Complexing Properties of *a*-Nitroketones. Part III.¹ A Stereochemical Investigation of Some New Copper(II) a-Nitroketonate Complexes and Their Base Adducts with O- and N-Donors

By Donato Attanasio, Ines Collamati, and Claudio Ercolani,* C.N.R. Laboratory, Istituto di Chimica Generale ed Inorganica, Università di Roma, Roma, Italy

Giovanni Rotilio, C.N.R. Centre, Istituto di Chimica Biologica, Università di Roma, Roma, Italy

Complexes $[CuL_2]$, $[CuL_2B_2]$, and $[CuL_2B']$ (L = an α -nitroketonato-anion obtained from nitroacetone, 3,3-dimethyl-1-nitrobutan-2-one, and 3-nitrocamphor; B = water or acetone; B' = 2,2'-bipyridine or 1,10-phenanthroline) have been prepared and investigated by electronic and e.s.r. spectroscopy, and magnetic and X-ray measurements. An elongated tetragonal symmetry is assigned to all the solid complexes studied, essentially square planar for the $[CuL_2]$ species (CuO₄ chromophore), six-co-ordinate and pseudo-octahedral for $[CuL_2B_2]$ (CuO₄O₂ chromophore). For the [CuL₂B'] species (CuO₄N₂ chromophore), which are also six-co-ordinate and pseudo-octahedral, with restricted tetragonal distortion, e.s.r. spectra indicate that both nitrogen atoms of the N-base are equatorially bound to Cu^{II}, with consequent in-plane co-ordination of only two of the oxygen atoms of the α -nitroketonic groups, while the other two oxygen atoms are displaced to the axial positions.

EQUATORIAL, rather than the more usual axial, coordination of heterocyclic and other N-bases in adducts of the complex bis(2-nitroacetophenonato)copper(II), [Cu(nap)2], of chromophores CuO4N and CuO4N2 has previously been suggested, mainly on the basis of electronic spectra.² Equatorial co-ordination of the N-base has been established by X-rays in the 1:1adduct of the complex $[Cu(nap)_2]$ with α -picoline, $[Cu(nap)_{2}(\alpha-pic)]^{3}$ and, more recently,⁴ in the 1:2 adduct of $[Cu(nap)_2]$ with γ -picoline, $[Cu(nap)_2(\gamma-pic)_2]$. Both structures and that of $[Cu(nap)_2]^5$ have the following salient features which concern the co-ordination about Cu^{II}.

(i) In the complex [Cu(nap)₂] there is trans-planar co-ordination (A) with equal in-plane Cu–O bonds (1.93 Å) and longer intermolecular Cu–O contacts (2.59 Å), giving a CuO₄O₂ chromophore.

(ii) The complex $[Cu(nap)_2(\alpha-pic)]$ has an approximately square-pyramidal structure (B) with the nitrogen atom co-ordinated in-plane and one oxygen atom of a α -nitroketonic group displaced to the axial position with Cu-O(axial) = 2.16 Å, slightly longer than the other Cu-O in-plane distances (1.95, 1.92, and 1.96 Å).

(iii) The complex $[Cu(nap)_2(\gamma-pic)_2]$ is six-co-ordinate with trans in-plane nitrogen atoms and mixed axial and in-plane co-ordination of both *a*-nitroketonic groups having Cu-O(axial) = 2.25 Å and Cu-O(in-plane) =1.99 Å (C).

Apart from this specific class of complexes, (4-aminopyridine)bis(acetylacetonato)copper(II) ⁶ and (2,2'-bipyridine)bis(hexafluoroacetylacetonato)copper(II)⁷ can also be cited as examples of complexes of CuO₄N and CuO₄N₂ chromophores respectively, where equatorial co-ordination of the N-base and mixed axial-equatorial coordination of the bidentate O-donors has been crystallographically proved to occur.

This paper presents the preparation and characteriz-¹ Part II, R. Astolfi, I. Collamati, and C. Ercolani, preceding

paper. ² D. Attanasio, I. Collamati, and C. Ercolani, J. Chem. Soc. (A), 1971, 2516.

