Magnetic Double Resonance Studies of Some trans-Bis(triethylphosphine) Complexes of Platinum

By Duncan W. W. Anderson, E. A. V. Ebsworth, and David W. H. Rankin,* Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ

Abstract

The ${ }^{1} \mathrm{H}$ n.m.r. spectra of 44 platinum complexes containing trans-triethylphosphine ligands, with halide, hydride, and silyl or germyl ligands, have been recorded. Heteronuclear double resonance experiments have been used to determine ${ }^{31} \mathrm{P}$ and ${ }^{195} \mathrm{Pt}$ chemical shifts, as well as the signs of coupling constants, and the magnitudes of coupling constants not observed in the ${ }^{\mathbf{1}} \mathrm{H}$ spectra. Systematic trends in some of the parameters enable estimates of these parameters to be made for some complexes that have not been studied.

In recent years we have been interested in silyl and germyl derivatives of four- and six-co-ordinated platinum. ${ }^{\mathbf{1 , 2}}$ These compounds, when they have two triethylphosphine groups that are mutually trans, and SiH or GeH bonds, are very easily studied by ${ }^{1} \mathrm{H}$ n.m.r. spectroscopy, usually having first-order spectra, with couplings to phosphorus and to the 33% abundant ${ }^{195} \mathrm{Pt}$ being observed. The spectra of hydride ${ }^{3}$ or methyl ${ }^{4}$ complexes of platinum show the same features. However, the spectra of many of these compounds are very similar, and it is often impossible to be sure, from the ${ }^{1} \mathrm{H}$ spectrum alone, what the products of a reaction may be. By investigating ${ }^{31} \mathrm{P}$ and ${ }^{195} \mathrm{Pt}$ spectra also, by double resonance methods, we have obtained information which greatly facilitates the identification of unknown compounds, as well as giving an insight into the nature of the platinum-silicon or platinumgermanium bonds. The methods have also proved invaluable to us in a study of some six-co-ordinate platinum hydrides, many of which could not have been identified by other means. ${ }^{5}$ It is also of great importance in the study of complexes which may have no protons other than those in the triethylphosphine ligands. ${ }^{6-8}$

We report here the results of our studies of silyl- and germyl-platinum compounds, of platinum hydrides, and of some simple bis(phosphine)platinum halides.

EXPERIMENTAL

Platinum complexes were prepared by standard methods referenced in Table 1. trans $-\left[\mathrm{Pt}(\mathrm{CN}) \mathrm{I}\left(\mathrm{PEt}_{3}\right)_{2}\right]$ was prepared by reaction of equimolar quantities of HCN and trans$\left[\mathrm{PtHI}\left(\mathrm{PEt}_{3}\right)_{2}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 293 K .

Solvents used were benzene (AnalaR, dried over sodium wire) or methylene dichloride (dried over molecular sieve).
N.m.r. spectra were recorded on a Varian Associates HA 100 spectrometer operating at 100 MHz . The probe of this instrument was double tuned to accept a second radio frequency, provided by a Schlumberger FS 30 frequency synthesizer. The double-resonance technique used has been described fully elsewhere. ${ }^{9}$
${ }^{1}$ J. E. Bentham, S. Cradock, and E. A. V. Ebsworth, J. Chem. Soc. (A), 1971, 587.
${ }_{2}$ D. W. W. Anderson, E. A. V. Ebsworth, J. K. MacDougall, and D. W. H. Rankin, J. Inorg. Nuclear Chem., 1973, 35, 2259.
${ }^{3}$ J. Chatt and B. L. Shaw, J. Chem. Soc., 1962, 5075.
${ }^{4}$ J. Chatt and B. L. Shaw, J. Chem. Soc., 1959, 705.
${ }^{5}$ D. W. W. Anderson, E. A. V. Ebsworth, and D. W. H. Rankin, J.C.S. Dalton, 1973, 854.
${ }^{6}$ K. A. Jensen, Z. anorg. Chem., 1936, 229, 225.

RESULTS AND DISCUSSION

In all the compounds studied the ${ }^{31} \mathrm{P}$ and ${ }^{195} \mathrm{Pt}$ spectra are complicated by coupling with protons in the triethylphosphine groups. Nevertheless, couplings of ${ }^{31} \mathrm{P}$ and ${ }^{195} \mathrm{Pt}$ with other protons can usually be evaluated directly on a first-order basis from the ${ }^{1} \mathrm{H}$ spectra. For the double-resonance experiments it is necessary to

Table 1
Preparation of complexes

General formula	Complexes (see Table 2)	Ref. to preparation
trans-[$\left.\mathrm{PtX}_{4}\left(\mathrm{PEt}_{3}\right)_{2}\right]$	1,2	8
trans-[PtHXYZ $\left.\left(\mathrm{PEt}_{3}\right)_{2}\right]$	3-8	5
trans-[$\left.\mathrm{PtX}_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]$	18,20, 21	6, 7
cis-trans-[$\left.\mathrm{PtH}_{2} \mathrm{XY}\left(\mathrm{PEt}_{3}\right)_{2}\right]$	9-14	5
cis- $\left[\mathrm{PtX}_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]$	19	6
trans-[PtHX $\left.\left(\mathrm{PEt}_{3}\right)_{2}\right]$	23-26	3
trans $-\left[\mathrm{Pt}\left(\mathrm{CH}_{3}\right) \mathrm{I}\left(\mathrm{PEt}_{3}\right)_{2}\right]$	36	4
trans-[$\left.\mathrm{Pt}(\mathrm{MHYZ}) \mathrm{X}\left(\mathrm{PEt}_{3}\right)_{2}\right]$	27-35, 37-44	1, 2
cis-trans-[PtH $\left.\left(\mathrm{SiH}_{2} \mathrm{Y}\right) \mathrm{X}_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]$	15-17	1, 2

