Crystal and Molecular Structure of Dithiocyanatobis(triphenylphosphine)mercury(II)

By Ramesh C. Makhija, André L. Beauchamp,* and Roland Rivest. Département de Chimie, Université de Montréal, Montréal 101, Québec, Canada

The crystal and molecular structure of the title compound has been determined from three-dimensional X-ray data. Crystals are monoclinic, space group $P 2_{1} / c, a=17 \cdot 385(9), b=10 \cdot 581(4) . c=19 \cdot 304(5) \AA, \beta=91 \cdot 41(6)^{\circ}$, and $Z=4$. The structure was solved from diffractometer data by the heavy-atom method and refined by least-squares procedures to $R 0.048$ for 2769 observed reflections. The cell contains monomeric molecules and the mercury atom is in a distorted tetrahedral environment, as previously suggested on the basis of the i.r. spectrum. Bond lengths are: $\mathrm{Hg}-\mathrm{S} 2.565$ and 2.577 , and $\mathrm{Hg}-\mathrm{P} 2.487$ and $2.484 \AA$.

Mercury(ii) halide complexes with tertiary aliphatic phosphines and arsines are well known. ${ }^{1}$ Similar triphenylphosphine complexes of empirical formulae $\mathrm{HgX}_{2}\left(\mathrm{PPh}_{3}\right)$ and/or $\mathrm{HgX}\left(\mathrm{PPh}_{3}\right)_{2}$ have been reported ${ }^{2-4}$ for $\mathrm{X}=\mathrm{SCN}, \mathrm{CN}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{NO}_{3}$, and ClO_{4}; structural information available has generally been obtained from their vibrational spectra. ${ }^{2,5}$

We have recently determined the crystal structure of $\mathrm{Hg}(\mathrm{SCN})_{2}\left(\mathrm{AsPh}_{3}\right)^{6}$ for which a dimeric structure with bridging thiocyanato-groups had been suggested on the basis of the i.r. spectrum. ${ }^{5}$ The crystal was found to contain discrete three-co-ordinate molecules. This prompted us to investigate the structure of a 1:2 addition complex and the triphenylphosphine compound was selected.
${ }^{1}$ R. C. Evans, F. G. Mann, H. S. Pieser, and D. Purdie, J. Chem. Soc., 1940, 1209.
${ }^{2}$ S. C. Jain and R. Rivest, Inorg. Chim. Acta, 1970, 4, 291.
${ }^{3}$ G. B. Deacon and J. H. S. Green, Spectrochim. Acta, 1968, 24, $A, 845$.
${ }_{4}^{4}$ G. B. Deacon, J. H. S. Green, and D. J. Harrison, Spectrochim. Acta, 1968, 24, A, 1921.

EXPERIMENTAL

Preparation.-The complex was prepared according to the procedure of ref. 2. It was twice recrystallized from acetone and slow evaporation of the solvent yielded diamond-shaped crystals suitable for X-ray work.
Crystal Data. $-\mathrm{C}_{38} \mathrm{H}_{30} \mathrm{HgN}_{2} \mathrm{~S}_{2} \mathrm{P}_{2}, M=840 \cdot 6$, Monoclinic $a=17 \cdot 385(9), \quad b=10 \cdot 581(4), \quad c=19 \cdot 304(5) \quad \AA, \quad \beta=$ $91 \cdot 41(6)^{\circ}, U=3448 \AA^{3}, D_{\mathrm{m}}=1.58(1) \mathrm{g} \mathrm{cm}^{-3}$ (by flotation), $Z=4, D_{\mathrm{c}}=1.585 \mathrm{~g} \mathrm{~cm}^{-3} . \quad \lambda\left(\mathrm{Cu}-K_{\bar{\alpha}}\right)=1.5418, \lambda\left(\mathrm{Cu}-K_{\beta}\right)=$ $1.3922 \AA ; \mu\left(\mathrm{Cu}-K_{\bar{\alpha}}\right)=104 \cdot 1 \mathrm{~cm}^{-1}$. Space group $P 2_{1} / c$.

Crystallographic Measurements.-Cell parameters were obtained by least-squares refinement ${ }^{7}$ of the setting angles for 12 independent $\mathrm{Cu}-K_{\beta}$ peaks automatically centred on a Picker FACS 1 diffractometer $\left(52^{\circ}<20<64^{\circ}\right)$. The estimated standard deviations, given in parentheses, are set equal to twice the values calculated in the last cycle of refinement, which reflects our experience with reproducibility.
${ }^{5}$ A. R. Davis, C. J. Murphy, and R. A. Plane, Inorg. Chem., 1970, 9, 423.
${ }_{6}$ R. C. Makhija, A. L. Beauchamp, and R. Rivest, J.C.S. Chem. Comm., $1972,1043$.

