Crystal and Molecular Structure of Bistriphenyl(ethyl)phosphonium Pentanitratocerium(III)

By A. Razzak Al-Karaghouli and John S. Wood, $\dagger \dagger$ Department of Chemistry, University of Southampton

Abstract

Crystals of the title compound are monoclinic of space group $C 2 / c$ with $a=19 \cdot 83(3), b=11 \cdot 05(2), c=$ $21 \cdot 76(3) \AA, \beta=108 \cdot 17^{\circ}$, and $Z=4$. The anion has crystallographic C_{2} symmetry and the cerium atom is ten-co-ordinate, being chelated symmetrically by the five bidentate nitrate ligands. The mean $\mathrm{Ce}-\mathrm{O}$ distance is $2 \cdot 57(2) \AA$. The co-ordination geometry is not very readily described in terms of any idealised high co-ordination polyhedron, but if each nitrate ligand is considered as occupying one co-ordination site, then the arrangement closely approximates to a trigonal bipyramid. The structure was solved from X-ray photographic data by Patterson and Fourier methods and refined by least-squares techniques to $R 9.8 \%$ for 1516 observed reflections.

Complexes of the transition metals and lanthanides containing solely nitrate ion as ligands have been shown most often, to be high-co-ordination number species ${ }^{1}$ and both eight- and twelve-co-ordinate geometries have been characterised in complexes ${ }^{2-5}$ of general formulation $\mathrm{M}\left(\mathrm{NO}_{3}\right)_{4}{ }^{n-}$ and $\mathrm{M}\left(\mathrm{NO}_{3}\right)_{6}{ }^{n-6,7}$ In addition, the bidentate role of the nitrate ion leads to high co-ordination in $\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{4}, 2 \mathrm{Ph}_{3} \mathrm{PO},{ }^{8}$ and $\mathrm{Ln}\left(\mathrm{NO}_{3}\right)_{3}, 2$ bipyridyl ($\mathrm{Ln}=\mathrm{La},{ }^{9} \mathrm{~Tb},{ }^{10}$), all three species containing ten-coordinate metal atoms. Co-ordination number ten has also recently been charasterised in a variety of other complexes, ${ }^{11,12}$ but in only one of these, $\mathrm{K}_{4}\left[\mathrm{Th}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{4}\right],-$ $4 \mathrm{H}_{2} \mathrm{O},{ }^{13}$ does the co-ordination polyhedron apparently closely approximate to the most stable geometry predicted on the basis of ligand-ligand repulsions, namely the bicapped square antiprism of $D_{4 d}$ symmetry. ${ }^{9}$ Since this complex contains effectively five bidentate ligands per thorium atom, it appeared of interest to examine one of the lanthanide nitrate complexes formulated as $\operatorname{Ln}\left(\mathrm{NO}_{3}\right)_{3}, 2 \mathrm{Ph}_{4-x} \mathrm{R}_{x} \mathrm{PNO}_{3},{ }^{14}$ as it seemed that these might contain $\mathrm{Ln}\left(\mathrm{NO}_{3}\right)_{5}{ }^{2-}$ ions with five equivalent bidentate ligands and so offer further information on ten-co-ordination stereochemistry. In addition, such a species would complete the series of complexes $\mathrm{M}\left(\mathrm{NO}_{3}\right)_{x}{ }^{n-}$ where $x=3,,^{15} 4,{ }^{2-5}, 5$, and $6,{ }^{6,7}$ (and $n=0-3$, dependent on M) and provide an opportunity to further examine the suggestion of Cotton and Bergman, ${ }^{2}$ namely that if bidentate ligands of small 'bite' are viewed as occupying one co-ordination site in a polyhedron, then the resulting lower co-ordination number polyhedron closely approaches the accepted geometry observed for that co-ordination number, e.g. tetrahedral geometry for co-ordination number four. We elected to carry out an analysis on the $\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{5}{ }^{2-}$ ion and find that this suggestion works well.
\dagger Present address: Department of Chemistry, The University of Massachusetts, Amherst, Mass. 01002, U.S.A.; no reprints available.
${ }^{1}$ C. C. Addison, C. D. Garner, N. Logan, and S. C. Wallwork, Quart. Rev., 1971, 25, 289.
${ }_{2}$ J. G. Bergman and F. A. Cotton, Inorg. Chem., 1966, 5, 1208.
3 J. Drummond and J. S. Wood, J. Chem. Soc. (A), 1970, 226.
${ }^{4}$ C. D. Garner and S. C. Wallwork, J. Chem. Soc. (A), 1966, 1496.
${ }_{5}$ N. Logan, T. J. King, A. Morris, and S. C. Wallwork, Chem. Comm., 1971, 554.
${ }^{6}$ T. A. Beineke and J. Delgaudio, Inovg. Chem., 1968, 7, 715.
${ }^{7}$ A. Zalkin, J. D. Forrester, and D. H. Templeton, J. Chem. Phys., 1963, 39. 288i