M. Bonamico and G. Dessy, Chem. Comm., 1970, 1218.

⁴ M. Bonamico, G. Dessy, V. Fares, and L. Scaramuzza, J.C.S. Dalton, 1972, 2477.

ation of a series of complexes [CuL₂], [CuL₂B₂], and $[CuL_2B']$ [LH = nitroacetone (I), 3,3-dimethyl-1-nitrobutan-2-one (II), and 3-nitrocamphor (III) (abbreviations in parentheses in the text indicate the corresponding anions); $B = H_2O$ or MeCOMe; B' = 2,2'bipyridine (bipy) or 1,10-phenanthroline (phen)]. X-Ray powder data and spectroscopic and magnetic

measurements are reported. More importantly, direct information on the structure of the $[CuL_2B']$ complexes, including those of [Cu(nap)₂], has been obtained from e.s.r. spectra. The latter technique has proved very useful in investigating the symmetry around the metal ion and in-plane or out-of-plane co-ordination of the

⁵ M. Bonamico, I. Collamati, C. Ercolani, G. Dessy, and D. J. Machin, Chem. Comm., 1967, 654.
 ⁶ G. W. Bushnell, Canad. J. Chem., 1971, 49, 555.
 ⁷ M. V. Veidis, G. H. Schreiber, T. E. Gough, and Gus J.

Palenik, J. Amer. Chem. Soc., 1969, 91, 1859.

nitrogen and oxygen atoms in similar chromophores present in several mono- and bis-adducts of copper(II) β -diketonate complexes.^{8,9} Determination of g values

and detection of ¹⁴N hyperfine splitting (about g_{\parallel}), in conjunction with electronic spectra and the 'model' structures given above, have allowed structural assignments to be made for the [CuL₂B'] species studied.

EXPERIMENTAL

Previously described procedures were used for the preparation of α -nitroketones (I)—(III)¹⁰ and of the adducts of the complex [Cu(nap)₂].²

Preparation of Cu^{II} and Zn^{II} Complexes $[ML_2]$ and $[ML_2B_2]$ (B == Water or Acetone).—Bis(nitroacetonato)copper-(II), $[Cu(na)_2]$. Nitroacetone (4.0 g, 39.0 mmol) was added to $CuAc_2, H_2O$ (3.50 g, 17.5 mmol) suspended in hot 95% ethanol (250 cm³). Yield 75% after cooling. Recrystallization was from 95% ethanol in the presence of a small quantity of (I).

Bis (3,3-dimethyl-1-nitrobutan-2-onato) copper (II), [Cu-(nta)₂]. Solutions of CuAc₂, H₂O (1·25 g, 6·25 mmol; water, 20 cm³) and 3,3-dimethyl-1-nitrobutan-2-one (1·82 g, 12·5 mmol; acetone, 15 cm³) were mixed. Yield 70%. Recrystallization was from acetone-hexane.

Diaquobis(3-nitrocamphorato)copper(II), $[Cu(nca)_2(H_2O)_2]$. Water solutions of 3-nitrocamphor (Na salt; 2.0 g, 9.1 mmol in 10 cm³ of water) and of CuAc₂, H₂O (0.91 g, 4.55 mmol in 10 cm³ of water) were mixed. Yield 65%. This complex was used without further purification.

Bisacetonebis(3-nitrocamphorato)copper(II), $[Cu(nca)_2-(MeCOMe)_2]$. This complex was obtained on recrystallizing the corresponding dihydrate from acetone. Yield ca. 50%.

Diaquobis(nitroacetonato)zinc(II), $[Zn(na)_2(H_2O)_2]$. ZnAc₂,2H₂O (930 mg, 4·2 mmol) was added to a solution of nitroacetone (1·73 g, 16·8 mmol; twice the stoicheiometric amount) in absolute ethanol (15 cm³) under mild heating. Addition of hexane (60 cm³) yielded, after a few days, 95% of $[Zn(na)_2(H_2O)_2]$. Recrystallization was from absolute ethanol-hexane in the presence of a small quantity of ligand.

Diaquobis(3-nitrocamphorato)zinc(II), [Zn(nca)₂(H₂O₂)]. This complex was prepared as for the corresponding Cu^{II} complex. Recrystallization was from acetone-hexane.

Preparation of Cu^{II} and Zn^{II} Adducts $[ML_2B']$ (B' = 2,2'-Bipyridine or 1,10-Phenanthroline).—These adducts were generally prepared by using the above $[ML_2]$ or $[ML_2B_2]$ complexes, as starting materials. Zn^{II} adducts

⁸ B. B. Wayland and M. D. Wisniewski, Chem. Comm., 1971, 1205.

from (II) are exceptions because of the difficulty in obtaining the complex $[Zn(nta)_2]$. Recrystallizations were all carried out in the presence of a small quantity of ligand and base.

