Crystal Structure of Di- μ-chloro-bis[di- η-cyclopentadienylscandium(iII)]

By Jerry L. Atwood • and Karl D. Smith, Department of Chemistry, University of Alabama, Alabama 35486, U.S.A.

Abstract

The crystal and molecular structure of the title compound have been determined from X-ray diffractometer data by direct methods. Crystals are monoclinic rods, space group $P 2_{1} / c$, with $Z=6$ in a cell with $a=13 \cdot 54$ (1), $b=$ $16.00(1), c=13.40(1) \AA, \beta=93.97(5)^{\circ}$. The structure was refined by least-squares techniques to $R 0.072$ for 1680 observed reflections. The molecules exist as chlorine-bridged dimers, mean $\mathrm{Sc}-\mathrm{Cl} 2.575 \AA$. The cyclopentadienyl groups are bonded in a penta-hapto-fashion, mean Sc-C 2.46 A.

The organometallic chemistry of the lanthanide and actinide elements has recently become the subject of much endeavour, ${ }^{1,2}$ in particular the nature of the metal-carbon bond. For the well-known lanthanide cyclopentadienides the covalency of the organometallic bonds has been estimated ${ }^{3}$ to be $<\mathbf{2} \cdot \mathbf{5} \%$. However, the crystal structure ${ }^{4}$ of $\mathrm{Sm}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3}$ shows a definite preferred orientation of cyclopentadienyl groups, and there is n.m.r. evidence for a covalent bonding mode in the related tetrahydrofuran adduct of tri-indenylsamarium. ${ }^{5}$ Since the scandium(III) ion is substantially smaller than the related lanthanide ions, many of the effects noted in rare-earth organometallic chemistry may well be magnified in the scandium compounds. We have described the structure of $\mathrm{Sc}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3}$ and presented a

[^0]preliminary account of the structure of $\left[\mathrm{Sc}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Cl}_{2} ;{ }^{6,7}\right.$ we now report the final refinement and the details of the structure analysis of the latter.

EXPERIMENTAL

Yellow-green rod shaped crystals were prepared by the method of ref. 8, and diffraction-quality crystals were grown by slow sublimation.

Crystal Data.- $\left[\mathrm{Sc}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Cl}_{2}, M=420 \cdot 8\right.$, Monoclinic, $a=13.54(1), b=16.00(1), c=13.40(1) \AA, \beta=93.97(5)^{\circ}$, $U=2896 \AA^{3}, D_{0}=1.44 \mathrm{~g} \mathrm{~cm}^{-3}, Z=6, D_{\mathrm{m}}=1.45 \mathrm{~g} \mathrm{~cm}^{-3}$, $F(000)=1296$. Space group $P 2_{1} / c$ from systematic absences. $\mathrm{Cu}-K_{\alpha}$ radiation, $\lambda=1.542 \quad \AA, \mu\left(\mathrm{Cu}-K_{\alpha}\right)=$ $85.5 \mathrm{~cm}^{-1}$. Crystal dimensions $0.17 \times 0.17 \times 0.42 \mathrm{~mm}$.

Crystallographic Measurements.-Preliminary unit-cell
${ }^{5}$ M. Tsutsui and H. J. Gysling, J. Amer. Chem. Soc., 1969, 91, 3175.
${ }_{6}$ K. D. Smith and J. L. Atwood, J.C.S. Chem. Comm., 1972, 593.
${ }^{7}$ J. L. Atwood and K. D. Smith, J. Amer. Chem. Soc., 1973, 95, 1488.
s R.S. P. Coutts and P. C. Wailes, J. Organometallic Chem., 1970, 25. 117.
parameters were determined by precession ($\mathrm{Cu}-K_{\alpha}$) photographs. Final values of the lattice parameters were obtained by a least-squares refinement of the angular settings of 12 accurately centred reflections. Data were

Table 1
Final fractional co-ordinates and thermal parameters ($\times 10^{4}$),* with estimated standard deviations in parentheses

