# The Crystal and Molecular Structure of a Dideuterio(pyrazol-1-yl)gallane Dimer ${ }^{1}$ 

By David F. Rendle, Alan Storr and James Trotter,* Department of Chemistry, University of British Columbia, Vancouver 8, British Columbia, Canada

Crystals of the title compound are orthorhombic, $a=11 \cdot 518(2), b=11 \cdot 278(1), c=8.267(1) A$, space group $C m C 2_{1}, Z=4$ (dimeric units). The structure was determined from diffractometer data by Patterson and Fourier syntheses, and refined by full-matrix least-squares methods to $R 0.049$ for 491 observed reflexions. The molecule is $V$-shaped, the angle between the unique portion of the molecule and its crystallographic mirror image being $128.4^{\circ}$, and the six-membered $\mathrm{Ga}(\mathrm{N}-\mathrm{N})_{2} \mathrm{Ga}$ ring being in the boat conformation. Mean dimensions are: $\mathrm{Ga}-\mathrm{N}$ 1.974, N-N 1.34, N-C 1.35, C-C 1.35 À: N-Ga-N' 96.6 , Ga-N-N 123.6.

As part of a continuing investigation ${ }^{2}$ of the reactions of Group III compounds with ligands containing active hydrogen, pyrazolyl $\left[\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right] \cdot$ derivatives have been prepared containing aluminium and gallium moieties. Our results present the first structural characterization of a member of the symmetrical dimeric class of compounds, $\left[\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2} \cdot \mathrm{MR}_{2}\right]_{2}$ (where $\mathrm{M}=\mathrm{B}$, Al , or Ga ; $\mathrm{R}=\mathrm{H}, \mathrm{D}, \mathrm{Me}$, or Et ). Crystal structures of a number of related poly-(pyrazol-l-yl)borate transition-metal complexes have been reported previously, ${ }^{3-7}$ and have in common unsymmetrical six-membered rings, $\mathrm{B}\left(\mathrm{N}^{-} \mathrm{N}\right)_{2} \mathrm{M}^{\prime}$ (where $\mathrm{M}^{\prime}=\mathrm{Mo}$ or Co), in pseudo-boat conformations.

## EXPERIMENTAL

The present gallane compound was prepared by reaction of equimolar amounts of pyrazole and (trimethylamine)trideuteriogallane in benzene solution. Stoicheiometric amounts of trimethylamine and hydrogen deuteride were liberated and the gallane product $\left[\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2} \cdot \mathrm{GaD}_{2}\right]_{2}$, isolated as a volatile solid [Found: Ga, $49 \cdot 0$; D (hydrol.), $2 \cdot 8 \%$; $M, \quad 283,285 \quad\left(\mathrm{C}_{6} \mathrm{H}_{6}\right.$ soln.). $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{D}_{4} \mathrm{~N}_{4} \mathrm{Ga}_{2}$ requires Ga , $49 \cdot 5$; D (hydrol.) $2 \cdot 8 \%$; $M, 281 \cdot 4]$.

Crystal Data.- $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{D}_{4} \mathrm{~N}_{4} \mathrm{Ga}_{2}, M=281 \cdot 4$, Orthorhombic, $a=11 \cdot 518(2), b=11 \cdot 278(1), c=8.267(1) \AA, U=1073.9$ $\AA^{3}, D_{\mathrm{m}}$ not measured because of crystal instability, $Z=4$, $D_{\mathrm{c}}=1.740, \quad F(000)=544 . \quad \mathrm{Cu}-K_{\alpha}$ radiation, $\lambda=1.5418$ $\AA ; \mu\left(\mathrm{Cu}-K_{\alpha}\right)=63.3 \mathrm{~cm}^{-1}$. Space group $C m c 2_{1}\left(C_{2 v}^{12}\right.$, No. 36) from intensity statistics, and Patterson function.
${ }^{1}$ Preliminary communication, D. F. Rendle, A. Storr, and J. Trotter, J.C.S. Chem. Comm., 1973, 189.
${ }^{2}$ A. Storr, B. S. Thomas, and A. D. Penland, J.C.S. Dalton, 1972, 326.
${ }^{3}$ L. J. Guggenberger, C. T. Prewitt, P. Meakin, S. Trofimenko, and J. P. Jesson, Inorg. Chem., 1973, 12, 508.
${ }^{4}$ M. R. Churchill, K. Gold, and C. E. Maw, jun., Inorg. Chem., 1970, 9, 1597.

