; and (4), along with acid-base characters of the donors and acceptors, we find that the polarity of SO_2Cl_2 plays a very important role with the highly polarisable I⁻ ligand.

The Nature of the SCN⁻ Complexes and the Role of Polarisability in Stabilising Them.—Like halide ions, the SCN⁻ ligand is a soft Lewis base and the formation of the complex species can be attributed to acid-base interaction between acceptor and donor. The nature of this association can be understood from the gradation in stability constants shown in Table 8. We first consider the SO₂Cl₂,X⁻ species. Although acid-base interaction is responsible for their formation the sudden increase in stability from SO₂Cl₂,I⁻ to SO₂Cl₂,SCN⁻ indicates a progressive increase in ion-dipole (donor-acceptor) interaction owing to the greater polarisability of SCN⁻ than I⁻. Other factors which might account for this sudden change, such as solvation, are not supported by our thermodynamic data.

For SO₂, X^- complexes the order of K_c for the halide ligands is attributed mainly to back-donation ¹ and the

high stability constants of SO_2,CI^- and SO_2,Br^- are evidence of its role. The lower stability constant of SO_2,I^- shows a minor role for back-donation and a larger one for polarisability. A higher K_c for $SO_2,SCN^$ than for SO_2,I^- is evidence that SCN^- is more polarisable than the I^- ligand which promotes stronger ion-dipole interaction.

 $K_{\rm c}$ for the SOCl₂,X⁻ species decreases for Cl⁻ and Br⁻ complexes (relative to SO₂,X⁻) and increases for I⁻ and SCN⁻ ligands. This trend suggests that polarisability plays an increasingly greater part in stabilising the species SOCl₂,I⁻ and SOCl₂,SCN⁻. The order of stability SO₂Cl₂,SCN⁻ \gg SOCl₂,SCN⁻ > SO₂,SCN⁻ shows a maximum interaction with SO₂Cl₂. The high dipole moment of SO₂Cl₂ (1.86 D) helps stronger ion-dipole interaction with the highly polarisable SCN⁻ ligand and thus accounts for the high stability constant of SO₂Cl₂,SCN⁻. Polarisability is thus the main factor influencing $K_{\rm c}$.

[3/549 Received, 15th March, 1973]