EXPERIMENTAL

The complex $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{P}\right]_{2} \mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{5}$ was prepared from stoicheiometric quantities of triphenyl(ethyl)phosphonium bromide, silver nitrate, and cerium nitrate hexahydrate, following procedures similar to those used for preparing tetranitrato-metallate complexes of the first-row transition elements $\mathrm{Mn}-\mathrm{Zn} .^{3}$ Very pale yellow crystals suitable for X-ray analysis were obtained by recrystallisation from ethanolic solutions of the complex (Found: C, $46.50 ; \mathrm{H}, 4.37 ; \mathrm{N}, 6.59$. Calc. for $\mathrm{C}_{40} \mathrm{H}_{40^{-}}$ $\mathrm{CeN}_{5} \mathrm{O}_{15} \mathrm{P}_{2}$: C, $46.51 ; \mathrm{H}, \mathbf{3 . 9}$; $\mathrm{N}, 6.78 \%$. The i.r. spectrum (hexachlorobutadiene mull) gave peaks at 1290 and $1473 \mathrm{~cm}^{-1}$, which suggested co-ordinated nitrate ions, and no peak at $1375 \mathrm{~cm}^{-1}$, which would have indicated ionic nitrate.

Crystal Data.- $\mathrm{C}_{40} \mathrm{H}_{40} \mathrm{CeN}_{5} \mathrm{O}_{15} \mathrm{P}_{2}, \quad M=1032 \cdot 4$, Monoclinic, $a=19.83(3), b=11.05(2), c=21.76(3) \AA, \beta=$ $108 \cdot 17^{\circ}, U=4529.2 \AA^{3}, D_{\mathrm{m}}=1 \cdot 45$ g.cc. ${ }^{-1}$ (by flotation), $Z=4, D_{\mathrm{c}}=1.51 \mathrm{~g} . \mathrm{cc}^{-1}, F(000)=2092$. Systematic absences, $h k l$ for $h+k \neq 2 n, h 0 l$ for $l \neq 2 n$, and $0 k l$ for $k \neq 2 n$ indicate space groups $C c$ (No. 9) or C2/c (No. 15) shown to be the latter by subsequent successful analysis. Mo- K_{α} radiation, $\lambda=0.7107 \AA, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=10.5 \mathrm{~cm}^{-1}$. Preliminary precession photographs.
A crystal of dimensions ca. $0.3 \times 0.4 \times 0.4 \mathrm{~mm}$ was selected for intensity measurement and was mounted with its c^{*} axis parallel to the spindle axis of a precession camera. Intensity data were recorded on multiple films (i.e. different exposures of the same zone) of reciprocal levels $h 0-4 l$, $0-5 k l$, and the diagonal levels $(h-h+6) h l$ and the integrated values were measured photometrically by means of a Joyce-Loebl microdensitometer. Corrections were made for Lorentz and polarisation factors and all data placed on the same scale by intercomparison of reciprocal lattice rows common to several different photographs. Measurements were restricted to the region $0 \leqslant \sin \leqslant$ 0.375 , there being very few reflections of measurable intensity outside this region. Approximately 2000 independent reflections in this region were accessible on the reciprocal levels collected, of which 1516 wero classified observed and used in the final refinements.