Oscillation, Weissenberg, and precession photographs indicated orthorhombic symmetry with the following systematic absences: $h k l$ when $h+k=2 n+1, h 0 l$ when $l=2 n+1$; thus a choice arose between the space groups $C m c 2_{1}\left(C_{2 v}^{12}\right.$, No. 36), $C m c m ~(~ D ~ D ~ 17 ~, ~ N o . ~ 63), ~ a n d ~ C 2 c m ~$ [nonstandard setting of Ama2, ( $C_{2 v}^{16}$, No. 40)]. A cylindrically shaped crystal of dimensions ca. $0.8 \times 0.2 \mathrm{~mm}$ in diameter was sealed in a capillary tube under nitrogen for intensity measurements. Intensity data were measured on a Datex-automated General Electric XRD 6 diffractometer by use of the $0-20$ scan method at a rate of $2^{\circ} \mathrm{min}^{-1}$ in 20. A scintillation counter equipped with a nickel filter and pulse-height analyser ensured approximately monochromatic radiation. 545 Independent reflexions were measured ( $20 \leqslant 135^{\circ}$ for Cu radiation, giving a minimum interplanar distance of $0.83 \AA$ ) of which 491 had intensities $>3 \sigma(I)\left[\right.$ where $\sigma(I)$ is defined by $\sigma^{2}(I)=S+B+(0 \cdot 05 S)^{2}$, and $S$ is scan count and $B$ background] and were classified as observed. A standard reflexion was monitored every forty reflexions and its intensity fluctuated by up to $10 \%$ throughout the data collection. Data were accordingly scaled, Lorentz and polarization corrections applied, and the structure amplitudes derived. No absorption corrections were applied.

Intensity statistics ${ }^{8}$ strongly indicated a non-centrosymmetric space group (see Table 1) and so the centrosymmetric space group Cmcm was initially ruled out. From the vector distribution in the three-dimensional Patterson function, the structure could only be interpreted successfully in terms of the space group $C m c 2_{1}$. Since $C m c 2_{1}$ is a polar space group and the $z$ co-ordinate in-
${ }^{5}$ G. Avitabile, P. Ganis, and M. Nemiroff, Acta Cryst., 1971, B27, 725.
${ }^{6}$ C. A. Kosky, P. Ganis, and G. Avitabile, Acta Cryst., 1971, B27, 1859.
${ }^{7}$ J. L. Calderon, F. A. Cotton, and A. Shaver, J. Organometallic Chem., 1972, 37, 127.

8 I. L. Karle, K. S. Dragonette, and S. A. Brenner, Acta Cryst., 1965, 19, 713.
determinate, the origin was fixed by assigning a $z$ coordinate of 0.0 to one of the gallium atoms. Both heavyatom positions were determined from the Patterson function and a structure-factor calculation gave $R 0 \cdot 243$. A three-dimensional Fourier synthesis phased on the heavy

Table 1

| Intensity statistics |  |  |  |
| :---: | :---: | :---: | :---: |
|  | Calc. |  |  |
|  |  |  | Non- |
|  | Found | Centrosymmetric | centrosymmetric |
| Mean $\|E\|$ | $0 \cdot 8809$ | $0 \cdot 7980$ | $0 \cdot 8860$ |
| Mean $\|E\|^{\mathbf{2}}$ | 0.9841 | $1 \cdot 0000$ | $1 \cdot 0000$ |
| Mean $\left\|E^{2}-1\right\|$ | $0 \cdot 7067$ | 0.9680 | $0 \cdot 7360$ |
| \% Reflexions with: |  |  |  |
| $E>3.0$ | $0 \cdot 0$ | $0 \cdot 30$ | 0.01 |
| $E>2 \cdot 0$ | $0 \cdot 55$ | $5 \cdot 00$ | 1.80 |
| $E>1.0$ | 40-18 | $32 \cdot 00$ | $37 \cdot 00$ |

atoms revealed the remainder of the structure. Refinement was by full-matrix least-squares methods with anisotropic temperature factors for all non-hydrogen and deuterium atoms. Hydrogen and deuterium atoms were included in the structure-factor calculations with fixed positional parameters (assuming $\mathrm{C}-\mathrm{D} 1.08$ and $\mathrm{Ga}-\mathrm{D}$ $1.56 \AA$ with appropriate $s p^{2}$ geometry about the carbon atoms, and $s p^{3}$ geometry about the gallium atoms) and thermal parameters ( $U_{\text {iso }} 0.063 \AA^{2}$ ).