7 W. R. Busing and H. A. Levy, Acta Cryst., 1967, 22, 457.

A crystal of dimensions $0.30 \times 0.31 \times 0.32 \mathrm{~mm}^{3}$ was mounted on a glass fibre and left exposed to the atmosphere. A detailed description of the instrument and methods used for data collection is given elsewhere. ${ }^{8}$ Three standard reflections ($10, \overline{1}, \overline{4} ; 1,7, \overline{2} ; 10,0,0$), measured every 30 reflections, did not show a variation of $>6 \%$ from their respective means. 3589 measurements ($h k l$, $\bar{h} k l$) were obtained within a sphere of $2 \theta \leqslant 90^{\circ}$ by use of Ni-filtered $\mathrm{Cu}-K_{\alpha}$ radiation, giving 2916 independent measurements after removal of systematically absent reflections, and equivalent reflections were averaged. 2769 Observed reflections were obtained having $I>8$ decacounts and $>10 \%$ of the background count. They were corrected for Lorentz and polarization effects. Because of the nearly spherical crystal, no absorption correction was applied.

Refinement.-The structure was solved by the standard heavy-atom method and refined by full-matrix leastsquares. Form factors used were from ref. 9 with anomalous dispersion terms Δf^{\prime} and $\Delta f^{\prime \prime}$ for mercury, phosphorus, and sulphur from ref. 10. Programs used are listed in ref. 11.

Isotropic refinement for all non-hydrogen atoms converged to $R \quad 0.086$. Hydrogen atoms were placed in calculated positions (assuming C-H $1 \cdot 00 \AA$) and were assigned temperature factors 0.5 units greater than those of the corresponding carbon atom. The hydrogen parameters were not refined, but the atoms were displaced according to the shift of the corresponding carbon atom. Mercury, phosphorus, and the SCN groups were then refined anisotropically and the carbon atoms of the rings isotropically. This reduced R to 0.059 . Finally, anisotropic temperature factors were refined for all non-hydrogen atoms. In order to keep the least-squares matrix at a reasonable size, mercury, phosphorus, and the SCN groups were refined at each cycle, but the carbon atoms of only one triphenylphosphine molecule were refined at a time. Anisotropic refinement with unit weights converged to $R 0.050$. A weighting scheme of the form $\sqrt{ } w=a+$ $b\left|F_{\mathrm{o}}\right|+c\left|F_{\mathrm{o}}\right|^{2}$ (with $a=11 \cdot 3, b=-0.37$, and $c=0.0045$) was applied at the end of the refinement. The constants were adjusted to obtain minimum variation of the weighted mean residual as a function of $\sin 0 / \lambda$ and of F_{0}. The refinement of the scale factor, positional parameters, and anisotropic temperature factors for all non-hydrogen atoms converged to $R \quad 0.048$ and $R^{\prime}\left\{=\left[\Sigma\left(w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} /\right.\right.\right.$ $\left.\left.\left.\Sigma w\left|F_{0}\right|^{2}\right)\right]^{\frac{1}{2}}\right\} \quad 0.054$ (observed reflections only). Average and maximum shifts in the last least-squares cycle were 0.1 and 0.3σ respectively. The final difference-Fourier map showed no peaks $> \pm 0.7 \mathrm{e}^{-3}$, except for two of 2.0 and $1.7 \mathrm{e}^{-3}$ at ca. $0.5 \AA$ from mercury and phosphorus respectively.

Final co-ordinates and temperature factors are listed in Table 1.* The carbon atoms are identified with $\mathrm{C}(i j)$ labels, where i is the ring number and j corresponds to

* Structure factors are listed in Supplementary Publication No. SUP 20787 (3 pp., 1 microfiche). See Notice to Authors No. 7 in J.C.S. Dalton, 1972, Index issue.
${ }^{8}$ A. Terzis, A. L. Beauchamp, and R. Rivest, Inorg. Chem., 1973, 12, 1166.
${ }^{9}$ D. T. Cromer and J. T. Waber, Acta Cryst., 1965, B18, 104.
${ }_{11}$ D. T. Cromer, Acta Cryst., 1965, B18, 17.
${ }^{11}$ A. L. Beauchamp and D. Goutier, Canad. J. Chem., 1972, 50, 977 .
${ }_{12}$ D. Grdenic, Quart. Rev., 1965, 19, 303.
sequential numbering of the ring vertices, the index $j=1$ being assigned to the atoms bound to phosphorus. Hydrogen atoms are numbered with the same pair of indices as the carbon atom to which they are attached.