[^0]Structure Determination.-A three-dimensional Patterson map indicated that space group $C 2 / c$ was probably correct, and placed the cerium atom on the two-fold axis [position 4(e)]. The phosphorus atom was also located from the Patterson synthesis and three successive sequences of electron-density syntheses and least-squares treatments of the positional parameters found in the preceding syntheses, served to locate all non-hydrogen atoms in the asymmetric unit. R was then 16.8% and two further cycles of full-matrix refinement, including isotropic thermal parameters and a scale factor, with unit weights, reduced R to $12 \cdot 6 \%$. Introduction of variable weights, calculated according to $w^{\frac{1}{2}}=a /\left(b+c F_{0}\right)$, and allowing the cerium and phosphorus atoms to assume anisotropic thermal parameters, led to a residual of $9 \cdot 8 \%$ after three further cycles of refinement. The weighted residual, $R^{\prime}(=[\Sigma \mathrm{w}-$ $\left.\left.\left(\left|F_{0}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma_{w}\left|F_{0}\right|^{2}\right]^{\frac{1}{2}}\right)$ was $11 \cdot 1 \%$ and the function minimised in the refinement was $\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$. The parameters b and c had the following values in the final cycle; (i) for $0<F_{0}<34 \cdot 0, b=10 \cdot 4, \quad c=-0.044$; (ii) $34<F_{0}<194, b=8.4, c=0.015$; and (iii) $194<F_{0}$ $<450, b=-6 \cdot 6, c=0.092 ; a=1 \cdot 0$ for all three ranges.

Table 1

Atomic positional and thermal parameters with estimated standard deviations in parentheses