Atom	x / a	y / b	z / c
$\mathrm{Sc}(1)$	0.0520(1)	$0 \cdot 7352(1)$	$0 \cdot 3488(2)$
$\mathrm{Sc}(2)$	$0 \cdot 2511(1)$	$0 \cdot 8969$ (1)	$0.4438(2)$
$\mathrm{Sc}(3)$	$0 \cdot 4134(1)$	$0 \cdot 4134(1)$	$0 \cdot 4382(2)$
$\mathrm{Cl}(1)$	$0 \cdot 2030(2)$	$0.8118(2)$	$0 \cdot 2842(2)$
$\mathrm{Cl}(2)$	$0 \cdot 0963$ (2)	$0 \cdot 8267(2)$	0.5043(2)
$\mathrm{Cl}(3)$	$0 \cdot 4202$ (2)	$0 \cdot 5729(2)$	$0 \cdot 4594(2)$
C(1)	-0.0336(9)	$0 \cdot 8097(14)$	0.2066(13)
C(2)	$-0.0568(11)$	$0.8507(8)$	$0 \cdot 2944(15)$
C(3)	$-0.1151(10)$	$0 \cdot 7983(10)$	$0 \cdot 3495(11)$
C(4)	-0.1271(7)	$0 \cdot 7291$ (8)	$0 \cdot 2983(11)$
C(5)	-0.0822(9)	$0 \cdot 7322(10)$	0.2173(11)
C(6)	$0 \cdot 0206(10)$	0.5828 (7)	$0 \cdot 3429(13)$
C(7)	$0 \cdot 0333(10)$	$0 \cdot 6038$ (8)	$0 \cdot 4416$ (12)
C(8)	$0 \cdot 1306(14)$	$0 \cdot 6274$ (8)	$0 \cdot 4613(13)$
$\mathrm{C}(9)$	$0 \cdot 1750$ (9)	$0 \cdot 6237$ (8)	$0 \cdot 3735(16)$
C(10)	$0 \cdot 1076$ (15)	$0 \cdot 5969$ (9)	$0 \cdot 2980$ (11)
C(11)	$0 \cdot 3347(9)$	$0 \cdot 7838(9)$	$0 \cdot 5415(13)$
C(12)	$0 \cdot 3852(10)$	0.7913(8)	$0 \cdot 4572(11)$
C(13)	$0 \cdot 4298(9)$	$0 \cdot 8685$ (8)	$0 \cdot 4602(10)$
C(14)	$0 \cdot 4092$ (8)	$0 \cdot 9076$ (7)	$0.5469(9)$
C(15)	$0 \cdot 3509(10)$	$0 \cdot 8558(10)$	$0 \cdot 5985(9)$
$\mathrm{C}(16)$	$0 \cdot 1363(11)$	$1 \cdot 0009(10)$	$0 \cdot 3770$ (22)
C(17)	$0 \cdot 1630$ (16)	$1 \cdot 0269(9)$	$0 \cdot 4700(19)$
C(18)	$0 \cdot 2560(15)$	$1 \cdot 0480(8)$	$0 \cdot 4834(13)$
C(19)	$0 \cdot 2919(10)$	1-0389(7)	$0 \cdot 3899(13)$
$\mathrm{C}(20)$	$0 \cdot 2165(15)$	1-0149(8)	$0 \cdot 3302(11)$
C(21)	$0 \cdot 3736(11)$	$0 \cdot 3424(9)$	$0 \cdot 2750$ (10)
C(22)	$0 \cdot 3728(10)$	$0 \cdot 4270$ (11)	0.2576(9)
$\mathrm{C}(23)$	$0 \cdot 4709(13)$	$0 \cdot 4534(9)$	$0 \cdot 2754(10)$
$\mathrm{C}(24)$	$0.5252(10)$	$0 \cdot 3849$ (10)	$0 \cdot 3055(10)$