assume that the ${ }^{31} \mathrm{P}$ and ${ }^{195} \mathrm{Pt}$ spectra consist of a number of complex sub-spectra, the relative positions of which are governed by first-order rules. Because of the complexity of the sub-spectra, it is often difficult to locate the exact centre of a group of lines, and so the estimated errors quoted in the tables of chemical shifts (Table 2) and coupling constants (Table 3) are quite large.
${ }^{195} \mathrm{Pt}$ Chemical Shifts.-Although the ${ }^{195} \mathrm{Pt}$ chemical shifts of a number of platinum complexes, determined both by direct observation ${ }^{10}$ or from double-resonance experiments, ${ }^{\mathbf{1 1 , 1 2}}$ have been reported, no satisfactory explanation of the observed results has yet been put forward. Ramsey's equation ${ }^{13}$ has been applied to some planar platinum(II) complexes, ${ }^{10}$ but the observed chemical shifts do not correlate well with the parameters derived from electronic absorption spectra. Nevertheless, there are certain systematic trends that can be used

[^0]to predict chemical shifts for complexes, the ${ }^{195} \mathrm{Pt}$ spectra of which have not been studied.

The first point to note is that there are no simple additivity rules. A consequence of this is that ${ }^{195} \mathrm{Pt}$ chemical shifts for different isomers of the same compound are different. This may be seen from Table 2 to
chemical shifts (marked +) are linked by continuous lines, representing changes of mutually trans (X, X) ($\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, or I) ligand pairs by (X, H). These lines are of three different gradients only, corresponding to the three different halogens. The dashed lines are extrapolations to unknown or unstudied compounds such

Table 2
${ }^{195} \mathrm{Pt}$ and ${ }^{31} \mathrm{P}$ Chemical shifts

	$\left({ }^{195} \mathrm{Pt}\right)$		$\left({ }^{31} \mathrm{P}\right)$		
$\Xi\left({ }^{195} \mathrm{Pt}\right) / \mathrm{Hz}{ }^{\text {a }}$	p.p.m. ${ }^{\text {b }}$	$\Xi^{31} \mathrm{P} / \mathrm{Hz}{ }^{\text {a }}$	p.p.m. ${ }^{\text {c }}$	Solvent	T/K
21454721 (10)	$+2925$	40480925 (5)	$+4 \cdot 4$	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{Me}_{4} \mathrm{Si}$	300
21424410 (5)	+1508	40480354 (3)	-9.7	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{Me}_{4} \mathrm{Si}$	300
21414081 (10)	+1026	40480835 (5)	+2.2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Me}_{4} \mathrm{Si}$	193
21377980 (10)	-662	40480082 (3)	-16.4	$\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Me}_{4} \mathrm{Si}$	233
21424984 (8)	+1535	40480923 (4)	$4 \cdot 4$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Me}_{4} \mathrm{Si}$	183
21408032 (10)	+743	40480624 (5)	$-3 \cdot 0$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Me}_{4} \mathrm{Si}$	193
21398838 (20)	$+313$	40480587 (8)	-3.9	$\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Me}_{4} \mathrm{Si}$	213
21385293 (10)	-320	40480316 (5)	-10.6	$\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Me}_{4} \mathrm{Si}$	193
21410997 (10)	$+881$	40481241 (5)	$+12 \cdot 2$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Me}_{4} \mathrm{Si}$	293
21403575 (10)	+534 ${ }^{\text {d }}$	40481037 (5)	+7.2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Me}_{4} \mathrm{Si}$	253
21389020 (7)	$-146{ }^{\text {e }}$	40480689 (3)	-1.4	$\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Me}_{4} \mathrm{Si}$	253
21407284 (30)	$+708$	40481144 (5)	$+9.8$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Me}_{4} \mathrm{Si}$	253
21400586 (30)	$+395$	40480976 (5)	+ $5 \cdot 7$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Me}_{4} \mathrm{Si}$	253
21396569 (15)	$+207$	40480872 (5)	$+3 \cdot 1$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Me}_{4} \mathrm{Si}$	253
21385708 (25)	-301	40480077 (5)	-16.5	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{Me}_{4} \mathrm{Si}$	253
21384253 (10)	-369	40480180 (5)	$-14 \cdot 1$	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{Me}_{4} \mathrm{Si}$	243
21383008 (10)	-427	40480161 (8)	-14.5	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{Me}_{4} \mathrm{Si}$	243
21412376 (15)	$+946{ }^{f}$	40481244 (5)	$+12 \cdot 3$	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{Me}_{4} \mathrm{Si}$	300
21401000 (30)	+414	40481097 (5)	$+8 \cdot 7$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	300
21400386 (5)	$+384$	40481054 (3)	+7.6	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{Me}_{4} \mathrm{Si}$	300
21377753 (10)	$-673{ }^{h}$	40480754 (3)	$+0 \cdot 2$	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{Me}_{4} \mathrm{Si}$	300
21391667 (5)	-22	40481132 (3)	$+9.5$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Me}_{4} \mathrm{Si}$	300
21392145 (5)	$0^{\text {j }}$	40481670 (3)	$+22.8$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	293
21389444 (10)	-126	40481635 (3)	$+22 \cdot 0$	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{Me}_{4} \mathrm{Si}$	293
21385195 (10)	-325	40481527 (3)	$+19.3$	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{Me}_{4} \mathrm{Si}$	293
21386100 (10)	-283	40481541 (5)	$+19.6$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Me}_{4} \mathrm{Si}$	300
21387770 (10)	-205	40481450 (5)	$+17.4$	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{Me}_{4} \mathrm{Si}$	273
21390593 (10)	-73	40481554 (3)	$+20.0$	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{Me}_{4} \mathrm{Si}$	233
21389360 (5)	-130	40481428 (3)	$+16.8$	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{Me}_{4} \mathrm{Si}$	273
21392342 (5)	$+9$	40481468 (3)	+17.8	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{Me}_{4} \mathrm{Si}$	300
21388141 (10)	-187	40481420 (3)	+16.6	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{Me}_{4} \mathrm{Si}$	300
21388442 (4)	-173	40481399 (5)	+16.1	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{Me}_{4} \mathrm{Si}$	300
21391250 (10)	-42	40481293 (5)	+13.5	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{Me}_{4} \mathrm{Si}$	300
21387898 (10)	-199	40481296 (3)	$+13 \cdot 6$	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{Me}_{4} \mathrm{Si}$	300
21391291 (5)	-40	40481313 (3)	$+14.0$	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{Me}_{4} \mathrm{Si}$	300
21392931 (10)	$+37$	40481164 (3)	$\underline{+10.3}$	$\mathrm{C}_{6} \mathrm{H}_{8}-\mathrm{Me}_{4} \mathrm{Si}$	300
21383421 (6)	-408	40481217 (3)	$+11.6$	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{Me}_{4} \mathrm{Si}$	273
21384950 (10)	-336	40481143 (5)	$+9 \cdot 8$	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{Me}_{4} \mathrm{Si}$	300
21385685 (5)	-302	40481028 (10)	$+7.0$	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{Me}_{4} \mathrm{Si}$	300
21385320 (10)	-319	40481199 (5)	$+11.2$	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{Me}_{4} \mathrm{Si}$	263
21385591 (10)	-306	40481132 (5)	$+9.5$	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{Me}_{4} \mathrm{Si}$	263
21385381 (20)	-316	40481113 (10)	$+9 \cdot 1$	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{Me}_{4} \mathrm{Si}$	263
21386830 (10)	-248	40481039 (7)	$+7.2$	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{Me}_{4} \mathrm{Si}$	300
21382411 (10)	-455	40481058 (5)	$+7 \cdot 7$	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{Me}_{4} \mathrm{Si}$	273