Atom	x	y	z	B / \AA^{2}
Ce	$0 \cdot 0$	0.2073(2)	$0 \cdot 25$	*
N(1)	$0 \cdot 0$	$-0.0640(31)$	$0 \cdot 25$	4.71(78)
$\mathrm{O}(1)$	$0 \cdot 0$	$-0.1701(27)$	$0 \cdot 25$	5-82(74)
$\mathrm{O}(2)$	$0 \cdot 0550(9)$	-0.0024(16)	$0 \cdot 2497$ (8)	$4 \cdot 70$ (38)
$\mathrm{N}(2)$	$0 \cdot 1363(20)$	$0 \cdot 3375$ (31)	$0 \cdot 2876$ (15)	$8 \cdot 32(78)$
$\mathrm{O}(3)$	$0 \cdot 1342(10)$	$0 \cdot 2274$ (19)	$0 \cdot 2757(8)$	5-15(41)
$\mathrm{O}(4)$	$0 \cdot 0792(12)$	$0 \cdot 3935(20)$	$0 \cdot 2830(9)$	6.39(48)
$\mathrm{O}(5)$	$0 \cdot 1933(15)$	$0 \cdot 3855(25)$	$0 \cdot 3041$ (12)	$9 \cdot 09(67)$
$\mathrm{N}(3)$	$0 \cdot 0193(13)$	$0 \cdot 2200(26)$	0.3916(11)	$5 \cdot 95(51)$
$\mathrm{O}(6)$	$0 \cdot 0564(11)$	$0 \cdot 1456(20)$	$0 \cdot 3700(10)$	6.64(49)
$\mathrm{O}(7)$	-0.0229(11)	$0 \cdot 2851(22)$	$0 \cdot 3535(9)$	$7 \cdot 09(50)$
$\mathrm{O}(8)$	$0 \cdot 0287(12)$	$0 \cdot 2272(22)$	$0 \cdot 4489$ (11)	8.27(60)
P	$0 \cdot 2867$ (4)	$0 \cdot 2664(6)$	$0 \cdot 1453(3)$	
C(1)	$0 \cdot 3130(14)$	$0 \cdot 2795(29)$	$0 \cdot 2320$ (12)	$4 \cdot 98(57)$
C(2)	$0 \cdot 3471$ (21)	$0 \cdot 1715(39)$	$0 \cdot 2755(18)$	9.19(105)
$\mathrm{C}(11)$	$0 \cdot 3687(14)$	$0 \cdot 2445$ (22)	$0 \cdot 1203(12)$	$4 \cdot 38(57)$
C(12)	$0 \cdot 4016(13)$	$0 \cdot 1338(24)$	$0 \cdot 1399(11)$	$4 \cdot 04(53)$
$\mathrm{C}(13)$	$0 \cdot 4654(16)$	$0 \cdot 1207(28)$	$0 \cdot 1246(14)$	$5 \cdot 55(66)$
C(14)	$0 \cdot 4855(15)$	$0 \cdot 2044(34)$	$0 \cdot 0899(13)$	6.17(65)
C(15)	$0 \cdot 4531(16)$	$0 \cdot 3167(30)$	$0.0696(14)$	$6 \cdot 23(72)$
C(16)	$0 \cdot 3886(16)$	0.3283(27)	$0 \cdot 0853(14)$	$5 \cdot 97(71)$
C(21)	$0 \cdot 2425(14)$	$0 \cdot 3975(23)$	$0 \cdot 1091$ (12)	$4 \cdot 02(54)$
C(22)	$0 \cdot 1714(16)$	$0 \cdot 3966(28)$	$0 \cdot 0642(13)$	$5 \cdot 61(69)$
$\mathrm{C}(23)$	0•1397(18)	$0 \cdot 5014(32)$	$0 \cdot 0308(15)$	$6 \cdot 79(72)$
C(24)	$0 \cdot 1692(17)$	$0 \cdot 6068(28)$	$0 \cdot 0504(14)$	$5 \cdot 60(70)$
$\mathrm{C}(25)$	$0 \cdot 2399(20)$	$0 \cdot 6135(35)$	$0 \cdot 0963(17)$	$8.05(91)$
C(26)	$0 \cdot 2728(15)$	$0.5118(28)$	$0 \cdot 1292(13)$	$5 \cdot 46(64)$
C(31)	$0 \cdot 2287(14)$	$0 \cdot 1407(24)$	$0 \cdot 1203(12)$	$4 \cdot 05(53)$
$\mathrm{C}(32)$	$0 \cdot 1812(15)$	$0 \cdot 1144(27)$	$0 \cdot 1523(13)$	$5 \cdot 31(64)$
$\mathrm{C}(33)$	$0 \cdot 1296(14)$	$0 \cdot 0181(26)$	$0 \cdot 1269(12)$	$4.97(60)$
$\mathrm{C}(34)$	$0 \cdot 1336(16)$	$-0.0490(28)$	$0 \cdot 0787(14)$	$5 \cdot 77(67)$
$\mathrm{C}(35)$	$0 \cdot 1870(15)$	-0.0257(27)	$0.0455(13)$	$5 \cdot 25(65)$
$\mathrm{C}(36)$	$0 \cdot 2333$ (13)	$0.0736(23)$	0.0678(11)	$4 \cdot 10(53)$
* Anisotropic thermal parameters (\AA^{2}) : for Ce: $B_{11} 3 \cdot 38(11)$,				
$B_{22} 2 \cdot 42(12), B_{33} 3 \cdot 36(10)$, and $B_{13} 1 \cdot 10(6)$; for P: $B_{11} 4 \cdot 26(34)$,				
$\begin{aligned} & B_{22} 4 \cdot 14(38), B_{33} 3 \cdot 80(33), B_{12} 0 \cdot 04(31), B_{13} 1 \cdot 65(26) \text {, and } B_{23} \\ & -0 \cdot 23(27) . \end{aligned}$				
$\left.B_{i j} / 4\right)$ and r_{i}^{*} is the $i^{\text {th }}$ reciprocal axis.				