$\mathrm{C}(25)$	$0 \cdot 4669$ (14)	$0 \cdot 3190$ (9)	$0 \cdot 3074(12)$
C(26)	$0 \cdot 2865(22)$	$0 \cdot 3125(15)$	$0 \cdot 4771(17)$
C(27)	$0 \cdot 3537(13)$	$0 \cdot 3076(11)$	$0 \cdot 5526(16)$
$\mathrm{C}(28)$	$0 \cdot 3554(11)$	$0 \cdot 3784$ (15)	$0 \cdot 6016(11)$
C(29)	$0 \cdot 2863$ (18)	$0 \cdot 4303(9)$	$0.5582(19)$
$\mathrm{C}(30)$	$0 \cdot 2475(9)$	$0 \cdot 3851$ (18)	$0 \cdot 4785(17)$
$\mathrm{H}(1) \dagger$	0.0038	$0 \cdot 8420$	$0 \cdot 1621$
$\mathrm{H}(2)$	-0.0447	0.9059	$0 \cdot 3211$
$\mathrm{H}(3)$	-0.1374	0.8101	$0 \cdot 4166$
$\mathrm{H}(4)$	-0.1640	$0 \cdot 6805$	$0 \cdot 3156$
$\mathrm{H}(5)$	-0.0742	$0 \cdot 6910$	$0 \cdot 1644$
H(6)	-0.0372	$0 \cdot 5608$	$0 \cdot 3094$
H(7)	-0.0190	0.5981	$0 \cdot 4903$
H(8)	0-1641	$0 \cdot 6468$	0.5227
$\mathrm{H}(9)$	$0 \cdot 2459$	$0 \cdot 6374$	$0 \cdot 3661$
$\mathrm{H}(10)$	$0 \cdot 1173$	0.5906	$0 \cdot 2251$
H(11)	$0 \cdot 2979$	0.7342	$0 \cdot 5585$
H(12)	$0 \cdot 3899$	0.7466	$0 \cdot 4094$
$\mathrm{H}(13)$	$0 \cdot 4653$	$0 \cdot 8929$	$0 \cdot 4055$
$\mathrm{H}(14)$	$0 \cdot 4306$	0.9616	$0 \cdot 5676$
$\mathrm{H}(15)$	$0 \cdot 3254$	$0 \cdot 8647$	$0 \cdot 6649$
$\mathrm{H}(16)$	$0 \cdot 0734$	0.9846	0.3550
H(17)	$0 \cdot 1132$	1.0286	0.5258
$\mathrm{H}(18)$	$0 \cdot 2949$	1.0637	$0 \cdot 5476$
$\mathrm{H}(19)$	$0 \cdot 3600$	1.0506	$0 \cdot 3764$
$\mathrm{H}(20)$	$0 \cdot 2236$	1.0067	$0 \cdot 2548$
$\mathrm{H}(21)$	$0 \cdot 3142$	0.3071	$0 \cdot 2706$
$\mathrm{H}(22)$	$0 \cdot 3210$	$0 \cdot 4662$	$0 \cdot 2329$
$\mathrm{H}(23)$	$0 \cdot 4998$	0.5115	0.2713
$\mathrm{H}(24)$	0.5997	$0 \cdot 3864$	$0 \cdot 3148$
$\mathrm{H}(25)$	$0 \cdot 4934$	$0 \cdot 2641$	$0 \cdot 3286$
$\mathrm{H}(26)$	$0 \cdot 2599$	$0 \cdot 2782$	0.4171
H(27)	$0 \cdot 3938$	$0 \cdot 2545$	0.5581
$\mathrm{H}(28)$	$0 \cdot 4019$	$0 \cdot 3849$	$0 \cdot 6608$
$\mathrm{H}(29)$	$0 \cdot 2776$	0.4868	0.5907
$\mathrm{H}(30)$	$0 \cdot 1942$	0.4182	0.4415

