Structure of a Stable Iron(0) Mono-olefin Chelate Complex with 2-Vinylphenyldiphenylphosphine: Dicarbonylbis[(2-vinylphenyl)diphenylphosphine]iron(0)

By Glen B. Robertson and Peter O. Whimp,* Research School of Chemistry, The Australian National University, P.O. Box 4, Canberra, A.C.T. 2600, Australia

Abstract

The crystal and molecular structure of the title compound, a mono-olefin analogue of $\mathrm{Fe}(\mathrm{CO})_{5}$, has been determined from three-dimensional X-ray diffractometer data. Atom parameters have been refined in the non-standard centred space group $B 2_{1} / c$ [monoclinic, $a=15 \cdot 771(6), b=18 \cdot 468(6), c=24 \cdot 499(8) A, \beta=97 \cdot 76(3)^{\circ}, Z=8$]. Block-diagonal least-squares refinement has converged at $R 0.050$ for 2776 unique reflections. The ligand arrangement is approximately trigonal bipyramidal about the central iron atom, with phosphorus atoms in the axial sites; the equatorial sites are occupied by one π-bonded vinyl and two carbonyl groups. Fe--P in the chelated sp ligand $[2 \cdot 205(2) \AA$] is significantly shorter than that in the unidentate ligand [2.239(2) A]. The π-bonded viny! group is symmetrically co-ordinated, with $\mathrm{Fe}-\mathrm{C} 2.092(5)$ and $2 \cdot 108(5) \AA$.

In general, mono-olefin substituted derivatives of $\mathrm{Fe}(\mathrm{CO})_{5}$, e.g., $\mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{CH}_{2}: \mathrm{CH}_{2}\right)$, are thermally unstable and air-sensitive, ${ }^{1,2}$ while the analogous ruthenium derivatives are unknown. If, however, the double bond carries a strong electron-withdrawing group, the complexes appear to be more stable. ${ }^{3,4}$ Such a requirement is met by the potentially bidentate ligand (2 -vinylphenyl)diphenylphosphine $\left[\mathrm{sp}, \quad 0-\mathrm{CH}_{2}: \mathrm{CH} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{PPh}_{2}\right.$, (I)] which, as discussed elsewhere, ${ }^{5}$ serves not only to stabilize mono-olefin iron(0) complexes, but also their ruthenium analogues.

(I)

In particular, the reaction of sp with freshly prepared $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$ when heated under reflux in n-octane gives two air-stable products of empirical formula $\mathrm{Fe}(\mathrm{CO})_{3}(\mathrm{sp})$ (II) and $\mathrm{Fe}(\mathrm{CO})_{2}(\mathrm{sp})_{2}$ (III). The analogous ruthenium complexes $\mathrm{Ru}(\mathrm{CO})_{3}(\mathrm{sp})$ and $\mathrm{Ru}(\mathrm{CO})_{2}(\mathrm{sp})_{2}$ are obtained similarly from $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$.

(ロ)

I.r. and n.m.r. data suggest the structural assignments (II) and (III) for the mono- and bis-phosphine derivatives
${ }^{1}$ H. D. Murdoch and E. Weiss, Helv. Chim. Acta, 1963, 46, 1588.
${ }_{2}$ E. Koerner von Gustorf, M. C. Henry, and C. Di Pietro, Z. Naturforsch., 1966, 21b, 42.
${ }^{3}$ E. Weiss, K. Stark, J. E. Lancaster, and H. D. Murdoch, Helv. Chim. Acta, 1963, 46, 288.
respectively. Assignment (III) is confirmed by the present single-crystal analysis of $\mathrm{Fe}(\mathrm{CO})_{2}(\mathrm{sp})_{2}$; DebyeScherrer photographs show $\mathrm{Ru}(\mathrm{CO})_{2}(\mathrm{sp})_{2}$ to be isomorphous and probably isostructural. We now report, in detail, the structure of $\mathrm{Fe}(\mathrm{CO})_{2}(\mathrm{sp})_{2}$; a preliminary account of this work has appeared elsewhere. ${ }^{5}$

EXPERIMENTAL

Crystal Data.- $\mathrm{C}_{42} \mathrm{H}_{34} \mathrm{FeO}_{2} \mathrm{P}_{2}, \quad M=688 \cdot 5$, Monoclinic, $a=15 \cdot 771(6), \quad b=18 \cdot 468(6), \quad c=24 \cdot 499(8) \quad \AA, \quad \beta=$ $97.76(3)^{\circ}, U=7070 \cdot 4 \AA^{3}, D_{\mathrm{m}}=1 \cdot 28(1), Z=8, D_{\mathrm{c}}=1 \cdot 29$, $F(000)=2864$. Space group $B 2_{1} / c, \quad \mathrm{Cu}-K_{\alpha}$ radiation, $\lambda=1.5418 \AA, \mu=45.39 \mathrm{~cm}^{-1}$.
Systematic absences define the space group $P 2_{1} / c$ with $a^{\prime}=13 \cdot 644, \quad b^{\prime}=18 \cdot 468, \quad c^{\prime}=24 \cdot 499 \quad \AA, \quad \beta^{\prime}=145 \cdot 06^{\circ}$. Atom parameters have been refined and tabulated for the non-standard space group $B 2_{1} / c$, for which the equipoints are: $(x, y, z) ;\left(x+\frac{1}{2}, y, z+\frac{1}{2}\right) ;(\bar{x}, \bar{y}, \bar{z}) ;\left(\frac{1}{2}-x, \bar{y}, \frac{1}{2}-z\right)$; $\left(x, \frac{1}{2}-y, \frac{1}{2}+z\right) ; \quad\left(\frac{1}{2}+x, \frac{1}{2}-y, z\right) ; \quad\left(\bar{x}, \frac{1}{2}+y, \frac{1}{2}-z\right) ;$ ($\frac{1}{2}-x, \frac{1}{2}+y, \bar{z}$). Space group $B 2_{1} / c$ is a non-standard form of $P 2_{1} / C$ ($C_{2 h}^{5}$, No. 14), and was chosen because of the associated β angle. The crystal chosen for data collection, of dimension $0.02 \times 0.008 \times 0.008 \mathrm{~cm}$ (elongated in the a direction) was transferred to a Picker FACS-I automatic diffractometer, and aligned with the crystallographic a and machine Φ-axes approximately coincidental. Cell dimensions and crystal orientation matrix, together with estimated standard errors, were obtained in the usual way from least-squares refinement of the $2 \theta, \omega, \mathrm{X}$, and Φ values of 12 carefully centred high-angle reflections. Busing and Levy programs ${ }^{6}$ were used for all phases of diffractometer control and data collection.

Data Collection.-Including standards, 4650 reflections of the form $h k l$ and $h k l$ within the range $3^{\circ} \leqslant 2 \theta \leqslant 125^{\circ}$, were recorded by the $\theta-2 \theta$ scan technique, with a 2θ velocity of $1^{\circ} \mathrm{min}^{-1}$, and an asymmetric scan range from $(2 \theta-0.75)^{\circ}$ to $(2 \theta+0.75+\Delta)^{\circ}$ (where Δ is the angular separation between the α_{1} and α_{2} components of the reflection concerned). Backgrounds were recorded for 20 s at the scan range limits, and were assumed to be linear

[^0]between these two points. Intensities of three reflections, distributed nearly orthogonally in reciprocal space and at a 2θ value of $c a .50-60^{\circ}$, were monitored after each 40 measurements. None showed a significant intensity variation during data collection. Graphite-crystal monochromated $\mathrm{Cu}-K_{\alpha}$ radiation was used throughout.