Scattering factors ${ }^{9}$ for gallium, nitrogen, and carbon were corrected for the real and imaginary parts of anomalous dispersion. The function minimized was $\Sigma w\left(F_{0}-F_{\mathrm{c}}\right)^{2}$, with weights $w$ derived from counting statistics. Refinement converged with $R$ at 0.050 and $R^{\prime}$ [defined as $\left.\Sigma w\left(F_{\mathrm{o}}-F_{\mathrm{c}}\right)^{2} / \Sigma w F_{0}{ }^{2}\right]$ at $0 \cdot 061$. Preliminary data and results at this time were published previously ${ }^{1}$ but further work has established the correct 'orientation' of the unit-cell axes (the term 'absolute configuration' is inappropriate here since the molecule possesses a mirror plane). The co-ordinates of the $\mathrm{Ga}, \mathrm{N}, \mathrm{C}, \mathrm{H}$, and D atoms at $R 0.050$ were replaced with co-ordinates of the opposite sign and then these parameters were refined to convergence giving $R 0.049$ and $R^{\prime} 0.60$; this decrease, according to Hamilton's test, ${ }^{10}$ is significant at a confidence level $>99.5 \%$. As a result of this refinement the two independent $\mathrm{Ga}-\mathrm{N}$ distances now differ by only $1 \sigma$ whereas they had differed by $>2 \sigma$ at the conclusion of the $R 0.050$ refinement. At convergence the maximum shift to error ratio in the refined parameters was $0 \cdot 18$. A final differenceFourier synthesis was featureless except for one peak of height $c a$. $2 \mathrm{e} \AA^{-3}$ in the region of one of the gallium atoms, and so the structural analysis was assumed to be complete and correct. Measured and calculated structure factors are listed in Supplementary Publication No. SUP 20777 ( $6 \mathrm{pp} ., 1$ microfiche).*
Final positional and thermal parameters of the molecule refined with axes of the correct 'orientation' are given in Tables 2 and 3. Atoms are in positions $4(a)$ and $8(b)$, the molecule possessing a crystallographic mirror plane which contains two gallium atoms and four deuterium atoms. Bond lengths and valency angles are listed in Table 4.

[^0]Table 2
Final positional (fractional $\times 10^{4}$ ) parameters, with estimated standard deviations in parentheses

|  | $x$ | $y$ | $z$ |
| :--- | :---: | :---: | :---: |
| $\mathrm{Ga}(1)$ | 0 | $-0653(1)$ | 0 |
| $\mathrm{Ga}(2)$ | 0 | $-3245(1)$ | $-2393(3)$ |
| $\mathrm{N}(1)$ | $1281(6)$ | $-1104(6)$ | $-1468(10)$ |
| $\mathrm{N}(2)$ | $1288(6)$ | $-2095(5)$ | $-2366(11)$ |
| $\mathrm{C}(1)$ | $2268(9)$ | $-0518(8)$ | $-1777(16)$ |
| $\mathrm{C}(2)$ | $2931(9)$ | $-1152(10)$ | $-2839(17)$ |
| $\mathrm{C}(3)$ | $2305(10)$ | $-2120(9)$ | $-3186(15)$ |
| $\mathrm{H}(1)$ | 2472 | 0290 | -1332 |
| $\mathrm{H}(2)$ | 3728 | -0919 | -3287 |
| $\mathrm{H}(3)$ | 2545 | -2794 | -3998 |
| $\mathrm{D}(1)$ | 0 | -1413 | 1578 |
| $\mathrm{D}(2)$ | 0 | 0689 | 0449 |
| $\mathrm{D}(3)$ | 0 | -4051 | -3923 |
| $\mathrm{D}(4)$ | 0 | -4036 | -0841 |