(2,2'-Bipyridine)bis(nitroacetonato)copper(II), [Cu(na)₂-(bipy)]. The complex [Cu(na)₂] (268 mg, 1.0 mmol) and 2,2'-bipyridine (160 mg, 1.0 mmol) were dissolved in hot absolute ethanol (20 cm³). Yield 95%. Recrystallization was from dichloromethane-hexane.

Bis(nitroacetonato)(1,10-phenanthroline)copper(II), [Cu-(na)₂(phen)]. The complex $[Cu(na)_2]$ (268 mg, 1.0 mmol) and 1,10-phenanthroline (180 mg, 1.0 mmol) were dissolved in hot absolute ethanol (10 cm³). Precipitation was induced by addition of hexane (10 cm³). Yield 90%. Recrystallization was from dichloromethane-hexane.

(2,2'-Bipyridine)bis(3,3-dimethyl-1-nitrobutan-2-onato)-

copper(II), $[Cu(nta)_2(bipy)]$. The complex $[Cu(nta)_2]$ (200 mg, 0.85 mmol) and 2,2'-bipyridine (140 mg, 0.9 mmol) were dissolved in hot absolute ethanol (25 cm³). Precipitation was induced by addition of hexane (20 cm³). Yield 60%. Recrystallization was from absolute ethanol-hexane.

Bis(3,3-dimethyl-1-nitrobutan-2-onato)(1,10-phenanthro $line)copper(II), [Cu(nta)_2(phen)]. Hot acetone solutions of$ $the complex [Cu(nta)_2] (200 mg, 0.57 mmol; 100 cm³) and$ 1,10-phenanthroline (105 mg, 0.58 mmol; 100 cm³) weremixed. Yield 60%. Owing to its low solubility thisadduct was used without further purification.

(2,2'-Bipyridine)bis(3-nitrocamphorato)copper(II), [Cu-(nca)₂(bipy)]. A green precipitate of this complex was obtained by dissolving at room temperature [Cu(nca)₂-(H₂O)₂] (300 mg, 0·1 mmol) and 2,2'-bipyridine (95 mg, 0·61 mmol) in absolute EtOH and heptane. If the green precipitate was not quickly separated from the mother liquor, it transformed into a purple isomer, which is still under investigation.

Bis(3-nitrocamphorato)(1,10-phenanthroline)copper(II), [Cu(nca)₂(phen)]. The complex [Cu(nca)₂(H₂O)₂] (300 mg, 0.61 mmol) and 1,10-phenanthroline (110 mg, 0.61 mmol) were dissolved in absolute ethanol (15 cm³). Precipitation of the complex was determined by addition of hexane (40 cm³). Yield 60%. Recrystallization was from absolute ethanol-hexane.

(2,2'-Bipyridine)bis(nitroacetonato)zinc(II), [Zn(na)₂(bipy)]and bis(nitroacetonato)(1,10-phenanthroline)zinc(II), [Zn(na)₂-(phen)]. These complexes were prepared with a proceduresimilar to that used for the parent Cu^{II} complexes.

(2,2'-Bipyridine)bis(3,3-dimethyl-1-nitrobutan-2-onato)zinc(II), [Zn(nta)₂(bipy)]. ZnAc₂,2H₂O (220 mg, 1.0 mmol)and (II) (350 mg, 2.4 mmol) were dissolved in absoluteethanol (5 cm³) containing 2,2'-bipyridine (160 mg, 1.0mmol). Precipitation of the complex occurred on additionof hexane (10 cm³). Yield 75%. Recrystallization wasfrom absolute ethanol-hexane.

Bis(3,3-dimethyl-1-nitrobutan-2-onato)(1,10-phenanthro-

line)zinc(II), $[Zn(nta)_2(phen)]$. This was prepared similarly to the $[Zn(nta)_2(bipy)]$ adduct. Recrystallization was from absolute ethanol.

(2,2'-Bipyridine)bis(3-nitrocamphorato)zinc(II), $[Zn(nca)_2-(bipy)]$. $[Zn(nca)_2(H_2O)_2]$ (495 mg, 1.0 mmol) and 2,2'-bipyridine (156 mg, 1.0 mmol) was dissolved in acetone (30 cm³), and heptane (60 cm³) was added to precipitate the complex. Yield 95%. Recrystallization was from

⁹ H. Yokoi, M. Sai, and T. Isobe, Bull. Chem. Soc. Japan, 1970, **43**, 1078.

¹⁰ D. Attanasio, I. Collamati, and C. Ercolani, J.C.S. Dalton, 1972, 772. acetone-hexane followed by prolonged drying *in vacuo* to completely eliminate traces of trapped acetone.