Reflection data were reduced to values of $\left|F_{0}\right|, \dagger$ equivalent forms were averaged, and each reflection was assigned an individual estimated standard deviation, $\sigma\left(F_{\mathrm{o}}\right): \sigma\left(F_{\mathrm{o}}\right)=$ $\left[L P^{-2} \times \Delta I^{2}+\left(\rho F_{0}{ }^{2}\right)^{2}\right]^{\frac{1}{2}} / 2 F_{0}, \quad$ where $\quad \Delta I=[C T+$ $\left.\left(t_{\mathrm{p}} / l_{\mathrm{b}}\right)^{2}\left(B_{1}+B_{2}\right)\right]^{\frac{1}{2}}, L P$ is the Lorentz-polarization correction, $C T$ is the integrated reflection intensity, t_{p} is the reflection scan time, t_{b} is the total background counting time ($=40 \mathrm{~s}$), B_{1} and B_{2} are the individual background counts, and $\rho\left[=(0.001)^{\frac{1}{2}}\right]$ is the instrumental ' uncertainty factor.' ${ }^{7,8}$ Reflections for which the individual background measurements differed significantly [i.e. if ($\mid B_{1}-$ $\left.\left.B_{2} \mid\right) /\left(B_{1}+B_{2}\right)^{\frac{1}{3}} \geqslant 4.0\right]$ were discarded, as were those for which $I / \Delta I<3.0\left[I=C T-\left(t_{\mathrm{p}} / t_{\mathrm{b}}\right)\left(B_{1}+B_{2}\right)\right]$. The resultant data set comprised 2776 unique reflections. The statistical R for this terminal data set, defined as $R_{\mathrm{s}}=$ $\Sigma \sigma_{\mathrm{s}}\left(F_{0}\right) / \Sigma\left|F_{\mathrm{o}}\right|\left[\sigma_{\mathrm{s}}\left(F_{\mathrm{o}}\right)=L P^{-1} \times \Delta I / 2 F_{\mathrm{o}}\right]$, is 0.030 .

Solution and Refinement of the Structure.-The coordinates of all non-hydrogen atoms were readily obtained from conventional Patterson and Fourier synthesis. Initial full-matrix least-squares refinement, with individual isotropic temperature factors for all atoms, rigid-body positional parameters for the six phenyl rings, and individual positional parameters for the remaining atoms, rapidly converged to $R \quad 0.088$ and $R^{\prime}\left[=\left\{\Sigma w\left(\left|F_{0}\right|-\right.\right.\right.$ $\left.\left.\left.\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma w\left|F_{\mathrm{o}}\right|^{2}\right\}^{\frac{1}{2}}\right] 0.090$ [with equal (unit) weights]. Atomic scattering factors were taken from ref. 9 , those for iron and phosphorus being corrected for both real and imaginary anomalous scattering contributions. ${ }^{10,11}$

Data were subsequently corrected for absorption effects, by use of a $10 \times 4 \times 4 \mathrm{grid}$ in the a, b, and c^{*} directions. Further refinement of individual atom co-ordinates, isotropic thermal parameters, and overall scale factor, by use of a block-diagonal least-squares approximation, with individual weights $\left[w=1 / \sigma^{2}\left(F_{0}\right)\right]$ converged with $R 0.086$ and $R^{\prime} 0 \cdot 100$. Introduction of anisotropic thermal parameters $\quad\left[T=\exp -\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+2 \beta_{12} h k+\right.\right.$ $\left.\left.2 \beta_{13} h l+2 \beta_{23} k l\right)\right]$ for all atoms further reduced these values to $R 0.068$ and $R^{\prime} 0.079$.

At this stage of refinement, a difference-Fourier synthesis showed phenyl hydrogen atoms in stereochemically reasonable positions. Accurate map co-ordinates could not be obtained, and consequently, they were included as fixed contributions to F_{c} on the basis of idealized co-ordinates (assuming $\mathrm{C}-\mathrm{H} 1.087 \AA$) with fixed isotropic temperature factors ($B_{\text {H }}=B_{\mathrm{C}}+1 \cdot 0 \quad \AA^{2}$). These values were recalculated after each adjustment of the non-hydrogen atom parameters. With the phenyl hydrogen atom contributions included, refinement converged (with all parameter shifts $<0.1 \sigma$) with $R 0.050$ and $R^{\prime} 0.056$.

The estimated standard deviation of an observation of unit weight [defined as $\Sigma w\left(F_{\mathrm{o}}-F_{\mathrm{c}}\right)^{2} /(m-n)$, where $m=$ number of observations, $n(=424)$ is the number of parameters varied], is 2.02 , cf. 1.00 for ideal weighting.

[^1]Comparison of the observed and calculated structure factor amplitudes, showed no evidence of serious extinction effects, and no correction was thought necessary. Similarly, no serious dependence of $w\left(F_{o}-F_{\mathrm{c}}\right)^{2}$ on either F_{o} or $\sin \theta / \lambda$, was apparent. The final scattering model does not include vinyl hydrogen atom contributions. These were apparent on a final difference-Fourier map as very diffuse peaks with maxima of $c a \cdot 0 \cdot 5 \mathrm{e}^{-3}$, but at no stage were included in the refinement. No other positive maxima of density $>0.3 \mathrm{e}^{-3}$ were observed. Terminal atom co-ordinates and thermal parameters, together with their estimated standard deviations (obtained from inversion of the block-diagonal matrices), are listed in Table 1.

Calculations were performed on a CDC 3600 computer at the C.S.I.R.O. Division of Computing Research, Canberra, and an IBM 360/50 computer at The Australian National University. Least-squares refinements were carried out with modified versions of Prewitt's program SFLS-5, ${ }^{10}$ and absorption corrections with a modified version of ACACA. ${ }^{12}$ Figures 1 and 2 were produced by ORTEP. ${ }^{13}$ Final observed and calculated structure factors are listed in Supplementary Publication No. SUP 20770 (2 pp., 1 microfiche). \ddagger

Figure 1 The overall stereochemistry of the molecule, together with the atom numbering scheme

RESULTS AND DISCUSSION

The crystal structure, as defined by the unit-cell parameters, symmetry operations, and atom co-ordinates of Table 1, consists of well separated monomeric units. The molecule has neither crystallographic nor virtual symmetry higher than C_{1}. The overall stereochemistry

[^2]Table 1
Atomic positional and thermal parameters
(a) Refined positional and anisotropic thermal parameters