Table I (Continued)

Atom	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
$\mathrm{Sc}(1)$	35(1)	30(1)	67(2)	2(1)	-19(1)	$-5(1)$
$\mathrm{Sc}(2)$	41(1)	30(1)	58(2)	2(1)	-14(1)	-4(1)
$\mathrm{Sc}(3)$	36(1)	$35(1)$	$55(2)$	-2(1)	-21(1)	4(1)
$\mathrm{Cl}(1)$	47(1)	49(1)	51 (2)	$-1(1)$	$-5(2)$	-9(1)
$\mathrm{Cl}(2)$	46(2)	47(1)	$59(2)$	-3(1)	$-3(2)$	-6(1)
${ }^{\mathrm{Cl}}(3)$	$35(1)$	37(1)	$69(2)$	5(1)	-28(1)	4(1)
C(1)	43(9)	176(18)	113(16)	18(10)	$-15(9)$	104(13)
$\mathrm{C}(2)$	93(13)	35(7)	193(21)	-4(7)	-83(13)	18(10)
$\mathrm{C}(3)$	73(10)	$72(9)$	116 (15)	$32(8)$	-35(9)	$-40(9)$
$\mathrm{C}(4)$	24(7)	75(9)	110 (14)	4(6)	-9(7)	7(9)
C(5)	59(10)	96(11)	84(14)	26(8)	-13(8)	$-9(9)$
$\mathrm{C}(6)$	102(11)	$22(6)$	164(17)	$-9(6)$	-71(11)	$-11(7)$
$\mathrm{C}(7)$	94(11)	$55(8)$	127(14)	$-7(7)$	12(10)	15(9)
$\mathrm{C}(8)$	159(17)	38(7)	123(16)	3(8)	$-79(12)$	12(8)
$\mathrm{C}(9)$	60(9)	$52(8)$	221 (23)	15(7)	-44(12)	30(11)
C(11)	60(10)	$65(9)$	159(18)	$-0(7)$	$-60(10)$	49(10)
C(12)	$77(10)$	40(7)	135(15)	35(7)	$-54(9)$	-39(8)
C(13)	72(9)	67(8)	66(12)	3(7)	$-16(8)$	$-10(7)$
$\mathrm{C}(14)$	61 (8)	$31(6)$	84(12)	-21 (6)	-26(7)	9 (6)
$\mathrm{C}(15)$	96(11)	89(10)	37(10)	26 (8)	-17(8)	-2(8)
$\mathrm{C}(16)$	66(11)	43(9)	419(42)	$-5(9)$	-84(18)	51 (16)
C(17)	141 (19)	33(8)	303(33)	$9(10)$	126(20)	14(12)
C(18)	191(19)	33(7)	107(16)	8(10)	-70(14)	$-18(8)$
$\mathrm{C}(19)$	89 (10)	29(6)	139(16)	11 (6)	14(10)	13(8)
$\mathrm{C}(20)$	226(21)	43(7)	83(13)	-10(11)	-100(14)	8(8)
$\mathrm{C}(21)$	106(12)	73(9)	$63(12)$	-24(8)	$-11(9)$	$-26(8)$
C(22)	107(12)	108(11)	37(11)	54(10)	$-37(9)$	$-1(8)$
$\mathrm{C}(23)$	$151(15)$	60 (8)	65(12)	- 13 (9)	7 (11)	$-3(7)$
$\mathrm{C}(24)$	95(12)	91 (11)	77(13)	33(9)	$5(9)$	$-36(9)$
$\mathrm{C}(25)$	172(18)	52(8)	105(14)	38(10)	-32(11)	$-19(8)$
$\mathrm{C}(26)$	249 (32)	110(16)	148(25)	$-129(18)$	39(19)	$-33(15)$
C(27)	123(16)	68(11)	153(23)	$51(11)$	40(13)	51 (11)
C(28)	76(12)	135(16)	86(14)	-31(11)	-20(10)	13(13)
$\mathrm{C}(29)$	187(23)	38(7)	211(27)	-39(10)	139(19)	-18(11)
$\mathrm{C}(30)$	38(8)	166(19)	177(24)	$4(12)$	-26(11)	98(17)

* Anisotropic thermal parameters defined by: $\exp \left[-\left(\beta_{11} h^{2}\right.\right.$ $\left.\left.+\beta_{22} k^{2}+\beta_{33} l^{2}+2 \beta_{12} h k+2 \beta_{13} h l+2 \beta_{23} k l\right)\right]$. $\quad \dagger$ Isotropic thermal parameters set at $4 \cdot 0 \AA^{2}$ for all hydrogen atoms. Fractional co-ordinates not refined.
obtained by use of an Enraf-Nonius CAD 4 diffractometer with Ni-filtered copper radiation. The crystal was aligned on the diffractometer such that no symmetry axis was coincident with the ϕ axis of the diffractometer.
The diffracted intensities were collected by the $\omega-2 \theta$ scan technique with a take-off angle of $1 \cdot 5^{\circ}$. The scan rate was variable and was determined by a fast ($20^{\circ} \mathrm{min}^{-1}$) prescan. Calculated speeds based on the net intensity gathered in the prescan ranged from 7 to $1^{\circ} \min ^{-1}$. Background counts were collected for 25% of the total scan time at each end of the scan range. For each intensity the scan range $=A+B \tan 0$, where $A=1.0$ and $B=0 \cdot 5$. Aperture settings were determined in a like manner with $A=4 \mathrm{~mm}$ and $B=4 \mathrm{~mm}$. The crystal-to-source and crystal-to-detector distances were $21 \cdot 6$ and 20.8 cm , respectively. The lower- and upper-level discriminators of the pulse-height analyser were set to obtain a 95% window centred on the $\mathrm{Cu}-K_{\alpha}$ peak. As a check on the stability of the diffractometer and the crystal, a standard peak was measured periodically during data collection. No significant fluctuation was noted.
The standard deviations of the intensities, $\sigma(I)$, were estimated from the formula: $\sigma=\left\{\left[C_{\mathrm{N}}+\left(T_{\mathrm{C}} / 2 T_{\mathrm{B}}\right)^{2} \cdot\left(B_{1}+\right.\right.\right.$ $\left.\left.\left.B_{2}\right)\right]+(0.03)^{2}\left[C_{\mathbb{N}}+\left(T_{\mathrm{C}} / 2 T_{\mathrm{B}}\right)^{2} \cdot\left(B_{1}+B_{2}\right)\right]^{2}\right\}^{\frac{1}{2}}$, where $C_{\mathbb{N}}$ is the counts collected during scan time T_{C}, and B_{1} and B_{2} are background intensities, each collected during background time T_{B}. One independent quadrant of data was measured out to $20=110^{\circ}$. A total of 1680 reflections were considered observed, having $I>\sigma(I)$.