Estimated standard deviations are quoted in parentheses. These do not include a possible error in the determination of absolute frequencies of at most 4 Hz .
${ }^{a}$ Resonant frequency at a polarising field strength such that the $\mathrm{Me}_{4} \mathrm{Si}$ proton resonance is at exactly 100 MHz . ${ }^{\boldsymbol{b}} \mathrm{To}$ high frequency of $0 \cdot 5 \mathrm{M}-\mathrm{PtClH}\left(\mathrm{PEt}_{3}\right)_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $293 \mathrm{~K}\left[\Xi\left({ }^{195} \mathrm{Pt}\right)=21392145(5) \mathrm{Hz}\right]$. ${ }^{c}$ To high frequency of $85 \% \mathrm{H}_{3} \mathrm{PO} \mathrm{O}_{4}\left[\Xi\left({ }^{31} \mathrm{P}\right)=\right.$ 40480746 (3) Hz]. ${ }^{\text {a }} 56$ p.p.m. lower in $\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{Me}_{4} \mathrm{Si}$. ${ }^{e} 57$ p.p.m. lower in $\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{Me}_{4} \mathrm{Si}$. f 21 p.p.m. higher in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Me}_{4} \mathrm{Si}^{2}$. ${ }^{9}$ See also ref. 21. ${ }^{\boldsymbol{h}} 23$ p.p.m. higher in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Me}_{4} \mathrm{Si}$. ${ }^{i}$ See also ref. 12. ${ }^{j} 36 \mathrm{p} . \mathrm{p} . \mathrm{m}$. lower in $\mathrm{C}_{6} \mathrm{H}_{6} .{ }^{k}\left({ }^{19} \mathrm{~F}\right)=94077089(3) \mathrm{Hz}$; $\delta\left({ }^{19} \mathrm{~F}\right)=179.7$ p.p.m. to high frequency of $\mathrm{CCl}_{3} \mathrm{~F} \Xi\left({ }^{19} \mathrm{~F}\right)=94093963(3) \mathrm{Hz} . \quad{ }^{\boldsymbol{l}} \Xi\left({ }^{29} \mathrm{Si}\right)=19866685(10) \mathrm{Hz} ; \delta\left({ }^{29} \mathrm{Si}\right)=-25 \cdot 0 \mathrm{p} \cdot \mathrm{p} . \mathrm{m}$. to high frequency of internal $\mathrm{Me}_{4} \mathrm{Si} .{ }^{m} \Xi\left({ }^{19} \mathrm{~F}\right)=94089130(1) \mathrm{Hz} ; \delta\left({ }^{19} \mathrm{~F}\right)=-51 \cdot 3 \mathrm{p} . \mathrm{p} . \mathrm{m}$. to high frequency of $\mathrm{CCl}_{3} \mathrm{~F}$.
be so for the cis- and trans-forms of $\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)_{2}$, and for the two isomers of $\mathrm{PtBr}_{2} \mathrm{HI}\left(\mathrm{PEt}_{3}\right)_{2}$.