Final positional and thermal parameters are listed in Table 1, while observed and calculated structure factors are listed in Supplementary Publication No. SUP 20757

* See Notice to Authors No. 7 in J.C.S. Dalton, 1972, Index issue. (Items less than 10 pp . are sent as full size copies.)
($\mathbf{9}$ pp., 1 microfiche).* The majority of calculations were carried out by use of the ' X-ray ' 63 ' program system as adapted for use on the Atlas computer at Harwell. ${ }^{16}$ The neutral atom scattering factors used in the analysis were taken from ref. 17, and for the cerium atom from ref. 18. Anomalous dispersion corrections were applied for the cerium atom. ${ }^{19}$

RESULTS AND DISCUSSION

Structure of the Anion.-The final structural information is presented in Table 2 and in Figures 1 and 2. The

Table 2
Bond distances (\AA) and angles $\left({ }^{\circ}\right)$, with estimated standard deviations in parentheses

ten-co-ordinate pentanitratocerium(III) ion has crystallographically imposed C_{2} symmetry, but no higher pseudosymmetry. The five nitrate ions are arranged around the cerium atom in what might be termed trigonal bipyramidal fashion with nitrate ions (1), (2), and (2^{\prime}) constituting the equatorial plane and ions (3) and (3^{\prime}) occupying the two axial sites (Figures 1 and 2). Comparison of the $\mathrm{N}(i)-\mathrm{Ce}-\mathrm{N}(j)$ angles $[\mathrm{N}(i)$ being taken as equivalent to the midpoints of the edges spanned
${ }^{16}$ J. M. Stewart and D. High, 'X-Ray '63' System of Crystallographic Programs, University of Maryland, Technical Report TR 64 6,
${ }^{17}$ ' International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1952.
${ }_{18}$ D. T. Cromer and J. T. Waber, Acta Cryst., 1965, 18, 104.
19 D. T. Cromer, Acta Cryst., 1965, 18, 17.
by the ligands] listed in Table 2 with those of 180 , 120, and 90° expected for a trigonal bipyramid give the measure of the deviation from this description of the

Figure 1 A view of the $\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{5}\right]^{2-}$ ion projected on a plane normal to the c axis
polyhedron. In contrast to the tetra- ${ }^{2,3}$ and hexa-nitrato-species ${ }^{6,7}$ which approximate fairly closely the higher point-group symmetries $D_{2 d}$ and T_{h} respectively, being each in turn subgroups of T_{d} and O_{h}, the $\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{5}{ }^{2+}$ ion perhaps better illustrates and supports the principle originated by Bergman and Cotton; ${ }^{2}$ for the highest point-symmetry achievable with this species is C_{2} (which is also crystallographically
observed) and yet the adherence to the trigonal bipyramid is readily seen.

The severe constraints imposed by the short bite of the nitrate ion ligand make difficult a description of the ten-co-ordinate polyhedron in terms of one of the idealised geometries for this co-ordination number. ${ }^{9}$ The best 'fit' would appear to be the bicapped dodecahedron of D_{2} point-symmetry, with oxygen atoms $\mathrm{O}(6), \mathrm{O}(7), \mathrm{O}(4)$, and $\mathrm{O}\left(2^{\prime}\right)$ (and the two-fold related set) defining the trapezoidal planes (positions A and B in the polyhedron in Figure 2) and $\mathrm{O}(3)$ and $\mathrm{O}\left(3^{\prime}\right)$ defining the positions of type C on the two-fold axis of the polyhedron. ${ }^{9}$ The idealised angles calculated for minimum ligand repulsive energy in this geometry are $\theta_{\mathrm{A}} 32 \cdot 8, \theta_{\mathrm{B}} 77 \cdot 0$, and $\theta_{\mathrm{C}} 60 \cdot 0^{\circ}$, which can be compared with the values of $24.7,81 \cdot 4$, and $60 \cdot 2$ (mean of two) respectively, observed in the present structure. Figure 1 indicates that the atoms constituting the trapezoidal planes are far from coplanarity and that the 'axial' nitrates (3) and (3^{\prime}) are almost normal to one another, rather than at 60° as required for the D_{2} geometry.