Intensities were corrected for Lorentz, polarization, and absorption effects. ${ }^{9}$

Fourier calculations were made with the ALFF ${ }^{10}$ program. Full-matrix, least-squares refinement was carried out by the program ORFLS. ${ }^{11}$ The function $\Sigma w-$ $\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$ was minimized. No corrections were made for extinction or anomalous dispersion. Neutral atom scattering factors were taken from ref. 12. Final bond distances, angles, and errors were computed with the ORFFE ${ }^{13}$ program. The crystal structure illustration was obtained with the program ORTEP. ${ }^{14}$

Structure Determination.-Partial structure solution was accomplished by direct methods, and an electron-density map phased on the scandium and chlorine atoms yielded the positions of the remaining non-hydrogen atoms. Several cycles of least-squares refinement with isotropic thermal parameters for all atoms gave $R 0 \cdot 13$. Conversion to anisotropic temperature factors, the inclusion of hydrogen atoms in calculated positions, and additional cycles of refinement gave $R 0.072$ and $R^{\prime} 0.065\left\{R^{\prime}=\left[\Sigma w\left(\left|F_{\mathrm{o}}\right|-\right.\right.\right.$ $\left.\left.\left.\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma\left(F_{0}\right)^{2}\right]^{\frac{1}{2}}\right\}$. Unit weights were used at all stages of refinement, and no systematic variation of $w\left(\left|F_{0}\right|-\right.$ $\left.\left|F_{\mathrm{c}}\right|\right)^{2}$ vs. $\left|F_{\mathrm{o}}\right|$ or $(\sin \theta) / \lambda$ was observed. The largest parameter shifts in the final cycle of refinement were $<0 \cdot 1 \sigma$. A final difference-Fourier map showed no unaccounted electron density. Atomic and thermal parameters are given in Table 1. Observed and calculated structure factor amplitudes are listed in Supplementary Publications No. SUP 20832 (2 pp., 1 microfiche).*

DESCRIPTION OF THE STRUCTURE AND DISCUSSION

In the unit cell there are six chlorine-bridged dimers, of which four lie in general positions and two reside

Molecular structure
on a centre of symmetry. Although there are two crystallographically different molecules, they do not

* For details see Notice to Authors No. 7 in J.C.S. Dalton, 1972, Index issue (items less than 10 pp . are supplied as full size copies).
${ }^{9}$ D. J. Wehe, W. R. Busing, and H. A. Levy, ORABS, A Fortran Program for Calculating Single-Crystal Absorption Corrections, Report ORNL TM 229, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1962.
${ }^{10}$ C. R. Hubbard, C. O. Quicksall, and R. A. Jacobson, USAEC Report IS 2625, Ames Laboratory, Iowa State University, Ames, Iowa, 1971.
${ }_{11}$ W. R. Busing, K. O. Martin, and H. A. Levy, ORFLS, A Fortran Crystallographic Least-Squares Program, Report ORNL TM 305, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1962.

Table 2

Molecular geometry
(a) Bond distances (\AA)

