Crystal and Molecular Structure of 3,7-Dihydro-1,1,3,3,5,5,7,7-octa-methyl-1H,5H-benzo[1,2-c:4,5-c']bis[1,2,5]oxadisilole

By John J. Daly * and Francisco Sanz, Monsanto Research S.A. Eggbühlstrasse 36, CH 8050 Zürich, Switzerland

Abstract

Crystals of the title compound are monoclinic, space group $P 2_{1} / c$ with $a=10 \cdot 669(9), b=9 \cdot 159(8), c=$ $11 \cdot 518(10) \AA, \beta=115 \cdot 2(1)^{\circ}$. Diffractometer data for 1401 planes were refined by least squares to $R 0.045$. The nature of the molecule was unknown and the structure was determined by direct methods. Bond lengths in the oxadisilole ring, which has approximate $C_{2 v}$ symmetry, are: C-C 1.411 , $\mathrm{Si}-\mathrm{C} 1 \cdot 882$, and $\mathrm{Si}-\mathrm{O} 1.647 \mathrm{~A}$.

The work-up of the products of the silylation of hexabromobenzene with $\mathrm{Me}_{2} \mathrm{SiHCl}$ and magnesium in tetrahydrofuran yields, besides the expected $\left(\mathrm{CSiMe}_{2} \mathrm{H}\right)_{6}$, well formed crystals m.p. $244{ }^{\circ} \mathrm{C}$ in insufficient quantity for identification by the usual chemical and spectroscopic methods. ${ }^{1}$ We have carried out a single-crystal X-ray analysis on this material and have established its structure as (I).

(I)

EXPERIMENTAL

Crystal Data.- $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{Si}_{4} \mathrm{O}_{2}, \quad M=338.7$, Monoclinic, $a=10.669(9), \quad b=9.159(8), \quad c=11.518(10) \quad \AA, \quad \beta=$ $115.2(1)^{\circ}, \quad U=1018.4 \AA^{3}, \quad D_{\mathrm{m}}=1108, \quad Z=2, \quad D_{\mathrm{c}}=$ $1104 \mathrm{~kg} . \mathrm{m}^{-3}$. Space group $P 2_{1} / c\left(C_{2 h}^{5}\right.$, No. 14). Mo- K_{α} radiation, $\lambda=0.71069 \AA ; \mu\left(\mathrm{Mo}-K_{\alpha}\right)=249 \mathrm{~m}^{-1}$.

Unit-cell dimensions were obtained from precession photographs by a least-squares process, the standard deviations being multiplied by 1.5 to allow for systematic errors. Intensity data were collected around c on a linear diffractometer equipped with a graphite monochromator. The maximum value of 0 was 25° and the 1401 strongest planes were used for the analysis.

Structure Deternination and Refinement.-The signs of the 148 planes with the largest E values were found by a computer, by direct methods. ${ }^{2}$ Seven planes with large E values and many interactions were used as a starting set. Three were given a positive sign to fix the origin and the symbols a, b, c, and d were assigned to the other four. Symbols and/or signs were accepted for other planes involved in sign relations of high probability. The E map based on these phases showed the molecule but the nature of the atom bonded to the two silicon atoms was not clear. This atom was identified as oxygen from chemical evidence. This trial structure was refined by a block-diagonal (3×3 and 1×1 or 6×6) least-squares method; weights ${ }^{3}$ were given by $w^{-1}=1 \cdot 15+\left|F_{0}\right|+$ $0.0053\left|F_{0}\right|^{2}$. Hydrogen atoms were found from a differ-ence-Fourier map when R was 0.067 and refinement converged with $R 0 \cdot 045$. Hydrogen atoms were given isotropic temperature factors 0.01 unit of U higher than the carbon atoms to which they are bonded.
${ }_{2}^{1}$ W. Fink, unpublished work.
${ }^{2}$ D. Sayre, Acta Cryst., 1952, 5, 60; W. Cochran, Acta Cryst., 1952, 5, 65; W. H. Zachariasen, Acta Cryst., 1952, 5, 68; H. Hauptman and J. Karle, 'Solution of the Phase Problem, I: The Centrosymmetric Crystal,' A.C.A. Monograph, No. 3, 1953.