Atom	x / a	y / b	z / c	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{25}
Fe	$0 \cdot 20174(6)$	$0 \cdot 25979$ (5)	$0 \cdot 10215(4)$	0.00341 (5)	$0 \cdot 00228(3)$	$0 \cdot 00132(2)$	$-0.00002(3)$	$-0.00013(2)$	$0 \cdot 00000(2)$
$\mathrm{P}(1)$	$0 \cdot 21733(10)$	$0 \cdot 34624(8)$	$0 \cdot 04224(6)$	$0 \cdot 00316(8)$	$0 \cdot 00223$ (5)	$0 \cdot 00128(3)$	$0 \cdot 00022(5)$	$-0.00010(4)$	$-0.00007(3)$
$\mathrm{P}(2)$	$0 \cdot 19904(10)$	$0 \cdot 16906$ (8)	$0 \cdot 16252(6)$	$0 \cdot 00334(9)$	$0 \cdot 00265(6)$	$0 \cdot 00145(3)$	$-0.00042(5)$	$-0.00013(4)$	$0 \cdot 00018(3)$
$\mathrm{O}(1)$	$0 \cdot 0200(2)$	$0 \cdot 2914(2)$	$0 \cdot 1012(2)$	$0 \cdot 0037(2)$	$0 \cdot 0044(2)$	$0.0028(1)$	$0 \cdot 0000$ (2)	$0 \cdot 0000(1)$	$-0.0002(1)$
$\mathrm{O}(2)$	$0.2183(3)$	$0 \cdot 1564(2)$	$0.0140(2)$	$0.0114(4)$	$0.0037(2)$	$0 \cdot 0020(1)$	$-0.0001(2)$	$0 \cdot 0011$ (2)	-0.0009(1)
C(1)	$0 \cdot 0920(4)$	$0 \cdot 2781$ (3)	$0 \cdot 1017(2)$	$0.0046(4)$	$0.0029(2)$	$0.0017(1)$	-0.0002(2)	$0 \cdot 0002(2)$	$-0.0001(1)$
C(2)	$0 \cdot 2139(4)$	$0 \cdot 1965$ (3)	$0 \cdot 0506(2)$	$0.0058(4)$	$0 \cdot 0030(2)$	0.0015 (1)	0.0001 (2)	$0 \cdot 0002(2)$	$0 \cdot 0001(1)$
C(101)	$0 \cdot 2268$ (3)	$0 \cdot 4295$ (3)	$0.0830(2)$	$0 \cdot 0026(3)$	$0 \cdot 0022(2)$	$0 \cdot 0016(1)$	0.0001 (2)	-0.0002(2)	$-0.0003(1)$
C(102)	$0 \cdot 2296$ (3)	$0.4143(3)$	$0 \cdot 1396(2)$	$0.0028(3)$	$0.0031(2)$	$0.0013(1)$	0.0001 (2)	0.0000 (1)	-0.0004(1)
C(103)	$0 \cdot 2266$ (4)	$0 \cdot 4727(3)$	$0 \cdot 1754(2)$	$0 \cdot 0057(4)$	$0 \cdot 0028(2)$	$0.0017(1)$	$0 \cdot 0000(2)$	$0 \cdot 0002(2)$	-0.0003(1)
C(104)	$0 \cdot 2262$ (4)	0.5432 (3)	$0 \cdot 1563(2)$	$0 \cdot 0053(4)$	0.0026(2)	$0 \cdot 0020$ (1)	$0 \cdot 0005(2)$	-0.0001(2)	$-0.0007(1)$
C(105)	$0.2305(4)$	0.5573 (3)	$0 \cdot 1009(2)$	$0.0044(4)$	$0.0022(2)$	$0.0022(1)$	$0 \cdot 0005(2)$	$-0.0002(2)$	$-0.0001(1)$
$\mathrm{C}(106)$	$0 \cdot 2285$ (4)	$0 \cdot 5005$ (3)	0.0641 (2)	$0.0035(3)$	$0 \cdot 0022(2)$	$0 \cdot 0019(1)$	$0.0038(2)$	$0 \cdot 0001$ (2)	$0.0001(1)$
C(107)	$0 \cdot 2424(4)$	$0 \cdot 3379$ (3)	$0 \cdot 1618$ (2)	$0 \cdot 0046(4)$	$0 \cdot 0017(2)$	$0.0017(1)$	$-0.0004(2)$	-0.0008(2)	-0.0002(1)
C(108)	$0 \cdot 3160(3)$	$0 \cdot 2982(3)$	$0 \cdot 1475$ (2)	$0.0032(3)$	0.0021 (2)	$0.0017(1)$	-0.0001(2)	-0.0003(2)	-0.0006(1)
C(111)	$0 \cdot 1250(3)$	$0 \cdot 3572(3)$	-0.0111(2)	$0 \cdot 0028(3)$	$0 \cdot 0025(2)$	$0.0013(1)$	$0 \cdot 0003(2)$	$-0.0001(2)$	$0 \cdot 0001(1)$
C(112)	$0 \cdot 0549(4)$	$0 \cdot 3985$ (3)	-0.0010(2)	$0 \cdot 0034(3)$	$0 \cdot 0032(2)$	$0 \cdot 0020$ (1)	$0 \cdot 0005(2)$	-0.0005(2)	$-0.0001(1)$
C(113)	$-0.0192(4)$	$0 \cdot 3970$ (3)	-0.0386(3)	$0 \cdot 0040$ (4)	$0 \cdot 0039(3)$	$0 \cdot 0026(2)$	$0 \cdot 0009$ (3)	$-0.0004(2)$	$0 \cdot 0001(2)$
C(114)	$-0.0233(4)$	$0 \cdot 3550(3)$	-0.0858(3)	$0 \cdot 0034(4)$	$0 \cdot 0041$ (3)	$0 \cdot 0024(2)$	$-0.0001(3)$	-0.0010(2)	$0 \cdot 0003$ (2)
C(115)	$0 \cdot 0460(4)$	$0 \cdot 3151(3)$	-0.0962(2)	$0 \cdot 0040$ (4)	$0.0037(3)$	$0.0018(1)$	-0.0005(2)	$-0.0004(2)$	$0 \cdot 0000(2)$
C(116)	$0 \cdot 1204(4)$	$0 \cdot 3160(3)$	-0.0586(2)	0.0031 (3)	$0 \cdot 0030(2)$	$0.0015(1)$	$0 \cdot 0000$ (2)	$-0.0001(2)$	$-0.0001(1)$
C(121)	$0 \cdot 3081$ (3)	$0 \cdot 3498(3)$	$0.0028(2)$	$0.0031(3)$	$0 \cdot 0026(2)$	$0 \cdot 0012(1)$	-0.0005(2)	$0 \cdot 0000(1)$	-0.0002(1)
C(122)	$0.3129(4)$	$0 \cdot 4046$ (3)	-0.0357(2)	$0 \cdot 0037(3)$	$0 \cdot 0027(2)$	$0 \cdot 0015(1)$	-0.0001(2)	$0 \cdot 0002(2)$	$0.0003(1)$
C(123)	$0 \cdot 3862(4)$	$0 \cdot 4120$ (3)	-0.0611(2)	$0 \cdot 0050(4)$	$0.0032(2)$	$0 \cdot 0018(1)$	-0.0005(2)	0.0006(2)	$0 \cdot 0003(2)$
C(124)	$0 \cdot 4541$ (4)	$0 \cdot 3646$ (3)	-0.0490(2)	$0 \cdot 0039(4)$	$0 \cdot 0047(3)$	$0 \cdot 0019(1)$	$-0.0006(3)$	$0 \cdot 0007(2)$	$-0.0003(2)$
C(125)	$0 \cdot 4480$ (4)	$0 \cdot 3081$ (3)	-0.0126(2)	$0 \cdot 0034(4)$	$0 \cdot 0044$ (3)	$0 \cdot 0018$ (1)	$0 \cdot 0009(2)$	$0 \cdot 0001$ (2)	$0 \cdot 0000$ (2)
C(126)	$0 \cdot 3756(4)$	$0 \cdot 3003$ (3)	$0.0138(2)$	$0 \cdot 0037(3)$	$0.0030(2)$	$0.0015(1)$	$0 \cdot 0004(2)$	$0 \cdot 0001$ (2)	$0 \cdot 0001$ (1)
C(201)	$0 \cdot 2278(4)$	$0 \cdot 1917(3)$	$0 \cdot 2362(2)$	$0 \cdot 0036(3)$	$0 \cdot 0031(2)$	$0.0013(1)$	$-0.0005(2)$	$0 \cdot 0002(2)$	$0 \cdot 0005(1)$
C(202)	$0 \cdot 1768(4)$	$0 \cdot 2370$ (3)	$0 \cdot 2650$ (2)	$0 \cdot 0044(4)$	$0 \cdot 0036(3)$	$0.0015(1)$	$-0.0009(2)$	$0.0006(2)$	$0 \cdot 0003(1)$
C(203)	$0 \cdot 2079(4)$	$0 \cdot 2561$ (3)	$0 \cdot 3199(2)$	$0 \cdot 0058(4)$	$0.0039(3)$	$0 \cdot 0016(1)$	$-0.0008(3)$	$0 \cdot 0008(2)$	$0 \cdot 0001(2)$
C(204)	$0 \cdot 2865$ (4)	$0 \cdot 2328$ (4)	$0 \cdot 3452(2)$	$0 \cdot 0055$ (4)	$0 \cdot 0054(3)$	$0 \cdot 0013$ (1)	$-0.0017(3)$	$-0.0001(2)$	$-0.0001(2)$
C(205)	$0 \cdot 3370$ (4)	$0 \cdot 1898(4)$	$0 \cdot 3165(2)$	$0 \cdot 0046$ (4)	$0 \cdot 0053(3)$	$0.0017(1)$	-0.0010 (3)	$-0.0004(2)$	$0 \cdot 0003(2)$
$\mathrm{C}(206)$	$0 \cdot 3080(4)$	$0 \cdot 1693(3)$	$0 \cdot 2626(2)$	$0 \cdot 0039(4)$	$0 \cdot 0042(3)$	$0 \cdot 0016$ (1)	$-0.0005(2)$	$-0.0001(2)$	$0 \cdot 0003(1)$
C(207)	$0 \cdot 0923$ (4)	$0 \cdot 2651$ (4)	$0 \cdot 2383$ (3)	$0 \cdot 0040(4)$	$0.0050(3)$	0.0021 (2)	$0 \cdot 0009(2)$	$0.0008(2)$	$0 \cdot 0005(2)$
C(208)	$0 \cdot 0574(5)$	$0 \cdot 3266$ (4)	$0 \cdot 2538$ (3)	$0 \cdot 0075$ (5)	$0 \cdot 0065(4)$	$0 \cdot 0035(2)$	0.0016 (4)	$0.0012(3)$	$-0.0003(2)$
C(211)	0.0999 (4)	0.1169(3)	$0 \cdot 1594$ (2)	$0 \cdot 0038(4)$	$0.0031(2)$	$0 \cdot 0017(1)$	$-0.0005(2)$	$-0.0003(2)$	$0 \cdot 0003(1)$
$\mathrm{C}(212)$	0.0536(4)	$0 \cdot 1028(3)$	$0 \cdot 1083$ (2)	$0 \cdot 0037(4)$	$0.0022(2)$	$0.0022(1)$	-0.0002(2)	$-0.0003(2)$	$0 \cdot 0003(1)$
$\mathrm{C}(213)$	-0.0188(4)	0.0585 (3)	$0 \cdot 1034(3)$	$0.0034(4)$	$0 \cdot 0029(2)$	$0.0030(2)$	$-0.0001(2)$	-0.0010(2)	$0 \cdot 0001(1)$
C(214)	$-0.0450(4)$	$0 \cdot 0285(4)$	$0 \cdot 1486$ (3)	$0.0036(4)$	$0.0038(3)$	0.0041 (2)	$-0.0005(3)$	$-0.0002(2)$	$0 \cdot 0007(2)$
C(215)	$-0.0013(5)$	$0 \cdot 0428(4)$	$0 \cdot 2007(3)$	$0 \cdot 0071(5)$	$0 \cdot 0065(4)$	$0 \cdot 0030(2)$	$-0.0031(4)$	$0.0004(3)$	$0.0013(2)$
$\mathrm{C}(216)$	$0.0716(4)$	$0.0872(4)$	$0 \cdot 2056(3)$	$0 \cdot 0058(4)$	$0 \cdot 0061(4)$	$0 \cdot 0022(1)$	$-0.0028(3)$	-0.0002(2)	$0 \cdot 0007(2)$
C(221)	0.2753(3)	$0.0960(3)$	$0 \cdot 1538(2)$	$0 \cdot 0034(3)$	$0 \cdot 0024(2)$	$0 \cdot 0014$ (1)	$0 \cdot 0000(2)$	$-0.0003(2)$	$0 \cdot 0001(1)$
C(222)	$0.3512(4)$	$0 \cdot 1118(3)$	$0 \cdot 1336(2)$	$0 \cdot 0044$ (4)	$0.0026(2)$	$0 \cdot 0024(2)$	$0 \cdot 0006(2)$	$0 \cdot 0006(2)$	$0 \cdot 0002(2)$
$\mathrm{C}(223)$	$0.4110(4)$	$0.0579(3)$	$0 \cdot 1290(3)$	$0 \cdot 0052(4)$	$0.0036(3)$	$0 \cdot 0034(2)$	$0 \cdot 0007(3)$	$0 \cdot 0014(2)$	$0.0001(2)$
$\mathrm{C}(224)$	$0 \cdot 3943$ (4)	-0.0127(3)	$0 \cdot 1422$ (3)	$0 \cdot 0070(5)$	$0.0025(2)$	$0.0034(2)$	0.0010 (3)	$0 \cdot 0002(2)$	$0 \cdot 0000(2)$
$\mathrm{C}(225)$	$0 \cdot 3191(4)$	-0.0293(3)	$0 \cdot 1609(3)$	0.0072 (5)	$0.0024(2)$	$0.0027(2)$	$-0.0004(3)$	$-0.0003(2)$	$0 \cdot 0003(2)$
C(226)	$0 \cdot 2503$ (4)	$0.0246(3)$	$0 \cdot 1673$ (2)	$0 \cdot 0043(4)$	0.0029(2)	$0 \cdot 0021(1)$	$-0.0006(2)$	$-0.0006(2)$	$0 \cdot 0003(2)$