It does however appear that in any complex containing the grouping trans- $[\mathrm{X}-\mathrm{Pt}-\mathrm{X}](\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, or I$)$, the effect of replacing one of the X ligands by H depends on X , but is independent of the nature of the cis-ligands, or indeed of whether there are two or four of them. This is expressed graphically in the Figure for some complexes containing halide and hydride ligands. Observed
as $\mathrm{PtI}_{4}\left(\mathrm{PEt}_{3}\right)_{2}$ or $\mathrm{PtBrCl}_{2} \mathrm{H}\left(\mathrm{PEt}_{3}\right)_{2}$; these extrapolations may not predict chemical shifts exactly, but in view of the wide range of ${ }^{195} \mathrm{Pt}$ shifts, they should be close enough to the true values to be useful.

We also note that for both the six-co-ordinate and the four-co-ordinate complexes, the three lines corresponding to the three different halides meet at a common point (marked ${ }^{*}$) when extrapolated (dotted line in Figure). This observation is not necessarily of physical
significance. However, if the ratios of the changes in chemical shifts for replacement of an (X, X) ligand pair by (X, H), and replacement of (X, H) by (H, H), is the same for each different X, then these two points represent the complexes $\mathrm{PtH}_{4}\left(\mathrm{PEt}_{3}\right)_{2}$ and $\mathrm{PtH}_{2}\left(\mathrm{PEt}_{3}\right)_{2}$.
complexes $\mathrm{PtIL}\left(\mathrm{PEt}_{3}\right)_{2}$, where the values change with the ligand L in the order $\mathrm{CH}_{3}>\mathrm{CN}>\mathrm{H}>\mathrm{SiH}_{3}>$ $\mathrm{GeH}_{3}>\mathrm{I}$. The relative positions of $\mathrm{CH}_{3}, \mathrm{H}$, and SiH_{3} in this series is of interest, as silyl or, to a lesser extent, hydrido-groups lead to low-frequency resonances for