DESCRIPTION OF THE STRUCTURE AND DISCUSSION

Crystals of $\mathrm{Hg}(\mathrm{SCN})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ contain monomeric molecules (Figure), in which mercury is four-coordinated. Bond lengths and angles are listed in Table 2.

As commonly observed for mercury compounds, the SCN groups bind to the metal via the sulphur atom and define $\mathrm{Hg}-\mathrm{S}-\mathrm{C}$ angles of $c a .100^{\circ}$. They are linear and the $\mathrm{S}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bond lengths are normal. The $\mathrm{Hg}-\mathrm{S}$ distances (2.565 and $2.577 \AA$) are slightly longer than the sum of the covalent radii of sulphur ($1.04 \AA$) and tetrahedrally co-ordinated mercury ($1.48 \AA$) $)^{12}$ Typical distances reported for HgS_{4} tetrahedral units are 2.54 in $\mathrm{HgS}, \mathrm{K}_{2} \mathrm{Hg}(\mathrm{SCN})_{4}$, and $\mathrm{NiHg}(\mathrm{SCN})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}{ }^{12}$

Table 1
Final fractional co-ordinates and anisotropic thermal parameters $\left(\times 10^{3}\right)$ with estimated standard deviations (in parentheses)

Atom	x	y	z
Hg	0.23836(3)	$0 \cdot 02642(4)$	$0 \cdot 05461(2)$
$\mathrm{P}(1)$	$0 \cdot 3474(2)$	0.0979 (3)	$0 \cdot 1313(1)$
$\mathrm{P}(2)$	$0 \cdot 1592$ (2)	-0.1540(3)	$0 \cdot 0940$ (1)
S(1)	$0 \cdot 1396(2)$	0.1958(3)	$0 \cdot 0185(2)$
S(2)	$0 \cdot 2878(2)$	-0.0179(3)	$-0.0676(1)$
C(1)	$0 \cdot 1409$ (8)	$0 \cdot 2842(14)$	$0 \cdot 0912(8)$
$\mathrm{C}(2)$	$0.3105(8)$	$-0.1682(15)$	$-0.0573(6)$
N(1)	0.1427(9)	$0.3478(14)$	$0 \cdot 1378(8)$
$\mathrm{N}(2)$	$0 \cdot 3250$ (9)	-0.2744(16)	-0.0517(6)
$\mathrm{C}(11)$	$0 \cdot 4277(6)$	-0.0119(11)	$0 \cdot 1356(6)$
$\mathrm{C}(12)$	$0 \cdot 4708(7)$	$-0.0347(14)$	$0 \cdot 1947$ (7)
C(13)	0.5299 (8)	$-0.1207(17)$	$0 \cdot 1912(8)$