$\mathrm{Sc}(1)-\mathrm{Sc}(2)$	3-886(3)	$\mathrm{Sc}(3)-\mathrm{Sc}(3)$	3.922(3)
$\mathrm{Sc}(1)-\mathrm{Cl}(1)$	2.585(4)	$\mathrm{Sc}(1)-\mathrm{Cl}(2)$	2.583(4)
$\mathrm{Sc}(2)-\mathrm{Cl}(1)$	$2 \cdot 580$ (4)	$\mathrm{Sc}(2)-\mathrm{Cl}(2)$	$2 \cdot 559(4)$
$\mathrm{Sc}(3)-\mathrm{Cl}(3)$	2.568(4)	$\mathrm{Sc}(3)-\mathrm{Cl}(3)$ *	$2 \cdot 565(4)$
Ring A		Ring ${ }^{\text {B }}$	
$\mathrm{Sc}(1)-\mathrm{C}(1)$	2.47(1)	$\mathrm{Sc}(1)-\mathrm{C}(6)$	2.48(1)
$\mathrm{Sc}(1)-\mathrm{C}(2)$	$2 \cdot 44$ (1)	$\mathrm{Sc}(1)-\mathrm{C}(7)$	2.46(1)
$\mathrm{Sc}(1)-\mathrm{C}(3)$	$2 \cdot 48$ (1)	$\mathrm{Sc}(1)-\mathrm{C}(8)$	2.48(1)
$\mathrm{Sc}(1)-\mathrm{C}(4)$	$2 \cdot 47$ (1)	$\mathrm{Sc}(1)-\mathrm{C}(9)$	$2 \cdot 45(1)$
$\mathrm{Sc}(1)-\mathrm{C}(5)$	$2 \cdot 44$ (1)	$\mathrm{Sc}(1)-\mathrm{C}(10)$	$2 \cdot 45(1)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1 \cdot 40(2)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1 \cdot 36(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1 \cdot 40(2)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1 \cdot 38(2)$
$\mathrm{C}(3)-\mathrm{C}(4)$	1-31(2)	$\mathrm{C}(8)-\mathrm{C}(9)$	$1 \cdot 36(2)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1 \cdot 28(2)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1 \cdot 38(2)$
$\mathrm{C}(5)-\mathrm{C}(1)$	$1 \cdot 41(2)$	$\mathrm{C}(10)-\mathrm{C}(6)$	$1 \cdot 38(2)$

Ring c	
$\mathrm{Sc}(2)-\mathrm{C}(1)$	$2 \cdot 46(1)$
$\mathrm{Sc}(2)-\mathrm{C}(12)$	$2 \cdot 48(1)$
$\mathrm{Sc}(2)-\mathrm{C}(13)$	$2 \cdot 46(1)$
$\mathrm{Sc}(2)-\mathrm{C}(14)$	$2 \cdot 47(1)$
$\mathrm{Sc}(2)-\mathrm{C}(15)$	$2 \cdot 48(1)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1 \cdot 37(2)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1 \cdot 37(2)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1 \cdot 36(2)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1 \cdot 37(2)$
$\mathrm{C}(15)-\mathrm{C}(11)$	$1 \cdot 39(2)$

Ring E	
$\mathrm{Sc}(3)-\mathrm{C}(21)$	$2 \cdot 49(1)$
$\mathrm{Sc}(3)-\mathrm{C}(22)$	$2 \cdot 45(1)$
$\mathrm{Sc}(3)-\mathrm{C}(23)$	$2 \cdot 45(1)$
$\mathrm{Sc}(3)-\mathrm{C}(24)$	$2 \cdot 46(1)$
$\mathrm{Sc}(3)-\mathrm{C}(25)$	$2 \cdot 46(1)$
$\mathrm{C}(21)-\mathrm{C}(22)$	$1 \cdot 38(2)$
$\mathrm{C}(22)-\mathrm{C}(23)$	$1 \cdot 40(2)$
$\mathrm{C}(23)-\mathrm{C}(24)$	$1.36(2)$
$\mathrm{C}(24)-\mathrm{C}(25)$	$1 \cdot 32(2)$
$\mathrm{C}(25)-\mathrm{C}(21)$	$1 \cdot 36(2)$

Ring F	
$\mathrm{Sc}(3)-\mathrm{C}(26)$	$\mathbf{2 . 4 4 (1)}$
$\mathrm{Sc}(3)-\mathrm{C}(27)$	$2 \cdot 46(1)$
$\mathrm{Sc}(3)-\mathrm{C}(28)$	$2.44(1)$
$\mathrm{Sc}(3)-\mathrm{C}(29)$	$2.45(1)$
$\mathrm{Sc}(3)-\mathrm{C}(30)$	$2.39(1)$
$\mathrm{C}(26)-\mathrm{C}(27)$	$1.32(2)$
$\mathrm{C}(27)-\mathrm{C}(28)$	$\mathbf{1 . 3 1 (2)}$
$\mathrm{C}(28)-\mathrm{C}(29)$	$\mathbf{1 . 3 5 (2)}$
$\mathrm{C}(29)-\mathrm{C}(30)$	$1 \cdot 37(2)$
$\mathrm{C}(30)-\mathrm{C}(26)$	$1 \cdot 28(2)$

(b) Bond angles (${ }^{\circ}$)

