Thermochemistry of Fluorine Compounds. Part II.¹ The Hexafluoroiodate Series

By Arthur Finch,* Peter N. Gates, and Michael A. Jenkinson, Royal Holloway College, University of London, Englefield Green, Surrey

From measurements of the heats of aqueous alkaline hydrolysis in 0.1M-NaOH at 25 °C the standard enthalpies of formation of the following hexafluoroiodates are derived: $\Delta H_t^{\circ}[KIF_6, cryst.]_{298} = -1492 \pm 2.5 \text{ kJ mol}^{-1}$ (-356.5 ± 0.6 kcal mol}); $\Delta H_t^{\circ}[RbIF_6, cryst.]_{298} = -1473 \pm 2 \text{ kJ mol}^{-1}$ (-352.1 ± 0.5 kcal mol}); and ΔH_1° [CslF₆, cryst.]₂₉₈ = -1466 ± 2 kJ mol⁻¹ (-350.4 ± 0.5 kcal mol⁻¹). Estimates of lattice energies and of $\Delta H_1[|F_6, g]_{298}$ are reported.

THE preparation and stoicheometry of alkali-metal and tetra-alkylammonium hexafluoroiodates by a variety of methods is well established.2-4 Considerable disagreement concerning the structure of the ${\rm IF_6}^-$ moiety as indicated by vibrational $^{5-7}$ or Mössbauer studies 8 has been reported. Discrepancies in the reported vibrational spectra have been apparently explained very recently by Christe,⁹ and the present indications are that the IF_6^- moiety does not possess a symmetry higher than C_{2v} . No thermodynamic data are available.

EXPERIMENTAL

Preparations.—The compounds MIF_6 (M = K, Rb, and Cs) were prepared by the established procedure 3 summarised in equation (1). Appropriate quantities of the

$$5\mathrm{MI} + 6\mathrm{IF}_5 \longrightarrow 5\mathrm{MIF}_6 + 3\mathrm{I}_2 \tag{1}$$

relevant iodide (typically ca. 5 g) were heated to 100 °C with stirring with an excess (typically ca. 30 cm³) of IF_5 in a Pyrex reaction flask incorporated in a conventional high-vacuum line. Iodine and excess of IF_5 were removed by prolonged pumping at ca. 50 °C; residues were pure white powders, which were subsequently manipulated under dry-box conditions. Each sample was analysed for iodine (by standard titrimetric procedures) and fluorine with a selective ion electrode) (Found: I, 45.2; F, 40.5. Calc. for KIF₆: I, 45.3; F, 40.7%; Found: I, 39.1; F, 34.8. Calc. for RbIF₆: I, 38.9; F, 34.9%; Found: I, 34.1; F, 30.5. Calc. for $CsIF_6$: I, 34.0; F, 30.5%).

Calorimeter and Procedure.--Appropriate quantities of hexafluoroiodate salts in glass ampoules were broken into an excess of 0.1000n-sodium hydroxide (200 cm³). The calorimetric reaction was fast, being essentially complete within 2 or 3 min, but not violent, and values of the heat of reaction, $\Delta H_{\rm obs},$ were measured according to equation (2) at 298.15 \pm 0.01 K with the mole ratio NaOH : H₂O = 1:556. Uncertainties were taken as twice the standard

$$MIF_{6}(cryst.) + (m + 6)NaOH(nH_{2}O) \longrightarrow$$
$$[MIO_{3} + 6NaF]\{mNaOH(n + 3)H_{2}O\} \Delta H_{obs} \quad (2)$$

deviation of the mean. One kcal is taken as 4.1840 absolute ioules.

- ¹ Part I, Arthur Finch, P. N. Gates, and M. A. Jenkinson, J.C.S. Dalton, 1972, 2044.
- ² H. J. Emeleus and A. G. Sharpe, J. Chem. Soc., 1949, 2206. ³ G. B. Hargreaves and R. D. Peacock, J. Chem. Soc., 1960, 2373.
- ⁴ H. Meinert and H. Klamm, Z. Chem., 1968, 8, 195.

⁵ K. O. Christe, J. P. Guertin, and W. Sawodny, Inorg. Chem., 1968, 7, 626.

RESULTS

Experimental calorimetric results are summarised in Table 1. The measured reaction heat, ΔH_{obs} , refers to

TABLE 1

Experimental data for aqueous alkaline hydrolyses of some Group 1A hexafluoroiodates