C(14)	$0 \cdot 5477(8)$	-0.1838(14)	$0 \cdot 1312(10)$
C(15)	0.5021 (8)	$-0.1580(15)$	$0 \cdot 0732(7)$
C(16)	0.4439 (6)	-0.0750(12)	$0 \cdot 0728(6)$
C(21)	$0 \cdot 3130(6)$	0.1184(12)	$0 \cdot 2191$ (5)
C(22)	$0 \cdot 2901$ (7)	$0 \cdot 2377(12)$	$0 \cdot 2408(6)$
C(23)	$0 \cdot 2565$ (7)	$0 \cdot 2510$ (15)	$0 \cdot 3053(8)$
C(24)	$0 \cdot 2486$ (8)	$0 \cdot 1467(20)$	$0 \cdot 3466(7)$
$\mathrm{C}(25)$	$0 \cdot 2703$ (8)	$0 \cdot 0286(16)$	$0 \cdot 3254(7)$
C(26)	$0 \cdot 3029$ (7)	$0.0118(12)$	$0 \cdot 2609(7)$
C(31)	$0 \cdot 3881$ (7)	0.2480(12)	$0 \cdot 1054(6)$
C(32)	$0 \cdot 3424$ (9)	$0 \cdot 3311$ (14)	$0 \cdot 0647$ (8)
C(33)	$0 \cdot 3721(15)$	$0 \cdot 4458(15)$	$0 \cdot 0445(9)$
C(34)	$0 \cdot 4474$ (17)	$0 \cdot 4792(19)$	$0 \cdot 0669(11)$
C(35)	$0 \cdot 4931$ (11)	$0 \cdot 3958(23)$	$0 \cdot 1057(10)$
$\mathrm{C}(36)$	0.4617(9)	$0 \cdot 2805(15)$	$0 \cdot 1238(7)$
C(41)	$0 \cdot 2139(6)$	$-0 \cdot 2495(10)$	$0 \cdot 1553(6)$
C(42)	$0 \cdot 1860$ (8)	-0.2796(12)	$0 \cdot 2202(6)$
C(43)	$0 \cdot 2319$ (8)	-0.3438(14)	$0 \cdot 2681$ (6)
C(44)	$0 \cdot 3049$ (9)	$-0.3786(13)$	$0 \cdot 2530(7)$
C(45)	$0 \cdot 3332(7)$	$-0.3481(14)$	$0 \cdot 1878(7)$
C(46)	$0 \cdot 2876(7)$	$-0.2832(12)$	$0 \cdot 1402$ (6)
C(51)	0.0770 (7)	$-0.0980(13)$	$0 \cdot 1410(6)$
C(52)	0.0848 (8)	$0.0019(13)$	$0 \cdot 1854(8)$
C(53)	$0 \cdot 0240(13)$	$0.0333(17)$	$0 \cdot 2265(8)$
C(54)	-0.0445(12)	$-0.0320(25)$	$0 \cdot 2222(12)$
C(55)	$-0.0519(10)$	$-0.1310(23)$	$0 \cdot 1756(13)$
C(56)	$0 \cdot 0066(7)$	$-0.1671(15)$	$0 \cdot 1329$ (8)
C(61)	$0 \cdot 1254(6)$	$-0.2541(13)$	$0.0237(5)$
C(62)	$0 \cdot 0944$ (7)	-0.1954(12)	$-0.0360(7)$
C(63)	$0.0656(9)$	-0.2691(17)	$-0.0896(7)$
C(64)	$0 \cdot 0678(10)$	$-0.3969(18)$	$-0.0864(8)$
C(65)	$0 \cdot 0996(11)$	$-0.4533(15)$	$-0.0294(9)$
C(66)	0.1286(8)	$-0.3824(13)$	$0 \cdot 0274(7)$