Table 3

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline No. Compound \& \({ }^{1} \mathrm{~J}\) (PtP) \& \({ }^{1} J(\mathrm{PtH})\) \& \({ }^{2} J(\mathrm{PH})\) \& \({ }^{2} J(\mathrm{PtH})\) \& \({ }^{3} \mathrm{~J}\) (PH\()\) \& Notes \\
\hline 1. trans- \(\left[\mathrm{PtCl}_{4}\left(\mathrm{PEt}_{3}\right)_{2}\right]\) \& +1488(10) \& \& \& \& \& \\
\hline 2. trans- \(\left[\mathrm{PtBr}_{4}\left(\mathrm{PEt}_{3}\right)_{2}\right]\) \& +1480(15) \& - \& \& \& \& \\
\hline 3. trans-trans- \(\left[\mathrm{PtBr}_{3} \mathrm{H}\left(\mathrm{PEt}_{3}\right)_{2}\right]\) \& \(+1578(20)\) \& \(+845(2)\) \& \(-5.0(0.5)\) \& \& \& \\
\hline 4. trans-trans-[\(\left[\mathrm{PtHI}_{3}\left(\mathrm{PEt}_{3}\right)_{2}\right]\) \& \(+1590(20)\)
\(+1675(20)\) \& \(+784(2)\)
\(+942(2)\) \& \(-5.5(0.5)\)
\(-4.0(0.5)\) \& - \& - \& \\
\hline 6. trans-trans- \(\left[\mathrm{PtBr}_{2} \mathrm{HI}\left(\mathrm{PEt}_{3}\right)_{2}\right]\) \& +1590(20) \& +870(2) \& \(-4.5(0 \cdot 5)\) \& \& \& \\
\hline 7. cis-trans \(-\left[\mathrm{PtBr}_{2} \mathrm{HI}\left(\mathrm{PEt}_{3}\right)_{2}\right]^{2}\) \& n.o. \& +831(2) \& \(-5.3(0 \cdot 5)\) \& \& \& \\
\hline 8. trans-trans-[\(\left.\mathrm{PtBrHI}_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]\) \& \(+1600(20)\) \& +794(2) \& \(-5.3(0.5)\) \& - \& \& \\
\hline 9. cis-cis-trans- \(\left[\mathrm{PtCl}_{2} \mathrm{H}_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]\) \& \(+1775(20)\) \& +1178(2) \& \(-6.5(0.5)\) \& \& \& \\
\hline 10. cis-cis-trans-[\(\left.\mathrm{PtBr}_{2} \mathrm{H}_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]\) \& +1730(20) \& + \(1202(2)\) \& \(-6.3(0.5)\) \& - \& \& \\
\hline 11. cis-cis-trans- \(\left[\mathrm{PtH}_{2} \mathrm{I}_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]\) \& \(+1728(20)\) \& +1186(2) \& \(-5.8(0.5)\) \& \& \& \\
\hline 13. cis-trans- \(\left[\mathrm{PtClH}_{2} \mathrm{I}\left(\mathrm{PEt}_{3}\right)_{2}\right]\) \& \(+1729(20)\) \& \(+1168(2)\)
\(+1240(2)\) \& \(-7.0(0.5)\)
\(-7.0(0.5)\) \& -- \& - \& \\
\hline \& \& +1132(2) \& \(-6.0(0.5)\) \& \& \& \\
\hline 14. cis-trans-[\(\left.\mathrm{PtBrH}_{2} \mathrm{I}\left(\mathrm{PEt}_{3}\right)_{2}\right]\) \& \(+1710(20)\) \& \(+1220(2)\) \& \(-6.000 .5)\) \& - \& - \& \\
\hline \& \& +1176(2) \& \(-6.0(0.5)\) \& +59.2(0.8) \& \(+7 \cdot 6(0 \cdot 5)\) \& \\
\hline \begin{tabular}{l}
15. cis-trans- \(\left[\mathrm{PtHI}_{2}\left(\mathrm{SiH}_{2} \mathrm{I}\right)\left(\mathrm{PEt}_{3}\right)_{2}\right]\) \\
16. cis-trans- \(\left.\mathrm{PtHI}_{\left(\mathrm{SiH}_{2}\right.} \mathrm{CCH}^{\prime}\right)\left(\mathrm{PFt}_{3}\right)\)
\end{tabular} \& \[
\begin{aligned}
\& +1700(25) \\
\& +1690(15)
\end{aligned}
\] \& \(+1160(2)\)
\(+1126(2)\) \& \[
\begin{aligned}
\& -6 \cdot 0(0.5) \\
\& -5 \cdot 5(0.5)
\end{aligned}
\] \& \[
\begin{aligned}
\& +59 \cdot 2(0 \cdot 8) \\
\& +10 \cdot 0(1)
\end{aligned}
\] \& \[
\begin{aligned}
\& +7 \cdot 6(0.5) \\
\& +8 \cdot 6(0 \cdot 5)
\end{aligned}
\] \& \({ }^{4} J\left(\mathrm{HH}^{\prime}\right)\) n.o. \\
\hline 17. cis-trans- \(\left[\mathrm{PtHI}_{2}\left(\mathrm{SiH}_{2} \mathrm{CCCF}_{3}\right)\left(\mathrm{PEt}_{3}\right)_{2}\right]\) \& n.o. \& +1113(2) \& \(-5 \cdot 8(0 \cdot 3)\) \& n.o. \({ }^{\text {a }}\) \& \(+7.7(0.5)\) \& Coupling with \({ }^{19} \mathrm{~F}\) n.o. \\
\hline 18. trans-[\(\left.\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]\) \& \(+2457(30)\) \& \& \& \& \& \\
\hline 19. cis \(-\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]^{\text {b }}\) \& +3560(40) \& - \& - \& -- \& \& \\
\hline 20. tyans- \(\left[\mathrm{PtBr}_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]\) \& +2368(15) \& - \& -- \& - \& - \& \\
\hline 21. trans \(\left[\mathrm{PtI}_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]\) \& \(+2272(20)\) \& \& \& \& \& \\