(b) Calculated hydrogen atom positional and thermal parameters

Atom	x / a	y / b	$2 / c$	B / \AA^{2}	Atom	x / a	y / b	z / c	B / \AA^{2}
$\mathrm{H}(103)$	$0 \cdot 226$	$0 \cdot 462$	$0 \cdot 219$	$5 \cdot 5$	H(203)	$0 \cdot 168$	$0 \cdot 290$	$0 \cdot 342$	$5 \cdot 9$
H(104)	$0 \cdot 226$	$0 \cdot 588$	$0 \cdot 185$	$5 \cdot 6$	H(204)	$0 \cdot 309$	$0 \cdot 249$	$0 \cdot 387$	$6 \cdot 3$
$\mathrm{H}(105)$	$0 \cdot 231$	$0 \cdot 613$	0.086	$5 \cdot 2$	H(205)	$0 \cdot 399$	$0 \cdot 171$	$0 \cdot 336$	$6 \cdot 4$
$\mathrm{H}(106)$	$0 \cdot 229$	0.511	0.021	$4 \cdot 7$	H(206)	$0 \cdot 347$	$0 \cdot 135$	$0 \cdot 240$	$5 \cdot 5$
H(112)	0.058	$0 \cdot 431$	0.036	$5 \cdot 3$	H(212)	$0 \cdot 075$	$0 \cdot 126$	0.072	$5 \cdot 1$
$\mathrm{H}(113)$	-0.074	$0 \cdot 429$	-0.031	6.2	H(213)	-0.054	0.047	0.063	$6 \cdot 0$
$\mathrm{H}(114)$	-0.081	$0 \cdot 354$	-0.115	$6 \cdot 1$	H(214)	-0.101	-0.006	$0 \cdot 144$	$7 \cdot 2$
$\mathrm{H}(115)$	0.042	$0 \cdot 283$	-0.133	$5 \cdot 5$	H(215)	-0.023	0.019	0.237	$8 \cdot 7$
$\mathrm{H}(116)$	0.175	$0 \cdot 284$	-0.067	$4 \cdot 6$	H(216)	$0 \cdot 107$	$0 \cdot 099$	$0 \cdot 246$	$7 \cdot 5$
$\mathrm{H}(122)$	$0 \cdot 260$	$0 \cdot 442$	-0.045	$4 \cdot 6$	H(222)	$0 \cdot 364$	$0 \cdot 167$	$0 \cdot 123$	$5 \cdot 5$
H(123)	$0 \cdot 390$	$0 \cdot 456$	-0.090	$5 \cdot 5$	$\mathrm{H}(223)$	$0 \cdot 471$	$0 \cdot 071$	0.114	$6 \cdot 9$
$\mathrm{H}(124)$	$0 \cdot 511$	$0 \cdot 370$	-0.069	$5 \cdot 9$	$\mathrm{H}(224)$	$0 \cdot 441$	-0.055	$0 \cdot 138$	$7 \cdot 2$
$\mathrm{H}(125)$	0.501	$0 \cdot 270$	-0.004	$5 \cdot 6$	$\mathrm{H}(225)$	$0 \cdot 306$	-0.085	0.172	$6 \cdot 7$
H(126)	$0 \cdot 371$	$0 \cdot 257$	$0 \cdot 043$	$4 \cdot 8$	H(226)	$0 \cdot 199$	0.011	$0 \cdot 182$	$5 \cdot 5$

of the molecule, together with the atom numbering scheme, is shown in Figure 1, while a stereoscopic view of the molecule is given in Figure 2. In both Figures,
carbonyl groups, and a π-bonded vinyl substituent of one (2-vinylphenyl)diphenylphosphine ligand occupy the equatorial sites. The differing character of the two sp

Figure 2 A stereoscopic view of the molecule
the thermal ellipsoids have been drawn to include 50% of the probability distribution, and for clarity, hydrogen atoms have been omitted. Principal interatomic distances and inter-bond angles, together with their estimated standard deviations, are listed in Table 2 and Table 3 respectively. The results of weighted leastsquares planes calculations are collected in Table 4. ${ }^{14}$