Bis(3-nitrocamphorato)(1,10-phenanthroline)zinc(II), [Zn-(nca)₂(phen)]. The complex $[Zn(nca)_2(H_2O)_2]$ (300 mg, 0.61 mg) and 1,10-phenanthroline (110 mg, 0.61 mmol) were dissolved in acetone (15 cm³). The complex was precipitated on adding hexane. Yield 95%. Recrystallization was from dichloromethane-hexane.

(2,2'-Bipyridine)bis(2-nitroacetophenonato)zinc(II), [Zn-(nap)₂(bipy)] and bis(2-nitroacetophenonato)(1,10-phenanthroline)zinc(II), [Zn(nap)₂(phen)]. The precipitation of these two adducts was obtained by dissolving equivalent amounts recrystallizing the Zn^{II} and Cu^{II} adducts in a molar ratio of *ca.* 200:1. The final ratio in the diluted solid samples was not determined. Some of the copper complexes were prepared from ${}^{63}Cu$ (98%) isotope (purchased as ${}^{63}CuO$ from Oak Ridge National Laboratories, U.S.A.).

RESULTS AND DISCUSSION

The room-temperature magnetic moments of the complexes $[Cu(na)_2]$ and $[Cu(nta)_2]$, and of the bis(aquo) and bis(acetone) derivatives of $[Cu(nca)_2]$ are given in Table 1. Data concerning their diffuse-reflectance and

Some properties and elemental analyses (%) of [ML₂], [ML₂B₂], and [ML₂B'] complexes

	Colour	M.p.(<i>t</i> /°C)	μ _{eff} */B.M.	Calc.			Found		
Complex				C	H	N	C	H	N
[Cu(na),]	Deep green	169	1.93	26.9	$3 \cdot 0$	10.5	26.9	3 ·0	9.9
[Cu(na), [bipy)]	Green	136	2.01	45.35	3.8	$13 \cdot 2$	45.65	3.9	13.0
[Cu(na) ₂ (phen)]	Green	119	1.95	48.3	$3 \cdot 6$	12.5	48.5	3.9	13.1
$\left[Zn(na) \right]$	White	106		$23 \cdot 6$	3 .9	$9 \cdot 2$	24.0	4.1	9.15
Zn(na) (bipy)	White	185		45.1	$3 \cdot 8$	$13 \cdot 2$	45.1	3 •9	13.05
[Zn(na), (phen)]	White	150		48.1	3.6	12.5	48 ·0	$3 \cdot 8$	12.3
[Cu(nta)]	Grey-green	179	1.92	41.0	5.7	8.0	40.2	5.5	8.3
[Cu(nta), [bipy)]	Pale green	165	1.97	$52 \cdot 0$	$5 \cdot 6$	11.0	$52 \cdot 2$	5.5	10.85
[Cu(nta), (phen)]	Pale green	195	1.92	54.3	5.3	10.5	54.7	5.3	10.5
Zn(nta), (bipy)	White	203		51.8	5 •5	11.0	51.95	5.7	10.5
[Zn(nta)]	White	251		54.0	5.3	10.5	54.35	5.4	10.6
Cu(nca), (H,O),	Pale green	155	2.01	48 ·8	6.6	5.7	48.7	6.7	5.0
[Cu(nca), (MeCOMe),]	Light brown	140	1.93	$54 \cdot 2$	7.0	4.9	$54 \cdot 2$	6.9	5.2
[Cu(nca), (bipy)]	Green	188	1.92	58.85	5.95	9.15	60.3	$6 \cdot 2$	9.2
[Cu(nca), (phen)]	Yellow green	180	1.98	60.45	5.7	8.8	60.7	6.0	8.4
Zn(nca), (H _a O),	White	135		48.65	6.5	5.7	48.15	6.5	6.2
[Zn(nca), (bipy)]	White	210		58.7	$5 \cdot 9$	9.1	58.5	$6 \cdot 2$	9.2
[Zn(nca), (phen)]	White	260		60.2	5.7	8.8	60.2	5.8	8.8
Zn(nap), (bipy)	Pale yellow	210		56.8	3.7	10.2	56.7	4.1	10.3
[Zn(nap) ₂ (phen)]	Pale yellow	180		58.6	$3 \cdot 5$	9.8	57.8	3.4	10.2

na = Nitroacetonato, bipy = 2,2'-bipyridine, phen = 1,10-phenanthroline, nta = 3,3-dimethyl-1-nitrobutan-2-onato, nca = 3-nitroacetophenonato.