\hline 22. trans-[Pt(CN) \(\left.\mathrm{I}\left(\mathrm{PEt}_{3}\right)_{2}\right]\) \& +2202(15) \& - \& - \& - \& - \& \\
\hline 23. trans \(-\left[\mathrm{PtClH}\left(\mathrm{PEt}_{3}\right)_{2}\right]\) \& +2730(15) \& +1275 (2) \& \(-14 \cdot 5(0 \cdot 3)\) \& - \& \& \\
\hline 24. trans-[\(\left.\mathrm{PtBrH}\left(\mathrm{PEt}_{3}\right)_{2}\right]\) \& +2736(20) \& \(+1331(2)\) \& \(-13 \cdot 7(0 \cdot 3)\) \& - \& \& \\
\hline 25. trans-[PtHI \(\left.\left(\mathrm{PEt}_{3}\right)_{2}\right]\) \& +2660(20) \& +1369(2) \& \(-13 \cdot 3(0 \cdot 3)\) \& - \& \& \\
\hline 26. trans \(-\left[\mathrm{Pt}(\mathrm{CN}) \mathrm{H}\left(\mathrm{PEt}_{3}\right)_{2}\right]\) \& \(+2546(25)\) \& +807(2) \& \(-15.5(0.5)\) \& \& \& \\
\hline 27. trans-[\(\left.\mathrm{PtCl}\left(\mathrm{SiH}_{3}\right)\left(\mathrm{PEt}_{2}\right)_{2}\right]\) \& +2465(20) \& - \& 二 \& \(+36 \cdot 5(0 \cdot 5)\)
\(+\quad 123 \cdot 6(0.5)\) \& \(+6.5(0.5)\)
\(+5.0(0.5)\) \& \\
\hline 28. trans-[\(\left.\mathrm{PtCl}\left(\mathrm{SiH}_{2} \mathrm{~F}\right)\left(\mathrm{PEt}_{3}\right)_{2}\right]\) \& +2515(20) \& - \& - \& \(+123 \cdot 6(0 \cdot 5)\) \& \(+5.0(0.5)\) \& \[
\begin{gathered}
{ }^{2} J(\mathrm{FH}+52 \cdot 2(0 \cdot 5), \\
{ }_{2} J(\mathrm{PtF})+358 \cdot 5(0 \cdot 5), \\
{ }^{3} J(\mathrm{PF})+9 \cdot 5(0 \cdot 5)
\end{gathered}
\] \\
\hline 29. trans \(-\left[\mathrm{PtCl}\left(\mathrm{SiH}_{2} \mathrm{Cl}\right)\left(\mathrm{PEt}_{3}\right)_{2}\right]\) \& +2470(15) \& - \& - \& \(+117 \cdot 6(0.5)\) \& \(+8 \cdot 8(0 \cdot 3)\) \& \[
\begin{gathered}
{ }^{1} J(\mathrm{SiH})-204(2), \\
1 J(\mathrm{PtSi})-1600(100), \\
{ }^{2} J(\mathrm{PSi})+18(3)
\end{gathered}
\] \\
\hline 30. trans \(-\left[\mathrm{PtCl}\left(\mathrm{SiHCl}_{2}\right)\left(\mathrm{PEt}_{3}\right)_{2}\right]\) \& +2400(15) \& - \& - \& \(+2450(0.5)\) \& \(+10.4(0.3)\) \& \\
\hline 31. trans-[\(\left.\mathrm{PtCl}\left(\mathrm{SiH}_{2} \mathrm{CCH}^{\prime}\right)\left(\mathrm{PEt}_{3}\right)_{2}\right]\) \& +2480(20) \& - \& - \& \(+43.5(0.5)\) \& \(+8 \cdot 8(0 \cdot 3)\) \& \begin{tabular}{l}
\({ }^{4} J(\mathrm{PtH})-15 \cdot 4(0 \cdot 7)\), \\
\({ }^{4} J\left(\mathrm{HH}^{\prime}\right)-1 \cdot 4(0 \cdot 3)\), \\
\({ }^{5} J\left(\mathrm{PH}^{\prime}\right)\) n.o.
\end{tabular} \\
\hline 32. trans \(-\left[\mathrm{PtCl}\left(\mathrm{SiH}_{2} \mathrm{CCCF}_{3}\right)\left(\mathrm{PEt}_{3}\right)_{2}\right]\) \& +2420(10) \& - \& - \& \(+45 \cdot 0(0 \cdot 5)\) \& \(+8.8(0 \cdot 3)\) \& \begin{tabular}{l}
\({ }^{5} J(\mathrm{PtF}+23 \cdot 7(0 \cdot 8)\), \\
\({ }^{5} J(\mathrm{HF}) \pm 2 \cdot 2(0 \cdot 3)\), \\
\({ }^{6} J(\mathrm{PF})\) n.o.
\end{tabular} \\
\hline 33. trans-[\(\left.\mathrm{PtCl}\left(\mathrm{GeH}_{2} \mathrm{Cl}\right)\left(\mathrm{PEt}_{2}\right)_{2}\right]\) \& +2410(20) \& - \& - \& \(+218.000 .5)\) \& \(+7 \cdot 4(0 \cdot 3)\) \& - \\
\hline 34. trans-[\(\left.\mathrm{PtBr}\left(\mathrm{SiH}_{2} \mathrm{Br}\right)\left(\mathrm{PEt}_{3}\right)_{2}\right]\) \& +2440(40) \& - \& - \& \(+125.2(0.5)\) \& +9.4(0.3) \& - \\
\hline 35. trans-[\(\left.\mathrm{PtBr}\left(\mathrm{SiHBr}_{2}\right)\left(\mathrm{PEt}_{3}\right)_{2}\right]\) \& +2380(20) \& \& \& \(+244.4(0.5)\) \& \(+11 \cdot 2(0.3)\) \& \\
\hline 36. trans- \(\left[\mathrm{Pt}\left(\mathrm{CH}_{3}\right) \mathrm{I}\left(\mathrm{PEt}_{3}\right)_{2}\right]\) \& +2750(20) \& - \& - \& \(-80 \cdot 6(0 \cdot 5)\) \& \(+6.2(0.3)\)
\(+6.5(0.5)\) \& - \\
\hline 37. trans- \(\left[\mathrm{PtI}\left(\mathrm{SiH}_{3}\right)\left(\mathrm{PEt}_{3}\right)_{2}\right]\) \& +2465(15) \& - \& - \& \(+36.5(0.5)\) \& \(+6.5(0.5)\) \& - \\
\hline 38. trans-[PtI(\(\left.\left.\mathrm{SiH}_{2} \mathrm{Cl}\right)\left(\mathrm{PEt}_{3}\right)_{2}\right]\) \& +2430(20) \& - \& - \& \(+123.8(0.5)\) \& \(+9.6(0.3)\) \& - \\
\hline \& +2390(10) \& - \& 二 \& \(+127.1(0.5)\)
\(+83.5(0.5)\)