Table 2
Bond lengths (\AA) with estimated standard deviations in parentheses

$\mathrm{Fe}-\mathrm{P}(1)$	2-205(2)	$\mathrm{Fe}-\mathrm{P}(2)$	$2 \cdot 239(2)$
$\mathrm{Fe}-\mathrm{C}(1)$	1.763(6)	$\mathrm{Fe}-\mathrm{C}(2)$	1.751 (6)
$\mathrm{Fe}-\mathrm{C}(107)$	$2 \cdot 092(5)$	$\mathrm{Fe}-\mathrm{C}(108)$	$2 \cdot 108(5)$
$\mathrm{C}(1)-\mathrm{O}(1)$	$1 \cdot 160$ (7)	$\mathrm{C}(2)-\mathrm{O}(2)$	1-172(7)
$\mathrm{P}(1)-\mathrm{C}(101)$	$1 \cdot 828(5)$	$\mathrm{P}(1)-\mathrm{C}(111)$	$1.831(5)$
$\mathrm{P}(1)-\mathrm{C}(121)$	$1 \cdot 833(5)$	$\mathrm{P}(2)-\mathrm{C}(201)$	$1.848(6)$
$\mathrm{P}(2)-\mathrm{C}(211)$	$1 \cdot 829(6)$	$\mathrm{P}(2)-\mathrm{C}(221)$	$1 \cdot 839$ (6)
$\mathrm{C}(101)-\mathrm{C}(102)$	$1.411(7)$	$\mathrm{C}(102)-\mathrm{C}(103)$	$1 \cdot 394$ (8)
C(103)-C(104)	$1 \cdot 383$ (8)	$\mathrm{C}(104)-\mathrm{C}(105)$	1-393(8)
$\mathrm{C}(105)-\mathrm{C}(106)$	$1 \cdot 378(8)$	$\mathrm{C}(101)-\mathrm{C}(106)$	1-393(7)
$\mathrm{C}(102)-\mathrm{C}(107)$	1-515(8)	$\mathrm{C}(107)-\mathrm{C}(108)$	$1 \cdot 455(8)$
C(111)-C(112)	$1 \cdot 392(7)$	$\mathrm{C}(112)-\mathrm{C}(113)$	$1 \cdot 387(9)$
$\mathrm{C}(113)-\mathrm{C}(114)$	$1 \cdot 385(9)$	$\mathrm{C}(114)-\mathrm{C}(115)$	$1 \cdot 371(9)$
$\mathrm{C}(115)-\mathrm{C}(116)$	$1 \cdot 389$ (8)	$\mathrm{C}(111)-\mathrm{C}(116)$	$1 \cdot 385(7)$
$\mathrm{C}(121)-\mathrm{C}(122)$	$1 \cdot 393$ (8)	$\mathrm{C}(122)-\mathrm{C}(123)$	1-392(8)
$\mathrm{C}(123)-\mathrm{C}(124)$	$1 \cdot 384$ (9)	$\mathrm{C}(124)-\mathrm{C}(125)$	$1 \cdot 385(9)$
$\mathrm{C}(125)-\mathrm{C}(126)$	$1 \cdot 394(8)$	$\mathrm{C}(121)-\mathrm{C}(126)$	$1 \cdot 402(8)$
$\mathrm{C}(201)-\mathrm{C}(202)$	$1 \cdot 414(8)$	$\mathrm{C}(202)-\mathrm{C}(203)$	$1 \cdot 412(8)$
$\mathrm{C}(203)-\mathrm{C}(204)$	$1 \cdot 378$ (9)	$\mathrm{C}(204)-\mathrm{C}(205)$	$1 \cdot 381(9)$
$\mathrm{C}(205)-\mathrm{C}(206)$	$1 \cdot 391$ (8)	$\mathrm{C}(201)-\mathrm{C}(206)$	1-403(8)
$\mathrm{C}(202)-\mathrm{C}(207)$	1.496(9)	$\mathrm{C}(207)-\mathrm{C}(208)$	$1 \cdot 339(10)$
$\mathrm{C}(211)-\mathrm{C}(212)$	$1 \cdot 386(8)$	$\mathrm{C}(212)-\mathrm{C}(213)$	$1 \cdot 397(8)$
$\mathrm{C}(213)-\mathrm{C}(214)$	$1 \cdot 351(10)$	$\mathrm{C}(214)-\mathrm{C}(215)$	$1 \cdot 393$ (10)
$\mathrm{C}(215)-\mathrm{C}(216)$	$1 \cdot 403(10)$	$\mathrm{C}(211)-\mathrm{C}(216)$	$1 \cdot 385$ (9)
$\mathrm{C}(221)-\mathrm{C}(222)$	1-386(8)	$\mathrm{C}(222)-\mathrm{C}(223)$	$1 \cdot 386$ (9)
$\mathrm{C}(223)-\mathrm{C}(224)$	$1 \cdot 378(9)$	$\mathrm{C}(224)-\mathrm{C}(225)$	$1 \cdot 364(10)$
$\mathrm{C}(225)-\mathrm{C}(226)$	$1 \cdot 395(10)$	$\mathrm{C}(221)-\mathrm{C}(226)$	$1 \cdot 391$ (8)

As predicted from ${ }^{1} \mathrm{H}$ n.m.r. and i.r. data, the molecule is approximately trigonal bipyramidal, with the two phosphorus atoms occupying axial sites. The two

14 The method of weighting least-squares planes is outlined in Ref. 9, vol. II, p. 93.
groups (one chelated and one unidentate P-bonded) is clearly shown by the ${ }^{1} \mathrm{H}$ n.m.r. spectra which show

Table 3
Bond angles $\left({ }^{\circ}\right)$ with estimated standard deviations in parentheses