* Calculated from $\mu_{\text{eff}} = 2.84 (\chi_A T)^{\frac{1}{2}}$; diamagnetic corrections were calculated from Pascal's constants.

of the complex $[Zn(nap)_2(EtOH)_2]^{11}$ and of the appropriate base in acetone, followed by addition of hexane. Recrystallization was from acetone-hexane for the 2,2'bipyridine adduct and from dichloromethane for the 1,10phenanthroline derivative.

Some properties and elemental analyses of the complexes are summarized in Table 1.

Physical Measurements.—Instruments and techniques used for X-ray powder patterns, magnetic measurements, diffuse-reflectance, and solution visible spectra have been described previously.¹⁰

E.s.r. spectra were obtained, at 110 K, with a Varian 4502-4 spectrometer, using 100 kHz modulation within a Varian multipurpose cavity. Microwave frequencies were of the order of 9.15 GHz and were measured on a Hewlett-Packard X532B frequency counter; field measurements were made by the Fieldial magnetic system. The accuracy of g values was repeatedly checked with a polycrystalline sample of diphenylpicrylhydrazyl. Generally perpendicular copper coupling constants were not resolved; g values were obtained directly from the spectra. All the spectra were recorded on CHCl₃ (ethanol free): CH₂Cl₂ (1:1) frozen solutions or diluted polycrystalline samples. The latter were prepared by recrystallization of the appropriate zinc(II) adduct in the presence of a small amount of the corresponding copper(II) adduct. Good results were obtained by

solution spectra are given in Table 2. A series of spectra of the complex of $[Cu(na)_2]$ are shown in Figure 1. All four complexes have μ_{eff} values within 1.92 and 2.01 B.M., well above the 'spin-only' magnetic moment and scarcely diagnostic of the stereochemistry present. Visible reflectance spectra were very similar to one another and to the corresponding spectra in solution. They all showed a main absorption at ca. 15-16 kK and a shoulder at 20-22 kk. The latter absorption is assumed to be non-d-d in origin, for the reasons given previously for the complex [Cu(nap),]¹¹ and its base adducts.² For all four complexes the d-d spectrum then consists of the envelope at 15-16 kK only, which is indicative of a tetragonally distorted ligand field. This is very probably essentially square planar for [Cu(na)₂] and [Cu(nta)₂], as it is for the complex [Cu(nap)₂], whose visible spectrum also shows a d-d absorption envelope at ca. 16 kk for the solid and at 15.3 kk in dichloromethane solution. The two bis-adducts of [Cu(nca)₂] are tentatively assigned a six-co-ordinate tetragonal structure with axial co-ordination of the solvent molecules.

¹¹ I. Collamati and C. Ercolani, J. Chem. Soc. (A), 1969, 1541.

The water and acetone molecules are relatively easily removed from the two adducts of the complex $[Cu(nca)_2]$. In acetone solution the water molecules of $[Cu(nca)_2-(H_2O)_2]$ are replaced by acetone molecules. This was indicated by the shift to higher frequency of v_2 to a position identical with v_2 in the reflectance and acetone solution spectrum of the complex $[Cu(nca)_2(MeCOMe)_2]$. and the shift of v_2 to higher frequency suggests a more tetragonal character. This presumably occurs by elimination of the axial water and acetone molecules. This conclusion is supported by the fact that addition of hexane to a dichloromethane solution of the bis-(hydrate) gave a light green precipitate which had an i.r. spectrum identical (apart from the absence of water

TABLE 2

Diffuse-reflectance and solution spectra * of $[CuL_2]$ complexes and their adducts in the region 6.0-25.0 kK