The mean cerium-oxygen bond distance is $2 \cdot 569(15)$ compared to $2 \cdot 64 \AA$ in $\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}{ }^{3-}$ and the lengthening of the $\mathrm{Ce}-\mathrm{O}$ distance in the latter is probably attributable to the expansion of the co-ordination sphere by the addition of one more nitrate-ion ligand. In contrast,

Figure 2 The contents of one half unit cell of the structure projected on the (010) plane. Framework diagrams of the co-ordination polyhedron in the pentanitrato-ion are illustrated and the edges and vertices are labelled according to the numbering system for the D_{2} polyhedron given in ref. 9
the ten-co-ordinate cerium(iv) complex, $\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{4}$,$2 \mathrm{Ph}_{3} \mathrm{PO}$ has mean $\mathrm{Ce}-\mathrm{O}$ (nitrate) distances $2 \cdot 48(2) \AA$, while the $\mathrm{Ce}-\mathrm{O}$ distance in $\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}{ }_{6}{ }^{2-}$ is $2.51(1) ~ \AA$. The difference in $\mathrm{Ce}-\mathrm{O}$ distances is in accord with expectation and compatible with the difference between the ionic radii of Ce^{3+} and Ce^{4+} of $c a .0 \cdot 12 \AA$. The observed general trend in $\mathrm{N}-\mathrm{O}$ distances in the NO_{3} ligands is similar to that found in other species containing bidentate nitrate ligands, namely that the terminal bonds [viz. $\mathrm{N}(1)-\mathrm{O}(1), \mathrm{N}(2)-\mathrm{O}(5)$, and $\mathrm{N}(3)-\mathrm{O}(8)$] are shorter than the bonds involving the co-ordinated oxygen atoms. ${ }^{1}$ However, the standard deviations involved are too large for us to conclude that the differences are statistically significant.

Structure of the Cation.-Pertinent structural information on the triphenyl(ethyl)phosphonium ion is included in Table $2(c)$ and the relative orientations of the cations in the unit cell, and of the rings in one ion, are illustrated in Figure 2. The mode of packing in this
structure and the orientations of the cations bear a marked resemblance to those observed for the tetraphenylarsonium salts of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{4}{ }^{2-}$ and $\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{4}{ }^{2-}$ and there is, in fact, quite a close resemblance between the unit-cell dimensions and the pattern of intensity distribution for the two systems. The three crystallographically independent phenyl rings are planar to within the relatively large standard deviations of this determination, the maximum deviations being $0.042 \AA$. The phosphorus atom however is situated $0.08,0.073$, and $0.095 \AA$ out of the planes of rings (1), (2), and (3). The mean carbon-carbon distance is $1 \cdot 396(48)$ and the mean $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angle $119.8(32)^{\circ}$, the standard deviations being calculated from the distribution of individual values about the mean.

We thank the Iraq Government for the award of a research scholarship (to A. R. A.).
[3/694 Received, 2nd April, 1973]

[^0]: ${ }^{8}$ C. N. Caughlan, Mazhar Ul-Haque, F. A. Hart, and R. Van Nice, Inorg. Chem., 1971, 10, 115.
 ${ }^{\circ}$ A. R. Al-Karaghouli and J. S. Wood, Inorg. Chem., 1972, 11, 2293.
 ${ }_{10}$ D. S. Moss and S. P. Sinha, Z. Phys. Chem., 1969, 63, 190.
 ${ }^{11}$ J. L. Hoard, B. Lee, and M. D. Lind, J. Amer. Chem. Soc., 1965, 87, 1611.
 ${ }_{12}^{12}$ D. B. Shinn and H. A. Eick, Inorg. Chem., 1968, 7, 1340.
 ${ }^{13}$ M. N. Akhtar and A. J. Smith, Chem. Comm., 1969, 705.
 ${ }^{14}$ G. V. Medoks and N. N. Sakharova, Dokl. Akad. Nauk
 S.S.S.R., 1950, 73, 1201.
 ${ }_{15}$ J. Hilton and S. C. Wallwork, Chem. Comm., 1968, 871.