$\mathrm{P}(1)-\mathrm{Fe}-\mathrm{P}(2)$	174.48(7)	$\mathrm{P}(1)-\mathrm{Fe}-\mathrm{C}(1)$	93.1(2)
$\mathrm{P}(1)-\mathrm{Fe}-\mathrm{C}(2)$	$88 \cdot 3(2)$	$\mathrm{P}(1)-\mathrm{Fe}-\mathrm{C}(107)$	$85 \cdot 1$ (2)
$\mathrm{P}(1)-\mathrm{Fe}-\mathrm{C}(108)$	$86 \cdot 8(2)$	$\mathrm{P}(2)-\mathrm{Fe}-\mathrm{C}(1)$	$92 \cdot 4(2)$
$\mathrm{P}(2)-\mathrm{Fe}-\mathrm{C}(2)$	89-4(2)	$\mathrm{P}(2)-\mathrm{Fe}-\mathrm{C}(107)$	94.9(2)
$\mathrm{P}(2)-\mathrm{Fe}-\mathrm{C}(108)$	89.7(2)	$\mathrm{C}(1)-\mathrm{Fe}-\mathrm{C}(2)$	109.1(3)
$\mathrm{C}(1)-\mathrm{Fe}-\mathrm{C}(107)$	94.6(2)	$\mathrm{C}(1)-\mathrm{Fe}-\mathrm{C}(108)$	135.0(2)
$\mathrm{C}(2)-\mathrm{Fe}-\mathrm{C}(107)$	155.7(2)	$\mathrm{C}(2)-\mathrm{Fe}-\mathrm{C}(108)$	115.9(3)
$\mathrm{C}(107)-\mathrm{Fe}-\mathrm{C}(108)$	40.5(2)	$\mathrm{Fe}-\mathrm{C}(1)-\mathrm{O}(1)$	$178.8(5)$
$\mathrm{Fe}-\mathrm{C}(2)-\mathrm{O}(2)$	175.9(6)	$\mathrm{Fe}-\mathrm{C}(107)-\mathrm{C}(108)$	$70 \cdot 3(3)$
$\mathrm{Fe}-\mathrm{C}(108)-\mathrm{C}(107)$	$69 \cdot 1(3)$	$\mathrm{Fe}-\mathrm{C}(107)-\mathrm{C}(102)$	112.2(4)
$\mathrm{Fe}-\mathrm{P}(1)-\mathrm{C}(101)$	104.7(2)	$\mathrm{Fe}-\mathrm{P}(1)-\mathrm{C}(111)$	$113 \cdot 9(2)$
$\mathrm{Fe}-\mathrm{P}(1)-\mathrm{C}(121)$	122.8(2)	$\mathrm{C}(101)-\mathrm{P}(1)-\mathrm{C}(111)$	107.1(2)
$\mathrm{C}(101)-\mathrm{P}(1)-\mathrm{C}(121)$	104.2(2)	$\mathrm{C}(111)-\mathrm{P}(1)-\mathrm{C}(121)$	102.8(2)
$\mathrm{Fc}-\mathrm{P}(2)-\mathrm{C}(201)$	$116.8(2)$	$\mathrm{Fe}-\mathrm{P}(2)-\mathrm{C}(211)$	117.3(2)
$\mathrm{Fe}-\mathrm{P}(2)-\mathrm{C}(221)$	$113.7(2)$	$\mathrm{C}(201)-\mathrm{P}(2)-\mathrm{C}(211)$	104.8(3)
$\mathrm{C}(201)-\mathrm{P}(2)-\mathrm{C}(221)$	101.6(2)	$\mathrm{C}(211)-\mathrm{P}(2)-\mathrm{C}(221)$	$100 \cdot 2(3)$
$\mathrm{P}(1)-\mathrm{C}(101)-\mathrm{C}(102)$	$111 \cdot 1(4)$	$\mathrm{P}(1)-\mathrm{C}(101)-\mathrm{C}(106)$	127.9(4)
$\mathrm{C}(102)-\mathrm{C}(101)-\mathrm{C}(106)$	$120 \cdot 9(5)$	$\mathrm{C}(101)-\mathrm{C}(102)-\mathrm{C}(103)$	$117 \cdot 1(5)$
$\mathrm{C}(102)-\mathrm{C}(103)-\mathrm{C}(104)$	$121 \cdot 0(5)$	$\mathrm{C}(103)-\mathrm{C}(104)-\mathrm{C}(105)$	$120 \cdot 5(5)$
$\mathrm{C}(104)-\mathrm{C}(105)-\mathrm{C}(106)$	$119 \cdot 6(5)$	$\mathrm{C}(101)-\mathrm{C}(106)-\mathrm{C}(105)$	$119.9(5)$
$\mathrm{C}(101)-\mathrm{C}(102)-\mathrm{C}(107)$	$121 \cdot 5(5)$	$\mathrm{C}(103)-\mathrm{C}(102)-\mathrm{C}(107)$	$120 \cdot 6(5)$
$\mathrm{C}(102)-\mathrm{C}(107)-\mathrm{C}(108)$	$117 \cdot 1(5)$	$\mathrm{P}(1)-\mathrm{C}(111)-\mathrm{C}(112)$	$120 \cdot 5(4)$
$\mathrm{P}(1)-\mathrm{C}(111)-\mathrm{C}(116)$	$119 \cdot 1$ (4)	$\mathrm{C}(112)-\mathrm{C}(111)-\mathrm{C}(116)$	$119 \cdot 8(5)$
$\mathrm{C}(111)-\mathrm{C}(112)-\mathrm{C}(113)$	$119 \cdot 3(5)$	$\mathrm{C}(112)-\mathrm{C}(113)-\mathrm{C}(114)$	$120 \cdot 4(6)$
$\mathrm{C}(113)-\mathrm{C}(114)-\mathrm{C}(115)$	$120 \cdot 5(6)$	$\mathrm{C}(114)-\mathrm{C}(115)-\mathrm{C}(116)$	$119.5(6)$
$\mathrm{C}(111)-\mathrm{C}(116)-\mathrm{C}(115)$	$120 \cdot 5(5)$	$\mathrm{P}(1)-\mathrm{C}(121)-\mathrm{C}(122)$	$120 \cdot 1(4)$
$\mathrm{P}(1)-\mathrm{C}(121)-\mathrm{C}(126)$	$120 \cdot 2(4)$	$\mathrm{C}(122)-\mathrm{C}(121)-\mathrm{C}(126)$	$119 \cdot 6(5)$
$\mathrm{C}(121)-\mathrm{C}(122)-\mathrm{C}(123)$	$120 \cdot 0(5)$	$\mathrm{C}(122)-\mathrm{C}(123)-\mathrm{C}(124)$	$120 \cdot 5(5)$
$\mathrm{C}(123)-\mathrm{C}(124)-\mathrm{C}(125)$	$119 \cdot 8(6)$	$\mathrm{C}(124)-\mathrm{C}(125)-\mathrm{C}(126)$	$120 \cdot 6(5)$
$\mathrm{C}(121)-\mathrm{C}(126)-\mathrm{C}(125)$	$119.5(5)$	$\mathrm{P}(2)-\mathrm{C}(201)-\mathrm{C}(202)$	$122 \cdot 7(4)$
$\mathrm{P}(2)-\mathrm{C}(201)-\mathrm{C}(206)$	$118 \cdot 1(4)$	C(202)-C(201)-C(206)	118.8 (5)
$\mathrm{C}(201)-\mathrm{C}(202)-\mathrm{C}(203)$	118.3(5)	$\mathrm{C}(202)-\mathrm{C}(203)-\mathrm{C}(204)$	$121 \cdot 8(6)$
$\mathrm{C}(203)-\mathrm{C}(204)-\mathrm{C}(205)$	$119 \cdot 7(6)$	$\mathrm{C}(204)-\mathrm{C}(205)-\mathrm{C}(206)$	$120 \cdot 1(6)$
$\mathrm{C}(201)-\mathrm{C}(206)-\mathrm{C}(205)$	$121 \cdot 2(6)$	$\mathrm{C}(201)-\mathrm{C}(202)-\mathrm{C}(207)$	$121 \cdot 3(5)$
$\mathrm{C}(203)-\mathrm{C}(202)-\mathrm{C}(207)$	$120 \cdot 3(5)$	$\mathrm{C}(202)-\mathrm{C}(207)-\mathrm{C}(208)$	$123 \cdot 1(6)$
$\mathrm{P}(2)-\mathrm{C}(211)-\mathrm{C}(212)$	118.7(4)	$\mathrm{P}(2)-\mathrm{C}(211)-\mathrm{C}(216)$	$122 \cdot 9(5)$
$\mathrm{C}(212)-\mathrm{C}(211)-\mathrm{C}(216)$	118.3(6)	$\mathrm{C}(211)-\mathrm{C}(212)-\mathrm{C}(213)$	$120 \cdot 9(5)$
$\mathrm{C}(212)-\mathrm{C}(213)-\mathrm{C}(214)$	$120 \cdot 4$ (6)	$\mathrm{C}(213)-\mathrm{C}(214)-\mathrm{C}(215)$	$120 \cdot 4(6)$
$\mathrm{C}(214)-\mathrm{C}(215)-\mathrm{C}(216)$	119.1(6)	$\mathrm{C}(211)-\mathrm{C}(216)-\mathrm{C}(215)$	$120 \cdot 9(6)$
$\mathrm{P}(2)-\mathrm{C}(221)-\mathrm{C}(222)$	$119 \cdot 8(4)$	$\mathrm{P}(2)-\mathrm{C}(221)-\mathrm{C}(226)$	$121 \cdot 7(4)$
$\mathrm{C}(222)-\mathrm{C}(221)-\mathrm{C}(226)$	$118.5(5)$	$\mathrm{C}(221)-\mathrm{C}(222)-\mathrm{C}(223)$	$120 \cdot 5(6)$
$\mathrm{C}(222)-\mathrm{C}(223)-\mathrm{C}(224)$	$120 \cdot 5(6)$	$\mathrm{C}(223)-\mathrm{C}(224)-\mathrm{C}(225)$	$119 \cdot 6(7)$
$\mathrm{C}(224)-\mathrm{C}(225)-\mathrm{C}(226)$	$120 \cdot 6(6)$	$\mathrm{C}(221)-\mathrm{C}(226)-\mathrm{C}(225)$	$120 \cdot 2(5)$

signals attributable to both co-ordinated and un-coordinated vinyl groups in a $1: 1$ ratio.

The angles at the central iron atom indicate some deviation from strictly trigonal symmetry. In particular, within the equatorial plane, the angles $\mathrm{C}(1)-\mathrm{Fe}-\mathrm{MPV}, 114.9^{\circ}$, and $\mathrm{C}(2)-\mathrm{Fe}-\mathrm{MPV}, 135 \cdot 8^{\circ}$, are significantly different from the expected value of $c a$.