			$(\lambda/nm, \epsilon/l mol^{-1} cm)$	-1)
Complex	Medium	νı	ν ₂	ν ₃
$[Cu(na)_2]$	Solid, refl.		15.05(665)	22.3 (470)
	CHCl ₃		14·9 (670, 35)	21.5 (465, 45)
	MeCOMe		14.7 (680, 41)	21.8 (460, 65)
$[Cu(nta)_2]$	Solid, refl.		15.75 (635)	20.4 (490)
	CH_2Cl_2		15·4 (650, 44)	(<i>)</i>
	MeCOMe		14-8 (675, 47)	22·0 (455, 77)
$[Cu(nca)_2(H_2O)_2]$	Solid, refl.		13.9 (720)	20·2 (495)
	CH ₂ Cl ₂		15.05(665, 46)	20.2 (495, 66)
	MeCOMe		$14 \cdot 4 \ (695, \ 47)$	20·4 (490, 61)
$[Cu(nca)_2(MeCOMe)_2]$	Solid, refl.		14.3 (700)	20·4 (490)
	CH_2Cl_2		15.15 (660, 47)	20·0 (500, 71)
	MeCOMe ₃		$14 \cdot 4 (695, 52)$	20·4 (490, 70)
[Cu(na) ₂ (bipy)]	Solid, refl.	9·1 (1 100)	13.8 (725)	22.5(445)
	$CHCl_3$: CH_2Cl_2 (1 : 1)	9.8(1020, 44)	13·8 (725, 66)	· · /
[Cu(nta) ₂ (bipy)]	Solid, refl.	10·0 (1 000)	13.9 (720)	$22 \cdot 5$ (445)
	$CHCl_3 : CH_2Cl_2 (1:1)$	$9.5 (1\ 050,\ 45)$	14·0 (715, 65)	· · /
[Cu(nca) ₂ (bipy)]	Solid, refl.	9.55(1045)	14.0 (715)	20.9 (480)
	$CHCl_3 : CH_2Cl_2 (1:1)$	$9 \cdot 45 (1 \ 060, \ 49)$	13.35(750, 76)	20.0(500, 100)
$[Cu(nap)_2(bipy)]^{\dagger}$	Solid, refl.	10.0 (1 000)	14.2 (705)	21.5 (465)
	CH ₂ Cl ₂	10.0 (1 000, 3 9)	$14 \cdot 2$ (705, 63)	21.5 (465, 178)
[Cu(na) ₂ (phen)]	Solid, refl.	9.6 (1 040)	13.7 (730)	22·2 (450)
	$CHCl_3 : CH_2Cl_2 (1:1)$	9.65(1035, 40)	13·7 (730, 59)	× /
[Cu(nta) (phen)]	Solid, refl.	9.1 (1 100)	13.8 (725)	22.5 (445)
	$CHCl_3: CH_2Cl_2$ (1:1)	9.5(1050, 45)	14·0 (715, 65)	、 /
[Cu(nca) ₂ (phen)]	Solid, refl.	8.5 (1175)	13.8 (725)	20.6 (485)
	$CHCl_3 : CH_2Cl_2 (1:1)$	$9 \cdot 4 (1 \ 060, \ 48)$	13·5 (740, 70)	20·0 (500·105)
[Cu(nap) ₂ (phen)]†	Solid, refl.	10.5 (950)	13.8(725)	21.5 (465)
	CH ₂ Cl ₂	10.0 (1 000, 25)	14.1 (710, 67)	<i>21</i> ·7 (460, 95)

* Italicized figures indicate shoulders. † See ref. 4.

Both the complexes $[Cu(nca)_2(H_2O)_2]$ and $[Cu(nca)_2-(MeCOMe)_2]$ give identical spectra in CH_2Cl_2 solution

FIGURE 1 Spectra of the complexes $[Cu(na)_2]$ (1)—(3) and [Cu(na)(bipy)] (4), (5): (1) and (4), diffuse reflectance; (2), solution in CHCl₃ (ethanol-free); (3), solution in acetone; and (5), solution in CHCl₃ (ethanol-free): CH₂Cl₂ (1:1)

bands in the 3600—3400 cm⁻¹ region) to that of the bis(hydrate). The crystalline precipitate, which was not further investigated, is very hygroscopic, reverting to the complex $[Cu(nca)_2(H_2O)_2]$ in air, and is thus believed to be $[Cu(nca)_2]$.

The $[CuL_2B']$ complexes are magnetically normal (Table 1) and had reflectance spectra (Table 2) between 6.0 and 25.0 kk, with ligand-field absorptions of comparable intensity at 8.5-10.0 kK (v₁) and 13.8-14.0 kK (v_2) . The non-d-d shoulder was also present at 20.0-22.0 kK (v₃) in all the spectra. These remained substantially unchanged in $CHCl_3: CH_2Cl_2$ (1:1) solution with v_1 , v_2 , and v_3 having similar energies and relative intensity. Representative spectra are given in Figure 1 for the complex [Cu(na)₂(bipy)], both in the solid state and in solution. Spectra practically identical to the above were also exhibited by the parent complexes derived from 2-nitroacetophenone, i.e. [Cu(nap)₂(phen)] and [Cu(nap)₂(bipy)], the latter being isomorphous with the corresponding Ni^{II} complex, found to be six-coordinate and pseudo-octahedral from its reflectance spectrum.2