P \& +9.6(0.3) \&

\hline 40. trans-[$\left.\mathrm{PtI}^{\text {4 }}\left(\mathrm{SiH}_{2}-2\right)\left(\mathrm{PEt}_{3}\right)_{2}\right]_{2} \mathrm{~S}$, \& $+2542(40)$
$+2512(20)$ \& \& \& +83.50 .5
$+85.5(0.5)$ \& $+9.5(0.5)$
$+9.5(0.5)$ \&

\hline 42. trans-[PtI $\left.\left(\mathrm{SiH}_{2} \mathrm{SeSiH}_{3}\right)\left(\mathrm{PEt}_{3}\right)_{2}\right]$ \& n.o. \& - \& -- \& $+91(1)$ \& $+9.5(0.5)$ \& -

\hline 43. trans-[$\left.\mathrm{PtI}(\mathrm{SiHICCH})\left(\mathrm{PEt}_{3}\right)_{2}\right]$ \& +2380(20) \& - \& - \& $+131 \cdot 2(0 \cdot 5)$ \& +12.7(0.3) \& ${ }^{4} J\left(\mathrm{HH}^{\prime}\right)(-) 1 \cdot 3(0 \cdot 4)$

\hline 44. trans-[$\left.\mathrm{Pt}\left(\mathrm{GcH}_{3}\right) \mathrm{I}\left(\mathrm{PEt}_{3}\right)_{2}\right]$ \& +2440(20) \& - \& - \& $+87 \cdot 8(0.5)$ \& $+5 \cdot 9(0 \cdot 3)$ \&

\hline
\end{tabular}

Estimated errors are noted in parentheses. n.o. $=$ not observed. a $<14 .{ }^{b}$ Ref. 21.

Other similar extrapolations would give chemical shifts for $\mathrm{PtH}_{2} \mathrm{X}_{2}\left(\mathrm{PEt}_{3}\right)_{2}$ and $\mathrm{PtH}_{3} \mathrm{X}\left(\mathrm{PEt}_{3}\right)_{2}$.

The influence of ligands other than halides on the ${ }^{195} \mathrm{Pt}$ chemical shifts can be seen from the series of
${ }^{14}$ E. A. V. Ebsworth and J. J. Turner, J. Phys. Chem., 1963, 67, 805.
${ }^{15}$ E. A. V. Ebsworth and G. M. Sheldrick, Trans. Faraday Soc., 1966, 62, 3282.
${ }^{15} \mathrm{~N},{ }^{9}{ }^{19} \mathrm{~F},{ }^{14}{ }^{31} \mathrm{P},{ }^{15}$ and ${ }^{77} \mathrm{Se}{ }^{16}$ compounds, when compared with the resonances for equivalent organo-derivatives.

The effects on the ${ }^{195} \mathrm{Pt}$ chemical shifts of changing substituents on silicon or germanium are, of course, relatively small. Nevertheless, the changes are suffi-
${ }^{16}$ D. E. J. Arnold, J. S. Drybrugh, E. A. V. Ebsworth, and D. W. H. Rankin, J.C.S. Dalton, 1972, 2518.
ciently great to be useful diagnostically, as in general, replacement of one group by a more electronegative one leads to a high-frequency shift. However, accurate prediction is difficult for unknown compounds, as the changes are certainly not additive, and sometimes vary in unexpected ways. The relative resonant frequencies of the four- and six-co-ordinate complexes with $-\mathrm{SiH}_{2} \mathrm{C} \equiv \mathrm{CH}$ and $-\mathrm{SiH}_{2} \mathrm{C} \equiv \mathrm{CCF}_{3}$ ligands exemplify this.
${ }^{31} \mathrm{P}$ Chemical Shifts.-As in all the complexes studied here except one the two triethylphosphine groups are mutually trans, any variations in ${ }^{31} \mathrm{P}$ chemical shift must be due to the influence of the two or four cis-ligands. That the number of other ligands co-ordinated to platinum is important is immediately evident from Table 2, for nearly all of the six-co-ordinate complexes resonate at lower frequencies than $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$, whereas

${ }^{195} \mathrm{Pt}$ chemical shifts of some trans- $\left[\mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2}\right]$ complexes containing halogen and hydride ligands. For interpretation, see text.
all the four-co-ordinate complexes resonate at higher frequencies. It should be noted that free triethylphosphine resonates at $-20 \cdot 4$ p.p.m. ${ }^{17}$ lower than any of the complexes studied here.

The relative effects of cis-ligands in raising the ${ }^{31} \mathrm{P}$ chemical shifts is $\mathrm{H}>\mathrm{CH}_{3} \sim \mathrm{SiR}_{3}>\mathrm{GeR}_{3}>\mathrm{Cl}>$ $\mathrm{Br}>\mathrm{I}$, and within the SiR_{3} group the order is $\mathrm{SiH}_{2} \mathrm{~F}>$ $\mathrm{SiHCl}_{2}>\mathrm{SiH}_{3}>\mathrm{SiH}_{2} \mathrm{C} \equiv \mathrm{CR} \sim \mathrm{SiH}_{2} \mathrm{Cl}>\mathrm{SiH}_{2} \mathrm{I}$, although the changes within the latter series are relatively small. However, as with ${ }^{195} \mathrm{Pt}$ chemical shifts, the changes are sufficiently great for the ${ }^{31} \mathrm{P}$ shifts to be useful for identification purposes.

The relative arrangement, as well as number and type, of the cis-ligands is of some importance in determining the ${ }^{31} \mathrm{P}$ chemical shift. This is demonstrated by the two isomers of $\mathrm{PtBr}_{2} \mathrm{HI}\left(\mathrm{PEt}_{3}\right)_{2}$, which have a small, but significant, difference in shift.
${ }^{29}$ Si Chemical Shifts.-The ${ }^{29}$ Si chemical shift has been determined for only one platinum complex, $\mathrm{PtCl}\left(\mathrm{SiH}_{2} \mathrm{Cl}\right)-$ $\left(\mathrm{PEt}_{3}\right)_{2}$. The value found ($-\mathbf{2 5} \cdot 0$ p.p.m. relative to tetramethylsilane) is $c a .12$ p.p.m. higher than that for free silyl chloride.