Table 3
Final thermal parameters* (components of the vibration tensors, $U$ in $\AA^{2} \times 10^{2}$ ) with standard deviations in parentheses

|  | $U_{11}$ | $U_{22}$ | $U_{33}$ | $U_{12}$ | $U_{13}$ | $U_{23}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Ga}(1)$ | 6.85(9) | 8.64(11) | 5.93(8) | 0 | 0 | $-1 \cdot 20(8)$ |
| $\mathrm{Ga}(2)$ | $7.05(9)$ | 5.23(7) | 9.99(14) | 0 | 0 | -0.42(9) |
| N(1) | 5-51(34) | 7-37(41) | $6.43(43)$ | $-0.09(34)$ | $0 \cdot 44(32)$ | $-0 \cdot 19(37)$ |
| $\mathrm{N}(2)$ | $5 \cdot 65(33)$ | $5 \cdot 85(32)$ | $7 \cdot 80(45)$ | $0 \cdot 11(26)$ | $0 \cdot 73(40)$ | $0 \cdot 43(47)$ |
| $\mathrm{C}(1)$ | 8-03(64) | 8.55(61) | $8 \cdot 26(64)$ | $-2 \cdot 33(54)$ | $-0.02(60)$ | $-0.82(54)$ |
| $\mathrm{C}(2)$ | 7-12(57) | 10.81(84) | 10.39(90) | $-1 \cdot 47$ (58) | $2 \cdot 58(63)$ | $0 \cdot 48$ (76) |
| $\mathrm{C}(3)$ | 7-04(57) | $8 \cdot 18(62)$ | $9 \cdot 00(69)$ | 1.01 (54) | 1.96(59) | $0 \cdot 27(56)$ |
|  | $\begin{aligned} & \text { The ter } \\ & 2-2 \pi_{13} h l a * c \end{aligned}$ | $\begin{aligned} & \text { mperature } \\ & U_{11} h^{2} a^{* 2} \\ & c^{*}+2 U_{23} \end{aligned}$ | $\begin{aligned} & \text { e factor } \\ & +U_{22} k^{2} b \\ & \left.\left.{ }_{3} k l b^{*} c^{*}\right)\right] \end{aligned}$ | $\begin{aligned} & \text { expressic } \\ & b^{* 2}+U_{3} \end{aligned}$ | $\begin{aligned} & \text { is of } \\ & { }^{2} c^{* 2} \\ & + \end{aligned}$ | type: $U_{12} h k a^{*} b^{*}$ |

## Table 4

Bond lengths ( $\AA$ ), and valency angles $\left({ }^{\circ}\right)$, with standard deviations in parentheses
(a) Bond distances

| $\mathrm{Ga}(1)-\mathrm{N}(1)$ | $1.977(8)$ | $\mathrm{N}(2)-\mathrm{C}(3)$ | $1.353(12)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Ga}(2)-\mathrm{N}(2)$ | $1.971(6)$ | $\mathrm{C}(1)-\mathrm{C}(2)$ | $1.365(15)$ |
| $\mathrm{N}(1)-\mathrm{N}(2)$ | $1.342(10)$ | $\mathrm{C}(2)-\mathrm{C}(3)$ | $1.340(15)$ |
| $\mathrm{N}(1)-\mathrm{C}(1)$ | $1.339(11)$ |  |  |

(b) Valency angles

| $\mathrm{N}\left(1^{\prime}\right)-\mathrm{Ga}(1)-\mathrm{N}(1)$ | $96 \cdot 5(0 \cdot 5)$ | $\mathrm{Ga}(2)-\mathrm{N}(2)-\mathrm{C}(3)$ | $129 \cdot 2(0 \cdot 7)$ |
| :--- | ---: | :--- | :--- |
| $\mathrm{N}\left(2^{\prime}\right)-\mathrm{Ga}(2)-\mathrm{N}(2)$ | $97 \cdot 7(0 \cdot 4)$ | $\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{N}(1)$ | $107 \cdot 4(0 \cdot 7)$ |
| $\mathrm{Ga}(1)-\mathrm{N}(1)-\mathrm{N}(2)$ | $123 \cdot 9(0 \cdot 5)$ | $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | $109 \cdot 8(0 \cdot 9)$ |
| $\mathrm{Ga}(1)-\mathrm{N}(1)-\mathrm{C}(1)$ | $128 \cdot 6(0 \cdot 7)$ | $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | $105 \cdot 3(1 \cdot 0)$ |
| $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{N}(2)$ | $107 \cdot 5(0 \cdot 8)$ | $\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(2)$ | $110 \cdot 0(0 \cdot 9)$ |
| $\mathrm{Ga}(2)-\mathrm{N}(2)-\mathrm{N}(1)$ | $123 \cdot 4(0 \cdot 6)$ |  |  |