In view of the invariably bidentate nature of both types of ligand present and of the above spectral data, a six-co-ordinate tris(chelate) structure (chromophore CuO_4N_2) is assumed for all the $[CuL_2B']$ species. As was also pointed out previously,² a visible spectrum quite similar (in fact almost identical) is also shown by the complex (2,2'-bipyridine)bis(hexafluoroacetylacetonato)copper(II). This complex is six-co-ordinate, *cis*-octahedral, with in-plane nitrogen atoms and mixed inplane-out-of-plane inequivalent co-ordination of the as matrices, were isomorphous with the corresponding Cu^{II} complexes (Table 3). However, from the spectra observed, it seems that equatorial co-ordination of the *N*-base and the overall symmetry around Cu^{II} are not greatly affected by the crystal structure assumed by the Zn^{II} complexes, since the spectra of the Cu^{II} complexes diluted in non-isomorphous matrices did not differ

TABLE 3 E.s.r. spectral data of [CuL₂B'] species

				$10^{-4}A_{\parallel}(^{63}Cu)/cm^{-1}$	$10^{-4}A(N)/cm^{-1}$	$10^{-4}A_{\parallel}(^{65}Cu)/cm^{-1}$
Complex	Medium *	g_{\parallel} (± 0.002)	$g_{\perp} (\pm 0.005)$	(± 1)	(± 1)	"(±1)
[⁶³ Cu(nap) _a (bipy)]	A(63)	$2 \cdot 281$	2.066	167.5	10	
2	C(63)	2.314	2.076	151	10	
[Cu(na) _s (bipy)]	AÚ	$2 \cdot 301$	2.074	163.5	10	179
	$\mathbf{B}(63)$	$2 \cdot 303$	2.074	156	10	
[Cu(nta), (bipy)]	A	$2 \cdot 299$	2.076	163.5	10	180
2 72 1575	С	$2 \cdot 311$	2.084	144.5	10	161
[Cu(nca) ₂ (bipy)]	A	$2 \cdot 297$	2.070	162	10.5	178
[63Cu(nap), (phen)]	А	$2 \cdot 289$	2.069	164	10	
[Cu(na), (phen)]	A	$2 \cdot 301$	2.072	158	10	173
	C(63)	2.310	2.073	154	9.5	
[Cu(nta) ₂ (phen)]	A	$2 \cdot 307$	2.078	160	10	177
	В	2.301	2.074	157	9.5	175
[Cu(nca) ₂ (phen)]	А	$2 \cdot 314$	2.080	159	10.5	175
	С	2.311	2.072	152	10	166

* Spectra recorded at 100 K: A, solution spectra in CHCl₃ (ethanol free): CH_2Cl_2 (1:1) (*ca.* $2 \cdot 0 \times 10^{-3}$ M); B, polycrystalline samples diluted in isomorphous matrices; C, polycrystalline samples diluted in non-isomorphous matrices; 63 given in parentheses indicates use of the ⁶³Cu isotope.

 β -diketonato-groups ⁷ (D). A similar arrangement, implying in-plane co-ordination of the bidentate *N*-base and mixed co-ordination of the chelating *O*-donor groups to give Cu–O(axial) slightly longer than Cu–O(inplane), was previously suggested for the complexes [Cu(nap)₂(bipy)] and [Cu(nap)₂(phen)] and is now proposed as a probable configuration for all the [CuL₂B'] complexes presented here.

For the $[CuL_2B']$ complexes equatorial co-ordination of both nitrogen atoms is clearly established by the ¹⁴N hyperfine structure in the e.s.r. spectra of frozen solutions of $CHCl_3: CH_2Cl_2$ (1:1) and of polycrystalline samples diluted with the analogous Zn^{II} complexes. Data are shown in Table 3, which also includes results for the complexes $[Cu(nap)_2(bipy)]$ and $[Cu(nap)_2(phen)]$. All e.s.r. spectra and the measured g values $(g_{\parallel} > g_{\perp})$ suggest an axially elongated 'tetragonal' ligand field, there being no evidence for a d_{s^2} ground state. However, on the basis of the experimental data, it is not possible to establish whether the ligand field around Cu^{II} has some rhombic character or not. Spectra of the bipy derivatives are shown in Figure 2 for the bands corresponding to $M_{\rm I} = -3/2$ and -1/2. Similar spectra were observed for the phen complexes. All the spectra showed ¹⁴N hyperfine splitting. For the spectra of the complexes prepared from the ⁶³Cu isotope, *i.e.* $[Cu(nap)_2(bipy)]$ and $[Cu(na)_2(bipy)]$ [(a), (b), and (d)of Figure 2], five components of relative intensity 1:2:3:2:1, present on the low-field bands given by $M_{\rm I} = -3/2$ and -1/2, unequivocally establish that both N atoms of the bidentate N-base co-ordinate in the equatorial plane. A similar interpretation applies to the phen complexes. Not all the Zn^{II} complexes, used significantly from the others. Since, then, in $[CuL_2B']$ species both nitrogen atoms are co-ordinated in-plane, it