[^1]Coupling Constants.-Although the investigation of platinum-phosphorus coupling constants was not one of the main aims of this work, the values found confirm the observations made previously. ${ }^{18,19}$ In particular a wide range of six-co-ordinate complexes is included here, and it can be seen that this coupling constant is larger in complexes with less halide and more hydride ligands, as was found for the four-co-ordinate complexes. In contrast, the values of ${ }^{1} J\left({ }^{195} \mathrm{Pt}^{1} \mathrm{H}\right)$ are not dependent primarily on the co-ordination number of platinum, for the values are small for the six-co-ordinate monohydride complexes, but larger for the dihydride six-co-ordinate and nearly all the four-co-ordinate complexes. Both ${ }^{1} J\left({ }^{195} \mathrm{Pt}^{1} \mathrm{H}\right)$ and ${ }^{1} J\left({ }^{195} \mathrm{Pt}^{31} \mathrm{P}\right)$ have been taken to be positive in all the compounds studied, ${ }^{20,21}$ and the signs of other coupling constants have been related to these.

Only one other one-bond coupling constant was determined: ${ }^{1} J\left({ }^{195} \mathrm{Pt}^{29} \mathrm{Si}\right)$ in $\mathrm{PtCl}\left(\mathrm{SiH}_{2} \mathrm{Cl}\right)\left(\mathrm{PEt}_{3}\right)_{2}$ was found to be -1600 Hz . The reduced coupling constant, ${ }^{1} \mathrm{~K}(\mathrm{PtSi})$, is therefore $+3120 \times 10^{19} \mathrm{~N} \mathrm{~A}^{-2} \mathrm{~m}^{-3}$, compared with $2330 \times 10^{19} \mathrm{~N} \mathrm{~A}^{-2} \mathrm{~m}^{-3}$ in $c i s-\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]$, where the ligand trans to the phosphine is also a chloride.

Most of the other reduced coupling constants in the compounds studied are positive over odd numbers of bonds, and negative over even numbers; this is consistent with a mechanism for coupling that is dominated by Fermi contact terms. There is however, one important exception. It has been noted that in the complexes $\mathrm{PtX}(\mathrm{MHYZ})\left(\mathrm{PEt}_{3}\right)_{2}$ the magnitude of ${ }^{2} J\left({ }^{195} \mathrm{Pt}^{1} \mathrm{H}\right)$ is greater with increasing substitution of halides for hydrides at M, and is much larger for $M=G e$ than for $\mathrm{M}=\mathrm{Si}^{1}{ }^{1}$ Values range from 434 Hz for a GeHCl_{2} complex to less than 20 Hz in six-co-ordinate silyl acetylene complexes. ${ }^{2}$ With such a wide range of values, it was quite possible that the coupling constant would be found not to be always of the same sign. However, in every silyl or germyl complex the sign was found by ${ }^{1} \mathrm{H}-\left\{{ }^{31} \mathrm{P}\right\}$ double resonance experiments to be the same as that of ${ }^{1} J\left({ }^{195} \mathrm{Pt}^{31} \mathrm{P}\right)$, and therefore positive, although in $\operatorname{Pt}(\mathrm{Me}) \mathrm{I}\left(\mathrm{PEt}_{\mathbf{3}}\right)_{\mathbf{2}}$ the equivalent coupling constant is negative. It would seem, therefore, that in the silyl and germyl complexes there is a positive contribution to the coupling constant which is greater than the negative Fermi contact term. This positive term is much larger when electron-withdrawing groups are attached to the silicon or germanium atom, larger for germanium than for silicon, and must also be smaller for six-co-ordinate complexes than for the corresponding four-co-ordinate complexes.

We thank the Royal Society for the provision of the Schlumberger frequency synthesizer, and the Salters' Company for a Post-graduate Scholarship (to D. W. W. A.). We also thank Messrs. Johnson Matthey for the loan of platinum compounds.
[2/2812 Received, 14th December, 1972]
19 B. T. Heaton and A. Pidcock, J. Organometallic Chem., 1968 , 14, 235.
${ }_{20}$ W. McFarlane, Chem. Comm., 1967, 772.
${ }^{21}$ W. McFarlane, J. Chem. Soc. (A), 1967, 1922.

[^0]: ${ }^{7}$ P. L. Goggin and R. T. Goodfellow, J. Chem. Soc. (A), 1966, 1462.
 ${ }^{8}$ A. Peloso and G. Dolcetti, J. Chem. Soc. (A), 1967, 1944.
 ${ }^{9}$ D. W. W. Anderson, J. E. Bentham, and D. W. H. Rankin, J.C.S. Dalton, 1973, 1215.
 ${ }_{10}$ A. Pidcock, R. E. Richards, and L. M. Venanzi, J. Chem. Soc. (A), 1968, 1970; A. V. Zelewsky, Helv. Chim. Acta, 1968, 51, 803.
 ${ }^{11}$ W. McFarlane, Chem. Comm., 1968, 393.
 ${ }^{12}$ R. R. Dean and J. C. Green, J. Chem. Soc. (A), 1968, 3047.
 ${ }^{13}$ N. F. Ramsey, Phys. Rev., 1950, 78, 699.

[^1]: ${ }^{17}$ S. O. Grim, R. L. Keites, and W. McFarlane, Inorg. Chem., 1967, 6, 1133.
 ${ }_{18}$ A. Pidcock, R. E. Richards, and L. M. Venanzi, J. Chem. Soc. (A), 1966, 1707.