TAbLe 1 (continued)

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Hg	$50 \cdot 7(3)$	38.4(3)	$31 \cdot 1(4)$	0.3(3)	0-3(1)	2-2(2)
$\mathrm{P}(1)$	50(2)	47(2)	28(2)	-4(2)	3(1)	-3(1)
$\mathrm{P}(2)$	44(2)	44(2)	$33(2)$	$3(2)$	$-1(1)$	7 (1)
S(1)	91 (3)	67(2)	63(2)	25(2)	-8(1)	$4(2)$
S(2)	$98(3)$	61 (2)	30(2)	-3(2)	4(2)	1(1)
C(1)	64(9)	59(12)	78(11)	$23(7)$	$4(7)$	8(8)
$\mathrm{C}(2)$	80(9)	63(12)	30(7)	-1(4)	2(5)	-7(9)
N(1)	136(12)	89(11)	92(11)	41(9)	$-5(7)$	-19(9)
$\mathrm{N}(2)$	142(13)	83(11)	70(10)	$26(9)$	7(6)	$-14(9)$
$\mathrm{C}(11)$	25(6)	$66(8)$	42(8)	6 (6)	-5(4)	$-4(6)$
C(12)	$32(8)$	101(11)	72(9)	7(7)	$-10(5)$	9(8)
C(13)	36(9)	138(15)	67(11)	4(9)	-11(4)	31(10)
$\mathrm{C}(14)$	58(9)	87(11)	87(13)	12(8)	12(6)	5(9)
$\mathrm{C}(15)$	60 (9)	96(11)	46(10)	$-9(10)$	$5(5)$	$-15(8)$
C(16)	15(6)	$72(9)$	64(9)	11(6)	6(3)	-6 (7)
C(21)	45(8)	56(10)	$30(7)$	$-9(7)$	$-1(4)$	$-13(7)$
C(22)	52(8)	56(9)	45(9)	$-8(6)$	1(4)	$-14(6)$
C(23)	69(12)	$75(11)$	49(9)	$-10(7)$	2(3)	-23(9)
C(24)	71(9)	112(15)	43(15)	1 (8)	6(4)	-25(10)
C(25)	76(9)	95(12)	37(9)	$-11(8)$	10(4)	11(10)
C(26)	67 (9)	$55(9)$	45(9)	-3(6)	2(5)	4(7)
C(31)	$55(9)$	56 (9)	$50(8)$	$-30(7)$	15(4)	$-21(7)$
C(32)	99(12)	44(10)	84(11)	4(9)	14(5)	11(8)
$\mathrm{C}(33)$	180(20)	38(11)	86(13)	-9(12)	30 (8)	8(8)
$\mathrm{C}(34)$	196(24)	$65(14)$	97(15)	$-59(16)$	58(10)	$-33(11)$
$\mathrm{C}(35)$	$115(15)$	103(16)	96(13)	$-59(14)$	31(7)	$-34(11)$
$\mathrm{C}(36)$	100(12)	74(14)	58(10)	$-37(9)$	14(5)	$-18(8)$
C(41)	39(8)	46(7)	$35(7)$	0 (6)	$-4(3)$	12(6)
$\mathrm{C}(42)$	52(8)	77(10)	41(7)	6(7)	3(3)	18(7)
$\mathrm{C}(43)$	67(11)	101(11)	40(8)	15(8)	3(5)	$33(9)$
$\mathrm{C}(44)$	87(12)	75(11)	42 (10)	$27(8)$	$-5(5)$	14(7)
$\mathrm{C}(45)$	55(9)	89(11)	55(9)	26(7)	-1(7)	-6(10)
C(46)	59(9)	75(10)	$31(8)$	14(7)	-2(4)	7(6)
C(51)	$45(10)$	$57(9)$	49(8)	$11(7)$	0 (4)	18(8)
C(52)	76(11)	$61(11)$	63(9)	$30(7)$	7(5)	$9(8)$
$\mathrm{C}(53)$	131(17)	93(13)	65(11)	58(13)	16 (7)	14(10)
C(54)	73(14)	127(18)	139(17)	39(14)	36(7)	53(15)
C(55)	53(12)	121(18)	184(21)	-3(12)	14(8)	29(17)
C(56)	$17(8)$	122(12)	95(11)	13(8)	10(4)	$13(9)$
$\mathrm{C}(61)$	$47(8)$	$55(10)$	$35(7)$	$-6(6)$	$-1(3)$	$3(7)$
$\mathrm{C}(62)$	$72(6)$	59(9)	56(9)	2(7)	-4(4)	17(8)
C(63)	97(12)	99(15)	41(9)	$-10(9)$	$-20(5)$	$9(9)$
C(64)	129(14)	77(14)	58(11)	-4(12)	$-17(6)$	-6(10)
C(65)	138(14)	57(10)	90(13)	6 (10)	$-19(7)$	$-15(10)$
C(66)	102(11)	42(11)	66(9)	0 (8)	-7(5)	7(9)

Stereoscopic view of the molecule; ellipsoids represent 50% probability
and $2.56 \AA$ in $\mathrm{CoHg}(\mathrm{SCN})_{4},{ }^{12} \mathrm{CoHg}(\mathrm{SCN})_{4}(\text { pyridine })_{2},{ }^{13}$ and $\left[\mathrm{Me}_{4} \mathrm{~N}\right]_{2} \mathrm{Hg}(\mathrm{SCN})_{4}{ }^{14}$ The terminal nitrogen atoms
${ }^{13}$ L. Pazdernik, A. L. Beauchamp, and R. Rivest, to be published.
${ }_{14}$ A. Larbot and A. L. Beauchamp, Rev. Chim. minérale, in the press.
${ }^{15}$ J. J. Daly, J. Chem. Soc., 1964, 3799.
are free, which is consistent with the i.r. spectrum reported to indicate S-bonded non-bridging thiocyanate groups. ${ }^{2,5}$