## DISCUSSION

Figure 1 is a general view of the molecule, showing the symmetrical six-membered $\mathrm{Ga}(\mathrm{N}-\mathrm{N})_{2} \mathrm{Ga}$ ring in the boat conformation. Primed and unprimed atoms are related by the crystallographic mirror plane. Best planes through one pyrazolyl ring $\mathrm{C}(1)-(3), \mathrm{N}(1)$, and $\mathrm{N}(2)$ and the group of atoms $\mathrm{Ga}(1), \mathrm{N}(1), \mathrm{N}(2)$, and $\mathrm{Ga}(2)$ show that both sets of atoms are planar, the dihedral angle of $1 \cdot 2^{\circ}$ between the two planes showing that they are almost coplanar. This small deviation

[^1]from coplanarity would certainly not hinder delocalization of $6 \pi$ electrons in each $\mathrm{C}_{3} \mathrm{~N}_{2}$ moiety which presumably gives an added stability to the boat conformation. The deviation from a totally planar configuration for the whole tricyclic molecule, an arrangement


Figure 1 Molecular structure
which would also allow delocalization of the $\pi$ electrons but one which is somewhat more strained, is indicated

## Table 5

(a) Equations of planes in the form $l x+m Y+n Z=p$ where $X, Y, Z$ are orthogonal co-ordinates in $\AA$. Deviations ( $\AA$ ) of atoms from the planes are given in square brackets

$$
\begin{aligned}
& \text { Plane (1): N(1), N(2), C(1)-(3) } \\
& 0.4359 X+0.4871 Y-0.7568 Z=-0.3235 \\
& {[\mathrm{Ga}(1)-0.035(1), \mathrm{Ga}(2) \quad 0.038(2), \mathrm{N}(1)-0.007(8), \mathrm{N}(2)} \\
& 0.006(8), \mathrm{C}(1) 0.012(12), \mathrm{C}(2)-0.005(12), \mathrm{C}(3)-0.006(12)] \\
& \text { Plane (2): } \mathrm{Ga}(1), \mathrm{Ga}(2), \mathrm{N}(1), \mathrm{N}(2), \mathrm{C}(1)-(3) \\
& 0.4355 X+0.5043 Y-0.7456 Z=-0.3714 \\
& {[\mathrm{Ga}(1)-0.0002(8), \mathrm{Ga}(2) 0.0007(22), \mathrm{N}(\mathrm{l}) 0.006(8), \mathrm{N}(2)} \\
& -0.008(8), \mathrm{C}(1) 0.035(12), \mathrm{C}(2)-0.004(13), \mathrm{C}(3)-0.027(11)] \\
& \text { Plane (3): } \mathrm{Ga}(1), \mathrm{Ga}(2), \mathrm{N}\left(1^{\prime}\right), \mathrm{N}\left(2^{\prime}\right), \mathrm{C}\left(1^{\prime}\right)-\left(3^{\prime}\right) \\
& -0.4355 X+0.5043 Y-0.7456 Z=-0.3714 \\
& {\left[\mathrm{Ga}(1)-0.0002(8), \mathrm{Ga}(2) \quad 0 \cdot 0007(22), \mathrm{N}\left(1^{\prime}\right) 0 \cdot 006(8), \mathrm{N}\left(2^{\prime}\right)\right.} \\
& \left.-0.008(8), \mathrm{C}\left(1^{\prime}\right) 0.035(\mathrm{I} 2), \mathrm{C}\left(2^{\prime}\right)-0.004(13), \mathrm{C}\left(3^{\prime}\right)-0.027(11)\right] \\
& \text { Plane (4): } N(1), N(2), N\left(1^{\prime}\right), N\left(2^{\prime}\right) \\
& 0.5528 Y-0.8333 Z=0.3235 \\
& {\left[\mathrm{Ga}(1)-0.731(1), \mathrm{Ga}(2)-0.700(3), \mathrm{N}(1) 0, \mathrm{~N}(2) 0, \mathrm{~N}\left(1^{\prime}\right) 0\right. \text {, }} \\
& \left.\left.\mathrm{N}\left(2^{\prime}\right) 0\right)\right] \\
& \text { Plane (5): } \mathrm{Ga}(1), \mathrm{N}(1), \mathrm{N}\left(1^{\prime}\right) \\
& 0.9225 Y-0.3861 Z=-0.6796 \\
& \text { Plane (6): } \mathrm{Ga}(2), \mathrm{N}(2), \mathrm{N}\left(2^{\prime}\right) \\
& 0.0173 Y-0.9999 Z=1.9146 \\
& \text { Plane (7): } \mathrm{Ga}(\mathbf{1}), \mathrm{Ga}(2), \mathrm{N}(1), \mathrm{N}(2) \\
& 0.4347 X+0.5047 Y-0.7459 Z=-0.3718 \\
& {[\mathrm{Ga}(1)-0.0000(8), \mathrm{Ga}(2) \quad 0.0002(22), \mathrm{N}(1) 0.008(8), \mathrm{N}(2)} \\
& \text {-- 0.007(8)] } \\
& \text { (b) Dihedral angles }\left({ }^{\circ}\right) \text { between planes }
\end{aligned}
$$