$\mathrm{Sc}(1)-\mathrm{Cl}(1)-\mathrm{Sc}(2)$	$97 \cdot 6(1)$	$\mathrm{Cl}(1)-\mathrm{Sc}(1)-\mathrm{Cl}(2)$	$81 \cdot 8(1)$
$\mathrm{Sc}(1)-\mathrm{Cl}(2)-\mathrm{Sc}(2)$	$98 \cdot 2(1)$	$\mathrm{Cl}(1)-\mathrm{Sc}(3)-\mathrm{Cl}(2)$	$82 \cdot 3(1)$
$\mathrm{Sc}(3)-\mathrm{Cl}(3)-\mathrm{Sc}(3) *$	$99 \cdot 6(1)$	$\mathrm{Cl}(3)-\mathrm{Sc}(3)-\mathrm{Cl}(3) *$	$80 \cdot 4(1)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$\mathbf{1 0 9 \cdot 3 (1 3)}$	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$113 \cdot 8(17)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$106 \cdot 5(14)$	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$104 \cdot 2(14)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$111 \cdot 3(14)$	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$106 \cdot 0(14)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1)$	$111 \cdot 8(15)$	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(16)$	$113 \cdot 2(17)$
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)$	$101 \cdot 1(12)$	$\mathrm{C}(20)-\mathrm{C}(16)-\mathrm{C}(17)$	$102 \cdot 3(13)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$107 \cdot 9(14)$	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$105 \cdot 8(11)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$107 \cdot 2(13)$	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	$107 \cdot 1(13)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$109 \cdot 8(14)$	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	$109 \cdot 7(14)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(6)$	$105 \cdot 8(14)$	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(21)$	$108 \cdot 6(14)$
$\mathrm{C}(10)-\mathrm{C}(6)-\mathrm{C}(7)$	$109 \cdot 3(12)$	$\mathrm{C}(25)-\mathrm{C}(21)-\mathrm{C}(22)$	$108 \cdot 7(13)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$107 \cdot 3(12)$	$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	$108 \cdot 8(15)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$108 \cdot 8(13)$	$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$	$109 \cdot 1(14)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$108 \cdot 2(11)$	$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)$	$103 \cdot 3(14)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(11)$	$107 \cdot 4(12)$	$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(26)$	$110 \cdot 7(15)$
$\mathrm{C}(15)-\mathrm{C}(11)-\mathrm{C}(12)$	$108 \cdot 3(12)$	$\mathrm{C}(30)-\mathrm{C}(26)-\mathrm{C}(27)$	$108 \cdot 1(16)$

* Symmetry-related to position given in Table 1 by $(\bar{X}, \bar{Y}, \bar{Z})$ plus a unit translation in X, Y, and Z.

12 D. T. Cromer and J. T. Waber, Acta Cryst., 1965, $18,104$.
${ }_{13}$ W. K. Busing, K. O. Martin, and H. A. Levy, ORFFE, A Fortran Cxystallographic Function and Error Program, Report ORNL TM 306, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1964.
${ }^{14}$ C. K. Johnson, ORTEP, A Fortran Thermal-Ellipsoid Plot Program for Crystal Structure Illustrations, Report ORNL 3794, Revised, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1965, p. 70.
differ significantly in any respect and the configuration in each case is represented by the Figure. The cyclopentadienyl rings are bonded in a penta-hapto-fashion, with the scandium-carbon bond lengths (Table 2) ranging from 2.39 to $2 \cdot 49$, mean $2.46 \AA$. This value is

Table 3
Weighted least-squares planes

lane Equation	
(A)	$-0.7892 X+0.3790 Y-0.4832 Z-4.0900=0$
(B)	$-0.2495 X+0.9472 Y-0.2015 Z-7.9333=0$
(C)	$-0.7792 X+0.4130 Y-0.4715 Z+1.4367=0$
(D)	$-0.2428 X+0.9465 Y-0.2123 Z-13.7549=0$
(E)	$0.2436 X-0.1898 Y-0.9511 Z+3.3665=0$
(F)	$0.7211 X+0.3712 Y-0.5849 Z-0.6561=0$
Deviation (\AA) of atoms from planes	
$\begin{array}{r} \text { Plane } \\ -0.00 \end{array}$	$\begin{aligned} & C(1) 0.00, C(2)-0.00, C(3)-0.00, C(4) 0.00, C(5) \\ & (1)-2 \cdot 19 \end{aligned}$
Plane $\mathrm{C}(10)$	$\begin{aligned} & C(6)-0.02, C(7) \quad 0.02, C(8)-0.01, C(9)-0.00 \\ & , \mathrm{Sc}(1) 2.17 \end{aligned}$
$\begin{array}{r} \text { Plane }(C \\ -0.01 \end{array}$	(1) $0.01, \mathrm{C}(12)-0.01, \mathrm{C}(13) 0.01, \mathrm{C}(14) 0.00, \mathrm{C}(15)$ (2) $2 \cdot 20$
$\begin{gathered} \text { Plane }(D \\ \mathrm{C}(20) \end{gathered}$	$\begin{aligned} & C(16)-0.03, C(17) 0.02, C(18)-0.01, C(19)-0.01, \\ & S c(2)-2.17 \end{aligned}$
$\begin{gathered} \text { Plane } \\ \mathrm{C}(25) \end{gathered}$	$\begin{aligned} & \mathrm{C}(21) 0.02, \mathrm{C}(22)-0.01, \mathrm{C}(23) 0.00, \mathrm{C}(24) 0.001, \\ & 02, \mathrm{Sc}(3)-2.17 \end{aligned}$
$\begin{aligned} & \text { Plane }(F): \mathrm{C}(26)-0.01, \mathrm{C}(27)-0.00, \mathrm{C}(28) 0.01, \mathrm{C}(29)-0.01, \\ & \mathrm{C}(30) 0.01, \mathrm{Sc}(3) 2 \cdot 18 \end{aligned}$	