Bond lengths and angles in the phenyl rings are in the range $1.34(2)-1.43(2) ~ \AA$ and $116(2)-123(2)^{\circ}$, means $1.38 \AA$ and 120°. The rings are planar within $0.02 \AA$, but in several cases, the phosphorus atoms lie appreciably out of the planes: $0.01,0.15,0.04,0 \cdot 14$, 0.21 , and $0.06 \AA$ for rings $i=(1)-(6)$. Distortions of this magnitude exist in PPh_{3} itself and in $\mathrm{NiBr}_{2^{-}}$ $\left(\mathrm{PPh}_{3}\right)_{2}{ }^{16}$ and $\mathrm{CdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2} \cdot{ }^{17}$ From the intramolecular contacts [Table 2(c)] it is clear that the immediate

Table 2
Interatomic distances (\AA) and angles (${ }^{\circ}$) and their respective standard deviations (in parentheses)

(a) Bond lengths around mercury			
$\mathrm{Hg}-\mathrm{P}(1)$	$2 \cdot 489(3)$	$\mathrm{P}(2)-\mathrm{C}(41)$	$1 \cdot 804(11)$
$\mathrm{Hg}-\mathrm{P}(2)$	$2 \cdot 487(3)$	$\mathrm{P}(2)-\mathrm{C}(51)$	$1 \cdot 815(12)$
$\mathrm{Hg}-\mathrm{S}(1)$	$2 \cdot 565(4)$	$\mathrm{P}(2)-\mathrm{C}(61)$	$1 \cdot 806(12)$
$\mathrm{Hg}-\mathrm{S}(2)$	$2 \cdot 577(3)$	$\mathrm{S}(1)-\mathrm{C}(1)$	$1 \cdot 689(16)$
$\mathrm{P}(1)-\mathrm{C}(1)$	$1 \cdot 816(11)$	$\mathrm{S}(2)-\mathrm{C}(2)$	$1 \cdot 648(16)$
$\mathrm{P}(1)-\mathrm{C}(21)$	$1 \cdot 828(11)$	$\mathrm{C}(1)-\mathrm{N}(1)$	$1 \cdot 119(22)$
$\mathrm{P}(1)-\mathrm{C}(31)$	$1 \cdot 813(13)$	$\mathrm{C}(2)-\mathrm{N}(2)$	$1 \cdot 155(23)$
(b) Bond angles			
$\mathrm{P}(1)-\mathrm{Hg}-\mathrm{P}(2)$	$118 \cdot 1(1)$	$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(21)$	$107 \cdot 9(5)$
$\mathrm{P}(1)-\mathrm{Hg}-\mathrm{S}(1)$	$116 \cdot 2(1)$	$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(31)$	$105 \cdot 5(6)$
$\mathrm{P}(1)-\mathrm{Hg}-\mathrm{S}(2)$	$109 \cdot 3(1)$	$\mathrm{C}(21)-\mathrm{P}(1)-\mathrm{C}(31)$	$107 \cdot 0(6)$
$\mathrm{P}(2)-\mathrm{Hg}-\mathrm{S}(1)$	$104 \cdot 3(1)$	$\mathrm{C}(41)-\mathrm{P}(2)-\mathrm{C}(51)$	$105 \cdot 3(6)$
$\mathrm{P}(2)-\mathrm{Hg}-\mathrm{S}(2)$	$110 \cdot 1(1)$	$\mathrm{C}(41)-\mathrm{P}(2)-\mathrm{C}(61)$	$108 \cdot 6(5)$
$\mathrm{S}(1)-\mathrm{Hg}-\mathrm{S}(2)$	$96 \cdot 7(1)$	$\mathrm{C}(51)-\mathrm{P}(2)-\mathrm{C}(61)$	$108 \cdot 9(6)$
$\mathrm{Hg}-\mathrm{S}(1)-\mathrm{C}(1)$	$99 \cdot 6(5)$	$\mathrm{P}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	$123 \cdot 4(9)$
$\mathrm{Hg}-\mathrm{S}(2)-\mathrm{C}(2)$	$98 \cdot 7(5)$	$\mathrm{P}(1)-\mathrm{C}(11)-\mathrm{C}(16)$	$115 \cdot 8(9)$
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{N}(1)$	$176 \cdot 8(15)$	$\mathrm{P}(1)-\mathrm{C}(21)-\mathrm{C}(22)$	$119 \cdot 4(9)$
$\mathrm{S}(2)-\mathrm{C}(2)-\mathrm{N}(2)$	$177 \cdot 7(15)$	$\mathrm{P}(1)-\mathrm{C}(21)-\mathrm{C}(26)$	$119 \cdot 3(9)$
$\mathrm{Hg}-\mathrm{P}(1)-\mathrm{C}(11)$	$113 \cdot 8(4)$	$\mathrm{P}(1)-\mathrm{C}(31)-\mathrm{C}(36)$	$121 \cdot 3(11)$
$\mathrm{Hg}-\mathrm{P}(1)-\mathrm{C}(21)$	$108 \cdot 8(4)$	$\mathrm{P}(2)-\mathrm{C}(31)-\mathrm{C}(31)-\mathrm{C}(32)$	$118 \cdot 2(10)$
$\mathrm{Hg}-\mathrm{P}(1)-\mathrm{C}(31)$	$113 \cdot 5(4)$	$\mathrm{P}(2)-\mathrm{C}(41)-\mathrm{C}(46)$	$121 \cdot 7(9)$
$\mathrm{Hg}-\mathrm{P}(2)-\mathrm{C}(41)$	$110 \cdot 1(4)$	$\mathrm{P}(2)-\mathrm{C}(51)-\mathrm{C}(52)$	$120 \cdot 0(9)$
$\mathrm{Hg}-\mathrm{P}(2)-\mathrm{C}(51)$	$110 \cdot 7(4)$	$\mathrm{P}(2)-\mathrm{C}(51)-\mathrm{C}(56)$	$117 \cdot 6(10)$
$\mathrm{Hg}-\mathrm{P}(2)-\mathrm{C}(61)$	$113 \cdot 0(4)$	$\mathrm{P}(2)-\mathrm{C}(61)-\mathrm{C}(66)$	$122 \cdot 3(10)$
		$\mathrm{P}(2)-\mathrm{C}(61)-\mathrm{C}(62)$	$117 \cdot 8(9)$