Table 4

Some important least-squares planes ${ }^{a}$ [atom deviations
(\AA) are listed in square brackets]

$\begin{aligned} & \text { Plane (1): } \mathrm{Fe}, \mathrm{C}(1), \mathrm{C}(2) \\ & \quad-0.1493 X-0.7436 Y+0.6517 Z+2.3785=0 \end{aligned}$			
$\begin{aligned} & {[\mathrm{P}(1)-2 \cdot 201, \mathrm{P}(2) \quad 2 \cdot 237, \mathrm{O}(1)} \\ & \mathrm{C}(107)-0.196, \mathrm{C}(108)-0.056] \end{aligned}$			
Plane (2): Fe, C(107), C(108)			
$\underset{0 \cdot 108, \mathrm{P}(2)-0 \cdot 198]}{[\mathrm{P}(1)}-2 \cdot 197, \mathrm{P}(2) 2 \cdot 217, \mathrm{O}(1) 0 \cdot 158, \mathrm{O}(2)-0.385, \mathrm{C}(1)$			
(3) : Ph rings bonded to $\mathrm{P}(1)$			
C(101)-(106) :	0.9898 X -	$0027 Y+0.142$	$Z-3.5579=0$
C(111)-(116) :	$-0.4064 X-$	$7741 Y+0.485$	$4 Z+6.0579=0$
$\mathrm{C}(121)-(126)$:	$0.3124 X+$	$5931 Y+0.742$	$Z-5 \cdot 3804=0$
$n=0,1,2$	$\mathrm{C}(101)-(106)$	C(111)-(116)	$\mathrm{C}(121)-(126)$
$\mathrm{C}(1 n 1)$	-0.024	0.004	0.016
C($1 n 2$)	0.032	-0.004	-0.014
$\mathrm{C}(1 n 3)$	-0.011	-0.001	-0.003
C($1 n 4$)	-0.024	0.006	0.019
C($1 n 5$)	0.031	-0.004	-0.012
C(1n6)	-0.004	-0.001	-0.006
$\mathrm{P}(1)$	-0.175	$0 \cdot 270$	$0 \cdot 200$
C(107)	0.239		
C(108)	1.388		
(4) : Ph rings bonded to $\mathrm{P}(2)$			
$\mathrm{C}(201)-(206):$ $-0.4770 X-0.8129 Y+0.3341 Z+2.3128=0$ $\mathrm{C}(211)-(216):$ $-0.5907 X+0.808 Y+0.0884 Z-1.4625=0$ $\mathrm{C}(221)-(226): \quad 0.3093 X+0.1652 Y+0.9365 Z-4.9693=0$			
$n=0,1,2$	C(201)-(206)	$\mathrm{C}(211)$-(216)	$\mathrm{C}(221)-(226)$
C(2n1)	0.008	-0.008	0.006
	-0.009	0.004	-0.014
C(2n3)	0.003	0.003	0.012
C(2n4)	0.006	-0.011	0.002
C(2n5)	-0.006	0.007	-0.009
$\mathrm{C}(2 n 6)$$\mathrm{P}(2)$	-0.002	0.005	0.003
	-0.149	-0.146	$0 \cdot 046$
C(207)	-0.054		
C(208)	-0.565		

a The plane equations $l X+m Y+n Z-D=0$ refer to orthogonal axes where

$$
\begin{aligned}
& X=15 \cdot 7715 x+0 \cdot 0 y-3 \cdot 3073 z \\
& Y=0 \cdot 0 x+18 \cdot 4683 y+0 \cdot 0 z \\
& Z=0 \cdot 0 x+0.0 y+24 \cdot 2743 z
\end{aligned}
$$

125° [MPV is the mid-point of the $\mathrm{C}(107)-\mathrm{C}(108)$ bond]. This distortion is presumably strain-induced, and associated with fitting the chelated sp ligand around the metal atom.
Consistent with its formulation as a π-bonded group, the vinyl substituent of the chelated sp ligand $\mathrm{C}(107)-\mathrm{C}(108)$ shows the expected lengthening conse-

[^3]quent upon co-ordination to the iron atom. Thus, the observed bond length $[1 \cdot 455(8) \AA]$ is intermediate between the accepted values of $1 \cdot 337(6), 15 a$ and $1.541(3) \AA,^{15 b}$ for carbon-carbon double- and singlebonds respectively. Similar bond-lengthening has been observed for the acrylonitrile complex $\left[\mathrm{Fe}(\mathrm{CO})_{4}{ }^{-}\right.$ $\left.\left(\mathrm{CH}_{2}: \mathrm{CHCN}\right)\right]{ }^{16}$ where the C:C distance is $1 \cdot 40 \AA$. The corresponding distances observed for the fumaric acid derivatives $\left[(-)-\mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{CHCO}_{2} \mathrm{H}\right)_{2}\right]^{17}$ and $[(\mathrm{rac})$ $\left.\mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{CHCO}_{2} \mathrm{H}\right)_{2}\right],{ }^{18}$ are $1 \cdot 40(5)$ and $1 \cdot 42(4) \AA$ respectively. Although not particularly accurate, the results of a recent electron-diffraction study suggest that the olefinic distance in the ethylene complex $\left[\mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{CH}_{2} \cdot \mathrm{CH}_{2}\right)\right]$ is $1 \cdot 46(6) \AA .{ }^{19}$ In contrast, the vinyl substituent of the unidentate P-bonded sp ligand in the present complex $[\mathrm{C}(207)-\mathrm{C}(208) 1.339(10) \AA]$ is as expected for a 'free' vinyl group. Moreover, the distances $\mathrm{Fe}-\mathrm{C}(207)$ and $\mathrm{Fe}-\mathrm{C}(208)$ (3.96 and $4.77 \AA$), indicate that there are no interactions between the iron atom and this vinyl group.

The metal-olefin bonding is symmetrical, with $\mathrm{Fe}-\mathrm{C}($ vinyl $)$ distances $[\mathrm{Fe}-\mathrm{C}(107)$ 2.092(5), $\mathrm{Fe}-\mathrm{C}(108)$ $2 \cdot 108(5) \AA$] equal and, generally, in good agreement with those values reported for other mono-olefin iron(0) complexes. ${ }^{16-18}$ The olefin is rotated only slightly from the equatorial plane [the dihedral angle between the weighted planes defined by $\mathrm{Fe}, \mathrm{C}(1), \mathrm{C}(2)$ and Fe , $\mathrm{C}(107), \mathrm{C}(108)$ is 6.65°] despite there being fairly substantial angular deformations within the chelate ring system $\underset{\mathrm{L}}{\mathrm{Fe}-\mathrm{P}(1)-\mathrm{C}(101)-\mathrm{C}(102)-\mathrm{C}(107): \mathrm{C}(108) . \quad \text { In par- }}$ ticular, the angles $\mathrm{Fe}-\mathrm{P}(1)-\mathrm{C}(101) \quad\left[104 \cdot 7(2)^{\circ}\right], \mathrm{P}(1)-$ $\mathrm{C}(101)-\mathrm{C}(102) \quad\left[111 \cdot 1(4)^{\circ}\right]$, and $\mathrm{P}(1)-\mathrm{C}(101)-\mathrm{C}(106)$ [$\left.127.9(4)^{\circ}\right]$, differ markedly from their expected values of $c a$. 115,120 , and 120°. Along with these angular deformations there is a small, but significant, degree of strain-induced aplanarity in the $\mathrm{C}(101)$-(106) ring system, and in addition, a marked deviation of the vinyl α-carbon atom $[\mathrm{C}(107), \Delta 0 \cdot 24 \AA$] from the weighted $\mathrm{C}(101)$-(106) least-squares plane.