shorter than that $(2.49 \AA)$ in $\mathrm{Sc}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3},{ }^{7}$ and could reflect either the greater ability of the chlorine atom

[^1]to remove electron density from the scandium atom, or the more crowded environment about the scandium atom in $\mathrm{Sc}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3}$.

If the radius ${ }^{6,15}$ of the scandium(III) ion is taken as $0.68 \AA$, a scandium-carbon bond length of $2.46-2.49 \AA$ agrees very well with the value predicted on the basis of the two known organosamarium structures. The mean samarium-carbon bond distance is $2.78 \AA$ in $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{Sm}^{4}$ and $2.75 \AA$ in $\left(\mathrm{C}_{9} \mathrm{H}_{7}\right)_{3} \mathrm{Sm}$; ${ }^{16}$ the generally accepted radius of the samarium(III) ion is $0.96 \AA .{ }^{17}$

The scandium-chlorine distance $(2.575 \AA)$ is quite long compared to that found in $\mathrm{ScCl}_{3}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{3}(2 \cdot 413 \AA) .{ }^{18}$ However, the structure of the latter consists of discrete molecules in which each chlorine atom is bonded to only one scandium atom. The lengthening of a bond to a bridging halide ion is quite common: in $\left[\mathrm{MeAlCl}_{2}\right]_{2}$ where there are both bridging and terminal chlorine atoms, the bond lengths are 2.25 and $2.05 \AA$, respectively. ${ }^{19}$

The scandium atom lies on the average $2 \cdot 18 \AA$ out of the plane of the cyclopentadienyl groups (Table 3). Within the rings bond distances and angles are as expected. ${ }^{7}$

The packing is typical of a molecular compound: the shortest nonbonded contacts are ca. 3•1 \AA between carbon atoms on cyclopentadienyl groups bonded to the same scandium atom, and the closest intermolecular carbon-carbon approach is $3.82 \AA$.

We thank the donors of the Petroleum Research Fund, administered by the American Chemical Society, forfinancial support of this work.
[3/1506 Received, 17th July, 1973]

[^2]
[^0]: ${ }^{1}$ H. Gysling and M. Tsutsui, Adv. Organometallic Chem., 1970, 9, 361.
 ${ }_{2}$ R. G. Hayes and J. L. Thomas, Organometallic Chem. Rev., A, 1971, 7, 1.
 ${ }^{3}$ L. J. Nugent, P. G. Laubereau, G. K. Werner, and K. L. Vander Sluis, J. Organometallic Chem., 1971, 25, 365 .
 ${ }^{4}$ C. H. Wong, T. Y. Lee, and Y. T. Lee, Acta Cryst., 1969, B25. 2580.

[^1]: ${ }^{15}$ T. J. Anderson, M. A. Neuman, G. A. Melson, Inorg. Chem., 1973, 12, 927.
 ${ }^{16}$ J. L. Atwood, J. H. Burns, and P. G. Laubereau, J. Amer. Chem. Soc., 1973, 95, 1830.
 ${ }_{17}$ F. A. Cotton and G. Wilkinson, 'Advanced Inorganic Chemistry,' 2nd edn., Wiley-Interscience, New York, 1966, p. 1052.

[^2]: ${ }^{18}$ J. L. Atwood and K. D. Smith, unpublished results.
 ${ }^{19}$ G. Allegra, G. Perego, and A. Immirzi, Makromol. Chem., 1963, 61, 69.