$$
\begin{array}{llll}
\text { (c) Intramolecular contacts } & & \\
\mathrm{C}(41) \cdots \mathrm{C}(51) & 2 \cdot 88(2) & \mathrm{C}(21) \cdots \mathrm{C}(12) & 3 \cdot 23(2) \\
\mathrm{C}(11) \cdots \mathrm{C}(31) & 2.89(2) & \mathrm{C}(12) \cdots \mathrm{C}(26) & 3 \cdot 26(2) \\
\mathrm{C}(11) & \cdots \mathrm{C}(21) & 2 \cdot 95(2) & \mathrm{C}(31) \cdots \mathrm{C}(22) \\
\mathrm{C}(21) \cdots \mathrm{C}(31) & 2 \cdot 93(2) & \mathrm{C}(42) \cdots \mathrm{C}(51) & 3 \cdot 07(2) \\
\mathrm{C}(51) \cdots \mathrm{C}(61) & 2 \cdot 95(2) & \mathrm{C}(61) \cdots \mathrm{C}(56) & 3 \cdot 13(2) \\
\mathrm{C}(41) \cdots \mathrm{C}(61) & 2 \cdot 93(2) & \mathrm{C}(41) \cdots \mathrm{C}(66) & 3 \cdot 17(2) \\
\mathrm{C}(11) \cdots \mathrm{C}(26) & 3 \cdot 31(2) & \mathrm{C}(11) \cdots \mathrm{C}(36) & 3 \cdot 16(2) \\
\mathrm{C}(31) \cdots \mathrm{H}(22) & 2 \cdot 67(3) & \mathrm{C}(51) \cdots \cdots \mathrm{H}(42) & 2 \cdot 57(3) \\
\mathrm{C}(11) \cdots \mathrm{H}(6) & 2 \cdot 88(3) & \mathrm{C}(12) \cdots \mathrm{H}(26) & 2 \cdot 81(3) \\
\mathrm{C}(11) \cdots \mathrm{H}(36) & 2 \cdot 66(3) & \mathrm{C}(12) \cdots \cdots \mathrm{H}(36) & 2 \cdot 78(3) \\
\mathrm{C}(41) \cdots \mathrm{H}(66) & 2 \cdot 64(3) & \mathrm{C}(34) \cdots \mathrm{H}(45) & 2 \cdot 85(3)
\end{array}
$$

(d) Intermolecular contacts

$$
\begin{array}{ll}
\mathrm{C}(34) \cdots \mathrm{C}(34) 1-x, 1-y, \bar{z} & 3 \cdot 24(4) \\
\mathrm{S}(1) \cdots \mathrm{H}(65) x,-1+y, z & 2 \cdot 91(4) \\
\mathrm{S}(2) \cdots \mathrm{H}(43) x,-\frac{1}{2}-y,-\frac{1}{2}+z & 2 \cdot 86(4)
\end{array}
$$

environment of phosphorus is overcrowded, but not exceptionally so for a phenylphosphine molecule. Except for the $\mathrm{C}(34) \cdots \mathrm{H}(45)$ contact $(2 \cdot 85 \AA)$, which

[^0]is not extremely short, all intramolecular contacts listed in Table 2(c) involve rings belonging to the same PPh_{3} molecule. The lack of short non-bonded contacts between the two ligand molecules suggests that coordination of the two PPl_{3} molecules to mercury does not appreciably increase steric strain within and between the PPh_{3} molecules.