The individual $\mathrm{Fe}-\mathrm{C}$ (carbonyl) distances $[1.763(6)$ and $1.751(6) \AA]$ are equal within experimental error, mean $1.757(4) \AA$. This may be compared with the corresponding values for the parent carbonyl $\mathrm{Fe}(\mathrm{CO})_{5}[1-833(4)$ $\AA]^{20,21}$ and for the monophosphine derivatives $\mathrm{Fe}(\mathrm{CO})_{4^{-}}$ $\left(\mathrm{PHPh}_{2}\right)[1.790(5) \AA]^{22}$ and $\left[\mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{PMe}_{2}\right)\right]_{2}[1.79(2)]{ }^{23}$ The smooth decrease in $\mathrm{Fe}-\mathrm{C}$ (carbonyl) distance on passing from the parent pentacarbonyl through the mono- to the bis-phosphine derivative is clearly a consequence of the differing characters of carbonyl and phosphine ligands. In particular, the strong-donor-weak-acceptor properties of the phosphine ligands serve to force a much higher π-character on the remaining metal-
${ }^{20}$ B. Beagley, D. W. J. Cruickshank, P. M. Pinder, A. G. Robiette, and G. M. Sheldrick, Acta Cryst., 1969, B25, 737.
${ }_{21}$ A. Almenningen, A. Haaland, and K. Wahl, Acta Chom. Scand., 1969, 23, 2245.
${ }^{22}$ B. T. Kilbourn, U. A. Raeburn, and D. T. Thompson, J. Chem. Soc. (A), 1969, 1906.
${ }^{23}$ J. A. J. Jarvis, R. H. B. Mais, P. G. Owston, and D. T. Thompson, J. Chem. Soc. (A), 1968, 622.
carbonyl bonds. The concomitant decrease in $\mathrm{C}-\mathrm{O}$ bond-order is reflected quite clearly in the steady decrease in $\nu(\mathrm{CO})$ frequencies through the series $\mathrm{Fe}(\mathrm{CO})_{5},{ }^{24}$ $\mathrm{Fe}(\mathrm{CO})_{3}(\mathrm{sp}),{ }^{5}$ and $\mathrm{Fe}(\mathrm{CO})_{2}(\mathrm{sp})_{2} .{ }^{5}$ As expected, the $\mathrm{C}-\mathrm{O}$ (carbonyl) distances in the present complex [1-160(7) and $1 \cdot 172(7) \AA$] are only slightly longer than those found in free carbon monoxide, while the $\mathrm{Fe}-\mathrm{C}-\mathrm{O}$ angles show the usual slight deviation from linearity. Reasons for this deviation have been detailed previously. ${ }^{25}$

The near-equivalence of equatorial metal-carbonyl distances in the present complex and in $\left[\mathrm{Fe}(\mathrm{CO})_{4^{-}}\right.$ $\left.\left(\mathrm{CH}_{2}: \mathrm{CHCN}\right)\right]^{16}$ appears to have no obvious rationale, except perhaps, as a consequence of the unusually long axial metal-carbonyl bond ($1.99 \AA$) observed in the latter complex. It seems likely that this, in turn, must be a consequence of crystal packing rather than of electronic origin.

The $\mathrm{Fe}-\mathrm{P}(2)$ distance $[2 \cdot 239(2) \AA]$ is in excellent agreement with that $[2 \cdot 237(2) \AA]$ found for $\left[\mathrm{Fe}(\mathrm{CO})_{4^{-}}\right.$ $\left.\left(\mathrm{PHPh}_{2}\right)\right] .{ }^{22}$ In turn, these values are only slightly shorter than those of $2 \cdot 25$ and $2 \cdot 26 \AA$ found for $\left[\mathrm{Fe}_{3}(\mathrm{CO})_{11}\left(\mathrm{PPh}_{3}\right)\right]{ }^{26}$ and $\left[\mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{PMe}_{2}\right)\right]_{2} \cdot{ }^{23}$ In contrast, the corresponding distance in the chelated sp ligand in the present complex $[\mathrm{Fe}-\mathrm{P}(1) 2 \cdot 205(2) \AA, \Delta / \sigma 19]$ is significantly shorter, the contraction reflecting the marked chelating ability of sp .
${ }^{24}$ W. F. Edgell, W. E. Wilson, and R. Summitt, Spectrochim. Acta, 1963, 19, 863.

The geometry of co-ordinated triphenylphosphine ligands is well known, and has been discussed in detail in many other papers. Apart from the angular anomalies resulting from chelation of the sp ligand, there are no obvious abnormalities in the geometries of the two coordinated phosphine ligands. Thus, the $\mathrm{Fe}-\mathrm{P}-\mathrm{C}$ angles, apart from $\mathrm{Fe}-\mathrm{P}(\mathbf{1})-\mathrm{C}(\mathbf{1 0 1})$, are significantly larger than the normal tetrahedral angle, while the six $\mathrm{C}-\mathrm{P}-\mathrm{C}$ are all significantly less than the tetrahedral angle. The mean phenyl ring $\mathrm{C}-\mathrm{C}$ distance is $1.389 \AA$, mean $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angle 120.0°.

The distances $\mathrm{C}(102)-\mathrm{C}(107)[1 \cdot 515(8) \AA$] and $\mathrm{C}(202)-$ $\mathrm{C}(207)[1 \cdot 496(9) \AA]$, and the angles $\mathrm{C}(101-\mathrm{C}(102)-\mathrm{C}(107)$ $\left[121 \cdot 5(5)^{\circ}\right], \quad \mathrm{C}(102)-\mathrm{C}(107)-\mathrm{C}(108) \quad\left[117 \cdot 1(5)^{\circ}\right], \quad \mathrm{C}(201)^{-}$ $\mathrm{C}(202)-\mathrm{C}(207) \quad\left[121 \cdot 3(5)^{\circ}\right]$, and $\mathrm{C}(202)-\mathrm{C}(207)-\mathrm{C}(208)$
[$\left.123 \cdot 1(6)^{\circ}\right]$, are all as expected.
There are no intermolecular contacts shorter than the sums of the appropriate van der Waals radii.

We thank Dr. B. M. Foxman for programming assistance, and for many helpful discussions, the Computer Centre of The Australian National University for generous allocations of time on their IBM 360/50 computer, and Drs. M. A. Bennett and I. B. Tomkins for supplying suitable crystals.
[3/194 Received, 29th January, 1973]
${ }^{25}$ S. F. A. Kettle, Inorg. Chem., 1965, 4, 1661.
26 D. J. Dahm and R. A. Jacobson, Chem. Comm., 1966, 496.

[^0]: ${ }^{4}$ G. O. Schenck, E. Koerner von Gustorf, and M. J. Jun, Tetrahedron Letters, 1962, 1059 ; E. Koerner von Gustorf, M. J. Jun, and G. O. Schenck, Z. Naturforsch., 1963, 18b, 503.
 ${ }_{5}$ M. A. Bennett, G. B. Robertson, I. B. Tomkins, and P. O. Whimp, Chem. Comm., 1971, 341.
 ${ }^{6}$ W. R. Busing and H. A. Levy, Acta Cryst., 1967, 22, 457.

[^1]: \dagger The Lorentz-polarization correction takes the form $L P=$ $\left(\cos ^{2} 2 \theta+\cos ^{2} 2 \theta_{m}\right) /\left[\sin 2 \theta \quad\left(1+\cos ^{2} 2 \theta_{m}\right)\right]$ where θ and θ_{m} ($=13 \cdot 25^{\circ}$) are the Bragg angles for the reflection and the monochromator respectively.
 \ddagger See Notice to Authors No. 7 in J.C.S. Dalton, 1972, Index issue. (Items less than 10 pp . are sent as full-size copies.)

[^2]: 7 W. R. Busing and H. A. Levy, J. Chem. Phys., 1957, 26, 563.
 ${ }^{8}$ P. W. R. Corfield, R. J. Doedens, and J. A. Ibers, Inorg. Chem., 1967, 6, 197.
 ${ }^{9}$ 'International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962, pp. 202.
 ${ }^{10}$ C. T. Prewitt, Ph.D. Thesis, Massachusetts Institute of Technology, 1962, p. 163.

 11 D. T. Cromer, Acta Cryst., 1965, 18, 17.
 12 B. J. Wuensch and C. T. Prewitt, Z. Krist., 1965, 122, 24.
 ${ }^{13}$ C. K. Johnson, Report ORNL 3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1965.

[^3]: ${ }^{15}$ Chem. Soc. Special Publ. No. 11, 1958; (a), p. S14; (b) p. S12.
 ${ }^{16}$ A. R. Luxmoore and M. R. Truter, Acta Cryst., 1962, 15, 1117.
 ${ }^{17}$ C. Pedone and A. Sirigu, Inorg. Chem., 1968, 7, 2614.
 ${ }^{18}$ C. Pedone and A. Sirigu, Acta Cryst., 1967, 23, 759.
 19 M. I. Davis and C. S. Speed, J. Organometallic Chem., 1970, 21, 401.