${ }^{11}$ D. F. Shriver and C. E. Nordman, Inovg. Chem., 1963, 2, 1298.
${ }_{12}$ W. Harrison, A. Storr, and J. Trotter, J.C.S. Dalton, 1972,
by the angle between the plane formed by $\mathrm{Ga}(1), \mathrm{Ga}(2)$, $\mathrm{N}(1), \mathrm{N}(2), \mathrm{C}(1)-(3)$ and its corresponding mirror image. A planar arrangement would give this angle as $180^{\circ}$; the observed angle is $128.4^{\circ}$. The gallium atoms in fact lie $0.73[\mathrm{Ga}(1)]$, and $0.70 \AA[\mathrm{Ga}(2)]$, above the plane containing the four nitrogen atoms. Table 5 lists important least-squares planes and dihedral angles within the molecule.
The mean $\mathrm{Ga}-\mathrm{N}$ distance $[1 \cdot 974(5) \AA]$ agrees well with the corresponding distances $[1.97(9)$ and $1.97(2) \AA]$ in previously documented gallane compounds, $\mathrm{Me}_{3}$ $\mathrm{NGaH}_{3}$ (ref. 11) and $\left[\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N} \cdot \mathrm{GaH}_{2}\right]_{3}$ (ref. 12) but is considerably shorter than $\mathrm{Ga}-\mathrm{N}$ distances quoted in $\left.\left[\mathrm{GaCl}_{2} \text { (bipy) }\right)_{2}\right]^{+}\left[\mathrm{GaCl}_{4}\right]^{-}[2 \cdot 103(6) \AA],{ }^{13} \mathrm{GaCl}_{3}$, terpyridyl $[2 \cdot 113(6), 2 \cdot 034(7) \AA],{ }^{14}$ and GaH , edta, $\mathrm{H}_{2} \mathrm{O} \quad[2 \cdot 097(6)$, $2 \cdot 182(5) \AA]{ }^{15}$ However, this is completely consistent with the fact that in the gallane compounds gallium is tetrahedrally co-ordinated whilst in the last three compounds it is octahedrally co-ordinated: an increase in bond length with co-ordination number. The $\mathrm{N}(1)-\mathrm{Ga}(\mathbf{1})-\mathrm{N}\left(\mathbf{1}^{\prime}\right)$ and $\mathrm{N}(2)-\mathrm{Ga}(2)-\mathrm{N}\left(2^{\prime}\right)$ valency angles of 96.5 and $97 \cdot 7^{\circ}$, while not significantly different from one another, are considerably different from the normal tetrahedral angles associated with a regular sixmembered ring in the boat conformation. This may be

## Table 6

Selected intra- and inter-molecular non-bonded distances $(\AA)$
(a) Intramolecular distances

| $\mathrm{Ga}(1) \cdots \mathrm{N}(2)$ | $2 \cdot 945(8)$ | $\mathrm{N}(1) \cdots \mathrm{N}\left(1^{\prime}\right)$ | $2 \cdot 951(15)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Ga}(1) \cdots \mathrm{C}(1)$ | $3 \cdot 001(11)$ | $\mathrm{N}(2) \cdots \mathrm{N}\left(2^{\prime}\right)$ | $2.967(13)$ |
| $\mathrm{Ga}(1) \cdots \mathrm{Ga}(2)$ | $3 \cdot 529(2)$ | $\mathrm{C}(2) \cdots \mathrm{C}\left(2^{\prime}\right)$ | $6 \cdot 75(2)$ |
| $\mathrm{Ga}(2) \cdots \mathrm{N}(1)$ | $2.931(7)$ | $\mathrm{N}(1) \cdots \mathrm{N}\left(2^{\prime}\right)$ | $3 \cdot 25(1)$ |
| $\mathrm{Ga}(2) \cdots \mathrm{C}(3)$ | $3 \cdot 014(11)$ |  |  |