		$-\Delta H_{obs.}$
Compound	w/g	kJ mol-1
KIF ₆ (cryst.)	0.1912	445.9
	0.1560	445.7
	0.1751	440.0
	0.1085	449.3
	0.1835	$443 \cdot 5$
	0.1683	441.1
	0.1285	44 4·9
	0.1402	438.3
	0.1849	$442 \cdot 3$
	0.1293	448.4
$\Delta H_{\mathrm{obs.}}(\mathrm{mean})$:	$= -443.9 \pm 2.2$	kJ mol-1
RbIF _c (cryst.)	0.1559	455·1
0(5)	0.1460	460.2
	0.1570	456.6
	0.1888	460.0
	0.1865	459.9
	0.1843	458.0
	0.1211	453.0
	0.1826	460.3
	0.1855	456.1
	0.1444	460.0
	0.1473	462.0
$\Delta H_{\rm obs.}({ m mean})$:	$=-458\cdot3\pm1\cdot7$	kJ mol-1
CsIF.(cryst)	0.1610	460.2
0011 6(019 200)	0.2551	457.1
	0.1859	458.2
	0.2185	457.2
	0.2227	$456 \cdot 1$
	0.1801	457.3
	0.2056	456.6
	0.1854	461.3
	0.1702	$463 \cdot 1$
$\Delta H_{\rm obs.}({\rm mean})$	$= -458.0 \pm 1.7$	kJ mol-1

process (2), where M = K, Rb, or Cs. The standard enthalpy of formation of each hexafluoroiodate was calculated by substitution of the experimental value of ΔH_{obs} and appropriate ancillary data into the thermochemical

- ⁶ H. Klamm, H. Meinert, P. Reich, and K. Witke, Z. Chem.,
- ¹ Franking, H. Henlert, T. Heller, and H. Witkle, B. Chow, 1968, **8**, 393, 469.
 ⁷ S. P. Beaton, D. W. A. Sharp, A. J. Perkins, I. Sheft, H. H. Hyman, and K. O. Christe, *Inorg. Chem.*, 1968, **7**, 2174.
 ⁸ S. Bukshpan, I. Soriano, and J. Shamir, *Chem. Phys.*
- Letters, 1969, 4, 241.
- ⁹ K. O. Christe, Inorg. Chem., 1972, **11**, 1215.

2238

equation (3). Values for the dilution coefficients (n, and p, and q), are available from the detailed results; heats of

$$\Delta H_{f}^{\circ}[\text{MIF}_{6}(\text{cryst.})] = \Delta H_{f}^{\circ}[\text{MIO}_{3}(nH_{2}O)] + 6\Delta H_{f}^{\circ}[\text{NaF}(pH_{2}O)] + 3\Delta H_{f}^{\circ}[\text{H}_{2}O(\text{liq.})] - 6\Delta H_{f}^{\circ}[\text{NaOH}(qH_{2}O)] - \Delta H_{\text{obs}}$$
(3)

mixing were disregarded. Ancillary data are from accepted sources.

DISCUSSION

KIF RbIF₆

CsIF₆

As with the corresponding diffuoroiodate salts,¹ the substantial negative values obtained for the $\Delta H_{\rm f}^{\circ}$ values (Table 2) are consistent with their apparent thermo-

	TABLE 2	
Derived a	standard enthalpies	of formation
	$\Delta H_{\rm f}^{\circ}(298~{ m K})$	$\Delta H_{i}^{\circ}(298 \text{ K})$
Compound	kJ mol ⁻¹	kcal mol ⁻¹ '

 -356.5 ± 0.6

 $-352\cdot1$ \pm 0.5

 $-350\cdot4\pm0\cdot5$

dynamic stability with respect to storage at ambient temperatures. Adopting the 'thermochemical radii' treatment of the Kapustinskii equation, as detailed in

 $-1492 \pm 2.5 \\ -1473 \pm 2 \\ -1466 \pm 2$

Part I, we can calculate approximate but self-consistent lattice energies as KIF₆, 807; RbIF₆, 774; and CsIF₆, 728 kJ mol⁻¹. These values are necessarily approximate, owing to, *inter alia*, uncertainties in the value adopted for the thermochemical radius of the hexafluoroiodate ion (133 pm), an uncertainty of 10 pm in which causes a change of *ca*. 27 kJ mol⁻¹ in U_{298} . As before,¹ however, *differences* in U_{298} values are certainly much more precise. Similarly, consistent values for the standard enthalpy of formation of any ionic hexafluoroiodate salt can be obtained by appropriate substitution in equation (4) where T = 298 K. A value for $U_T[M_x(IF_6)y]$ can be

$$\Delta H_{\mathbf{f}}^{\circ}[\mathbf{M}_{x}(\mathbf{IF}_{\mathbf{6}})_{y}, \mathrm{cryst.}]_{T} = -\{U_{T}[\mathbf{M}_{x}(\mathbf{IF}_{\mathbf{6}})_{y}] + (x + \gamma)RT\} + x\Delta H_{\mathbf{f}}^{\circ}[\mathbf{M}^{+}, \mathbf{g}]_{T} + \gamma\Delta H_{\mathbf{f}}^{\circ}[\mathbf{IF}_{\mathbf{6}}^{-}, \mathbf{g}]_{T}$$
(4)

estimated by the Kapustinskii–Yatsimirskii procedure¹ employing a value of 133 pm for the thermochemical radius of the IF_6^- ion. The value of $\Delta H_f^\circ[IF_6^-, g]_{298}$ can be calculated from the experimental values of $\Delta H_f^\circ[MIF_6, c]_{298}$.

We thank the S.R.C. for financial support (to M. A. J.).

[3/943 Received, 10th May, 1973]