RESULTS AND DISCUSSION

Tables 1-3 give co-ordinates, thermal parameters, and bond lengths and angles, with their corresponding standard deviations. The Figure shows the molecule

Table 1
Final co-ordinates (\AA) and standard deviations

	X	Y	Z
$\mathrm{Si}(1)$	$1 \cdot 9317(9)$	0.6582(10)	5-2485(10)
$\mathrm{Si}(2)$	$3 \cdot 3956(10)$	$-1.3445(11)$	7-3605(12)
0	1-8888(26)	$-0.4606(28)$	6.4329(30)
C(1)	$0 \cdot 5319(42)$	$0 \cdot 3021(58)$	3.3600(46)
C(2)	$1 \cdot 6709(49)$	$2 \cdot 3600$ (46)	5•8232(56)
C(3)	$2 \cdot 9751(57)$	$-3 \cdot 1476(47)$	6.9967(64)
$\mathrm{C}(4)$	$4 \cdot 1110(54)$	$-1.0176(67)$	9.3637(51)
C(5)	$4 \cdot 6028(32)$	-0.6434(32)	$6.5143(34)$
C(6)	3.8716(32)	$0 \cdot 3565(30)$	5.4596(33)
C(7)	$4 \cdot 6141$ (32)	$0 \cdot 9906(32)$	4.7249(34)
$\mathrm{H}(11)$	$-0.38(5)$	$0 \cdot 36$ (6)	3-34(4)
$\mathrm{H}(12)$	$0 \cdot 66$ (8)	-0.45(6)	2-90(8)
$\mathrm{H}(13)$	0.79(7)	$0 \cdot 77$ (9)	2.72(7)
$\mathrm{H}(21)$	$0 \cdot 67$ (7)	2.50(7)	5.59(6)
$\mathrm{H}(22)$	2.07 (7)	3.04(7)	5-26(11)
$\mathrm{H}(23)$	2.22(5)	2.49(4)	6.83(4)
H(31)	2.27(7)	$-3 \cdot 45(6)$	7-37(5)
$\mathrm{H}(32)$	$2 \cdot 48$ (7)	$-3 \cdot 25(7)$	5.88(6)
$\mathrm{H}(33)$	3.79(4)	$-3 \cdot 66$ (3)	7.21(5)
$\mathrm{H}(41)$	3•43(5)	-1.22(5)	9.83(4)
$\mathrm{H}(42)$	4.04(5)	0.02(5)	9.72(5)
$\mathrm{H}(43)$	5.03(5)	-1.46 (6)	9.93(4)
$\mathrm{H}(7)$	4-10(3)	1.72(3)	3.97(4)

Table 2
Temperature factors * ($\times 10^{4} \AA^{2}$), $U_{i j}$ for heavy atoms with standard deviations

	U_{11}	U_{22}	U_{33}	$2 U$	$2 U_{23}$	$2 U_{13}$
$\mathrm{Si}(1)$	366(4)	$602(5)$	503(5)	70(7)	6618	379(7)
Si(2)	495(5)	657(6)	632(6)	59(8)	331 (9)	662(9)
0	474(12)	826(18)	$785(17)$	171(23)	437(27)	741 (24)
C(1)	460 (18)	1433(45)	606(23)	-238(47)	-315(53)	368(32)
C(2)	670(24)	759(27)	922 (33)	357(42)	-158(49)	525(45)
C(3)	928(32)	699(28)	1359(41)	$-1(46)$	$446(53)$	1419(60)
C(4)	872(31)	1553(51)	625(29)	322(63)	444(61)	860(48)
C(5)	415(14)	496(16)	$470(17)$	-42(25)	26(28)	429(24)
C(6)	378(13)	469(16)	444(16)	-38(23)	-15(25)	348(23)
C(7)	421 (15)	8(17)	496(18)	(25)	164(27)	92(26)
	* In the form: $\exp -2 \pi^{2}\left(h^{2} a^{* 2} U_{11}+k^{2} b^{* 2} U_{22}+l^{2} c^{* 2} U_{33}\right.$ $\left.2 h k a^{*} b^{*} U_{12}+2 k l b^{*} c^{*} U_{23}+2 h l a^{*} c^{*} U_{13}\right)$.					

projected on the least-square plane through the benzoid ring, together with the atoms labelling. Final observed and calculated structure factors are listed in
${ }^{3}$ D. W. J. Cruickshank, D. E. Pilling, A. Bujosa, F. M. Lovell, and M. R. Truter, 'Computing Methods and the Phase Problem in X-Ray Crystal Analysis,' Pergamon Press, Oxford, 1961, p. 32.

Supplementary Publication No. SUP 20833 (10 pp., 1 microfiche).*

The molecule has a crystallographic centre of symmetry and (Table 1 and Figure) approximates quite closely to the symmetry $m m m\left(D_{2 h}\right)$.