(b) Intermolecular distances
$\begin{array}{lllll}\mathrm{Ga}(\mathrm{l}) \cdots \mathrm{N}\left(\mathrm{l}^{\mathrm{I}}\right) & 3 \cdot 825(8) & \mathrm{N}(2) \cdots \mathrm{C}\left(3^{\mathrm{II}}\right) & 3 \cdot 918(13) \\ \mathrm{Ga}(1) \cdots \mathrm{C}\left(1^{\mathrm{I}}\right) & 3.958(12) & \mathrm{C}(1) \cdots & \cdots \mathrm{C}\left(2^{\mathrm{III}}\right) & 3 \cdot 838(18)\end{array}$
$\mathrm{N}(1) \cdots \mathrm{C}\left(3^{\mathrm{II}}\right) \quad 3 \cdot 746(13)$
Roman numeral superscripts refer to the following equivalent positions:

$$
\begin{aligned}
& \text { I }-x,-y, \frac{1}{2}+z \\
& \text { II }-\frac{1}{2}-x, \frac{1}{2}-y, \frac{1}{2}+z \\
& \text { III } x,-y, \frac{3}{2}+z
\end{aligned}
$$

due to the fact that the ring is heterocyclic (with some bonds much longer than others) and also to the trigonal planar geometry forced upon the nitrogen atoms by the nature of the pyrazolyl ligand.

The bond distances and valency angles within the pyrazolyl ring approximate to values recorded previously ${ }^{3-7}$ for such a system, including pyrazole itself. ${ }^{16}$ The distances (Table 4) compare well with the corresponding ones in, e.g., bis[hydrotris(l-pyrazolyl)borato]cobalt(II) ${ }^{4}(\mathrm{~N}-\mathrm{N} \quad 1 \cdot 364, \mathrm{C}-\mathrm{N} 1 \cdot 307-\mathrm{l} \cdot 358$, and $\mathrm{C}-\mathrm{C}$

[^2]$1 \cdot 347-1 \cdot 428 \AA$ ). The sum of the internal angles of the five-membered ring is $540^{\circ}$.
The $\mathrm{Ga}(\mathbf{1}) \cdots \mathrm{Ga}(2)$ intramolecular non-bonded distance is $3 \cdot 529(2) \AA$, while the distance between
normal van der Waals distances, the closest approach being $3 \cdot 746(13) \AA$ between $\mathrm{N}(1)$ and $\mathrm{C}(3)$ of neighbouring molecules. Selected non-bonded intra- and intermolecular contacts are listed in Table 6.


Figure 2 Stereoscopic view of the unit cell
the carbon atoms at the extremities of the molecule $\left[\mathrm{C}(2)\right.$ and $\left.\mathrm{C}\left(2^{\prime}\right)\right]$ is $6 \cdot 75(2) \AA$. The packing of the molecules within the crystal lattice as viewed down $b$ is shown in Figure 2. The molecules are separated by

We thank the University of British Columbia Computing Centre for assistance, and the National Research Council of Canada for financial support.
[3/731 Received, 6th April, 1973]


[^0]:    * For details see Notice to Authors No. 7 in J.C.S. Dalton, 1972, Index issue. (Items less than 10 pp . are sent as full-size copies.)

[^1]:    9 ' International Tables for $X$-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962.
    10 W. C. Hamilton, Acta Cryst., 1965, 18, 502.

[^2]:    ${ }^{13}$ R. Restivo and G. J. Palenik, Chem. Comm., 1969, 867.
    ${ }^{14}$ G. Beran, A. J. Carty, H. A. Patel, and G. J. Palenik, Chem. Comm., 1970, 222.
    ${ }_{15}$ C. H. L. Kennard, Inorg. Chim. Acta, 1967, 1, 347.
    ${ }^{16}$ H. W. W. Ehrlich, Acta Cyyst., 1960, 13, 946.