crystalline samples, respectively, of the complexes [Cu(nap)₂-(bipy)] (a) and (b), [Cu(na)₂(bipy)] (c) and (d), [Cu(nta)₂(bipy)] (e) and (f), and [Cu(nca)₂(bipy)] (g) (frozen solution) follows that only two owners atoms of the r nitrelators

follows that only two oxygen atoms of the α -nitroketonic groups are equatorially co-ordinated and two are occupying axial positions (D).

1973

Inequivalent co-ordination of the oxygen atoms of the α -nitroketonic groups in the $[\operatorname{CuL}_2B']$ species is suggested by the fact that this has been observed to occur in both the complexes $[\operatorname{Cu}(\operatorname{nap})_2(\alpha\operatorname{-pic})]^3$ and $[\operatorname{Cu}(\operatorname{nap})_2(\gamma\operatorname{-pic})_2].^4$ That such a bonding situation may be ascribed mainly to the different electron-density distribution along the axial and equatorial directions, caused by the different population of the d_{z^*} and $d_{x^2-y^*}$ orbitals of CuII , is strongly supported by the fact that in the complex $[\operatorname{Cu}(\operatorname{nap})_2],^5$ where chelation of the α -nitroketonic groups occurs only in the equatorial plane, Cu-O bond distances are all equal, although the two O-donor sites of each α -nitroketonic group are not identical.

Complex	$R_{ m s}/{ m \AA}$	$R_{ m L}/{ m \AA}$
$[Cu(nap)_{2}(\gamma-pic)_{2}]$	1.99	2.25
[Cu(hfa),(bipy)]	1.97	$2 \cdot 30$

In an attempt to estimate approximately the extent of inequivalent co-ordination in the $[\operatorname{CuL}_2B']$ species the following considerations can be made. For the complexes $[\operatorname{Cu}(\operatorname{nap})_2(\gamma-\operatorname{pic})_2]$ and $[\operatorname{Cu}(\operatorname{hfa})_2(\operatorname{bipy})]$ (hfa = hexafluoroacetylacetonato) Cu-O(in-plane) ($R_{\rm S}$) and Cu-O(axial) ($R_{\rm L}$) bond distances are given below and the tetragonality (T) ¹² and the energy of the transition $d_{z^2} \longrightarrow d_{x^2-y^2}$ (or d_{xy}) are also reported. It is observed that both structural (T) and spectroscopic (v_1) data are very similar for the two complexes. From these data

it is concluded that the complexes $[Cu(nap)_2(\gamma-pic)_2]$ and $[Cu(hfa)_2(bipy)]$ exhibit a substantially identical tetragonal distortion. This is significant because, while having the same chromophore CuO_4N_2 , the two complexes have different *O*- and *N*-donors as well as different arrangements of the in-plane CuO_2N_2 chromophore (trans in one case, cis in the other). The high value of *T* for $[Cu(nap)_2(\gamma-pic)_2]$, *i.e.* restricted distortion, is undoubtedly determined, as for the complex $[Cu(hfa)_2-(bipy)]$,¹² by the limited flexibility of the bidentate *O*-donor. For $[CuL_2B']$ species the reflectance spectra show v_1 to vary between 8.5 and 10.5 kK (Table 2). The range of variation of v_1 for the spectra taken in solution

$$\begin{array}{rcl} T(=\!R_{\rm S}/R_{\rm L}) & \nu_{\rm 1}/{\rm k}\kappa & {\rm Assignment} \\ 0.85 & 9.5 & d_{z^4} \rightarrow d_{x^2-y^2} \ ({\rm or} \ d_{zy}) \\ 0.86 & 9.4 & d_{z^2} \rightarrow d_{xy} \ ({\rm ref. 12}) \end{array}$$

is even more restricted (9.4-10.0 kK). This presumably means that the tetragonal distortion varies only slightly for all the [CuL₂B'] species, particularly in solution, and T values should not differ very much from 0.85 to 0.86. Thus the inequivalent co-ordination in [CuL₂B'] species should be comparable to that observed in the two X-ray structures discussed.

[2/1809 Received, 31st July, 1972]

¹² R. J. Dudley and B. J. Hathaway, J. Chem. Soc. (A), 1970, 2794.