The $\mathrm{Hg}-\mathrm{P}-\mathrm{C}(i \mathbf{1})$ angles (mean 111.7°) tend to be larger than $\mathrm{C}(i 1)-\mathrm{P}-\mathrm{C}\left(i^{\prime} 1\right)$ in the ligand molecule (mean $\left.106.7^{\circ}\right)$. In the crystals of PPh_{3}, the $\mathrm{C}(i 1)-\mathrm{P}-\mathrm{C}\left(i^{\prime} 1\right)$ angles (mean 103.0°) are still smaller because of the steric influence of the phosphorus lone-pair. The $\mathrm{Hg}-\mathrm{P}$ distances (2.489 and $2.487 \AA$) are ca. $0.1 \AA$ shorter than expected from the covalent radii of mercury ($1 \cdot 48 \AA$) and phosphorus $(1 \cdot 10 \AA) .{ }^{12}$ The only other experimental values for $\mathrm{Hg}-\mathrm{P}$ bond lengths ($2 \cdot 52-2.56 \AA$) come from the distorted tetrahedral HgP_{4} unit in $\mathrm{PbHg} \mathrm{P}_{14}{ }^{18}$

Besides the present mercury complex, $\mathrm{MX}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ complexes with $\mathrm{MX}_{2}=\mathrm{NiBr}_{2},{ }^{16} \mathrm{NiCl}_{2},{ }^{19}$ and $\mathrm{CdCl}_{2}{ }^{17}$ are known to form tetrahedral molecules. In this series of compounds, the $\mathrm{X}-\mathrm{M}-\mathrm{X}$ angle shows a decrease with increasing size of the central atom: $\mathrm{Br}-\mathrm{Ni}-\mathrm{Br}$
$126 \cdot 3,{ }^{16} \mathrm{Cl}-\mathrm{Ni}-\mathrm{Cl} 123,{ }^{19} \mathrm{Cl}-\mathrm{Cd}-\mathrm{Cl} 113 \cdot 9,{ }^{17}$ and $\mathrm{S}-\mathrm{Hg}-\mathrm{S}$ 96.7°. The large angles in the nickel complexes have been explained by steric repulsions, the non-bonding $\mathrm{Cl} \cdots \mathrm{Cl}$ and $\mathrm{Br} \cdots \mathrm{Br}$ distances being relatively short because of the small nickel atom. With the larger cadmium atom, a normal $\mathrm{Cl}-\mathrm{Cd}-\mathrm{Cl}$ angle is compatible with sufficient separation of the chlorine atoms. In the present compound, the metal atom is still larger and even with an $\mathrm{S}-\mathrm{Hg}-\mathrm{S}$ angle as small as 97° the sulphur atoms are not in direct contact, since the $\mathrm{S} \cdot \mathrm{C}$ distance $(3.85 \AA$) is more than twice the van der Waals radius of sulphur ($1.85 \AA$). This small angle would favour an increase of the $\mathrm{P}-\mathrm{Hg}-\mathrm{P}$ angle ($118 \cdot 1^{\circ}$) beyond the normal value to decrease repulsions between the bulky PPh_{3} groups.

We thank the National Research Council of Canada for financial support.
[3/516 Received, 12th March, 1973]
${ }^{18}$ V. H. Krebs and Th. Lidwig, Z. anorg. Chem., 1958, 294, 257.
${ }_{19}$ G. Garton, D. E. Henn, H. M. Powell, and L. M. Venanzi, J. Chem. Soc., 1963, 3625.

[^0]: ${ }^{16}$ J. A. J. Jarvis, R. H. B. Mais, and P. G. Owston, J. Chem. Soc. (A), 1968, 1473.
 ${ }_{17}$ A. Forbes Cameron, K. P. Forrest, and G. Ferguson, J. Chem. Soc. (A), 1971, 1286.