Table 3
Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$, with standard deviations

The molecule projected on the least-squares plane of the benzenoid ring, showing the atoms labelling

The $\mathrm{Si}-\mathrm{C}\left(s p^{2}\right)$ bond length $[1.882(3) \AA]$, is longer than the $\mathrm{Si}-\mathrm{C}\left(s p^{3}\right)$ length $[1 \cdot 848(6) \AA]$. However, the

[^0]methyl-group carbon atoms have much higher temperature factors than the other carbon atoms so that a correction to the bond lengths by allowing for thermal motion should lengthen the $\mathrm{Si}-\mathrm{C}\left(s p^{3}\right)$ bond more than the $\mathrm{Si-C}\left(s p_{4}{ }^{2}\right)$ bond. Similar bond-length differences are also observed in (II) ${ }^{4}$ and (III) ${ }^{5}$ in which the

$\mathrm{C}\left(s p^{3}\right)$ atoms undergo more thermal motion than the $\mathrm{C}\left(s p^{2}\right)$ atoms. In (IV) ${ }^{6}$ and (V), ${ }^{7}$ however, the $\mathrm{C}\left(s p^{3}\right)$ carbons are constrained by ring formation and have about the same temperature factors as the $C\left(s p^{2}\right)$ carbons: in these two compounds $\mathrm{Si-C}\left(s p^{3}\right)(1.885 \AA)$ is longer than $\mathrm{Si}-\mathrm{C}\left(s p^{2}\right)(1.873(\AA)$.

Our $\mathrm{Si}-\mathrm{C}\left(s p^{2}\right)$ bond length $[1-882(3) \AA]$ is in reasonably good agreement with those in $\mathrm{Ph}_{4} \mathrm{Si}^{8}[1.872(7)]$, (II) ${ }^{4}[1.879(\mathrm{l} 0)],(\mathrm{IV})^{6}[1.871(3)]$, and (V) ${ }^{7}[1.876(4) \AA]$, but it is considerably longer than that in $\mathrm{PhSiH}_{3}{ }^{9}$ $[1.843(5) \AA]$. The $\mathrm{Si}-\mathrm{C}\left(s p^{3}\right)$ bond lengths in $\mathrm{MeSiH}_{3}{ }^{10}$ and $\mathrm{Me}_{2} \mathrm{SiH}_{2}{ }^{11}[1.867(1)$ and $1.871 \AA]$ are longer than ours $[1 \cdot 848(6) \AA]$ which should increase with a thermal motion correction although probably not to the corrected value of $1.92 \AA$ in $\left(\mathrm{SiMe}_{2}\right)_{\mathbf{6}}{ }^{12}$

The six-membered ring is planar, maximum deviation from the least-squares plane being $0.0024 \AA$; the five membered ring has non-zero ring-torsion angles and is therefore not planar. These torsion angles $[\mathrm{O}-\mathrm{Si}(2)$ $1.97(12), \mathrm{Si}(2)-\mathrm{C}(5)-1.08(19), \mathrm{C}(5)-\mathrm{C}(6)-0.01(5)$, $\left.\mathrm{C}(6)-\mathrm{Si}(1) \quad 1 \cdot 10(20), \mathrm{Si}(1)-\mathrm{O}-1 \cdot 97(12)^{\circ}\right]$ are small, so that the deviations from planarity are not great. They show that the ring is very slightly distorted from $C_{2 v}\left(n m^{2}\right)$ symmetry to the envelope form with $C_{s}{ }^{(m)}$ symmetry in which the oxygen atom is displaced from the plane of the other four atoms.

We thank Dr. W. Fink for supplying the compound and for identifying the oxygen in it.
[3/1083 Received, 25th May, 1973]
${ }^{8}$ C. Glidewell and G. M. Sheldrick, J. Chem. Soc. (A), 1971, 3127.
${ }^{9}$ F. A. Keidel and S. H. Bauer, J. Chem. Phys., 1956, 25, 1218.
${ }_{10}$ R. W. Kilb and L. Pierce, J. Chem. Phys., 1957, 27, 108.
${ }_{11}$ L. Pierce, J. Chem. Phys., 1959, 31, 547.
12 H. L. Carrell and J. Donohuc, Acta Cryst., 1972, B, 28, 1566.

[^0]: * For detail see Notice to Authors No. 7 in J.C.S. Dalton, 1972, Index issue.
 ${ }^{4}$ G. Chioccola and J. J. Daly, J. Chem. Soc. (A), 1968, 1659.
 ${ }^{5}$ H. G. v. Schnering, E. Krahě, and G. Fritz, Z. anorg. Chem., 1969, 365, 113.
 ${ }^{B}$ J. P. Vidal, J. Lapasset, and J. Falgueirettes, Acta Cryst., 1972, B, 28, 3137.
 ${ }^{7}$ J. P. Vidal and J. Falgueirettes, Acta Cryst., 1973, B, 29, 263.

