Silicon–Nitrogen Compounds. Part X.¹ Dehydrofluorination of Tetrafluorosilane–Amine Adducts with Anionic Hydrides and Related Compounds

By Mellis Allan, Bernard J. Aylett,* Ian A. Ellis, and Christopher J. Porritt, Chemistry Department, Westfield College, Hampstead, London NW3 7ST

Adducts of tetrafluorosilane and secondary amines $NHR_2(R = Me \text{ or } Et)$ react, especially when an excess of tetrafluorosilane is present, with the following dehydrofluorinating agents: LiAlH₄ (200°); NaBH₄ (200°); B_2H_6 (190-200°); electropositive metals (350°). The products are corresponding substituted aminofluoro-silanes $SiF_{4-n}(NR_2)_n$ (R = Me, n = 1 or 2; R = Et, n = 1). Tetrafluorosilane slowly reacts at 25° with alkali metals in liquid NHMe₂ to give SiF₂(NMe₂)₂. Similarly, SiF₄ and primary amines, on heating with LiAlH₄ (or in some cases NaBH₄), produce corresponding *N*-substituted hexafluorodisilazanes (SiF₃)₂NR (R = H, Me, Et, Ph, or NMe₂). In some cases, evidence for partly-substituted SiF₃NHR or condensed SiF₃NR(SiF₂NR)_nSiF₃ derivatives was obtained. The chief or sole product from $SiF_4 - NH_2R - B_2H_8$ reactions is a borazole $B_3H_3N_3R_3$: also the diamine

NHMe[CH₂]₂NHMe gives rise to $HBNMeCH_2CH_2NMe$. The adduct SiF₄,2NH₂Me is not dehydrofluorinated when heated alone or with added NEt₃, NH₂Ph, zinc, or Fe(CO)₅; above 300° some disproportionation of the amine occurs. Physical properties of the products, including the mass spectrum of (SiF_a)₂NH and i.r. spectra are reported; also possible intermediates in dehydrofluorination are discussed.

WE have shown 1 how substituted aminofluorosilanes result from self-dehydrofluorination of SiF4-amine adducts. Added reagents may also serve to remove the elements of hydrogen fluoride. Thus BF₃ adducts of primary and secondary amines have been converted into B-N compounds by metals^{2,3} at 250-300°, metal amides,⁴ Grignard reagents,⁵ and aliphatic tertiary amines in solution,⁶ but not by LiH,⁷ pyridine,⁶ KF,³ CsF,⁶ KOBu^t,⁶ AlCl₃,⁶ CaS,⁶ or Al₄C₃,;⁶ alkali metal tetrahydroborates gave uncertain results.7

Less is known concerning SiF₄-amine systems. Apart from our preliminary communication,⁸ a patent has described the dehydrofluorination of SiF_4 and tetraaminobiphenyl using NMe3,9 and other reports have shown 10 how various SiF₄-primary amine adducts react in benzene according to equation (1) † with NMe₃, NEt₃, and NEtPrⁱ₂ but not pyridine. The reaction was

$$NH_2R + 3SiF_4 + 2NR_3 = \frac{1}{n}(SiF_2NR)_n + 2NHR_3 + SiF_5^{-} \quad (1)$$

reversible in boiling benzene, and separation of products was difficult.

We now give a detailed account of the preparation of monomeric and condensed aminofluorosilanes by means of a range of dehydrofluorinating agents.

EXPERIMENTAL

High-vacuum and dry-box techniques were employed throughout. Procedures for separation and characteriza-

† In some cases, other fluorosilicate anions (e.g. $Si_2F_{11}^{3-}$) were present.

¹ Part IX: B. J. Aylett, I. A. Ellis, and C. J. Porritt, J.C.S. Dalton, 1973, 83.

² V. I. Spitsyn, I. D. Kolli, R. A. Rodionov, and T. G. Sevast'-yanova, *Doklady Akad. Nauk S.S.S.R.*, 1965, **160**, 1101.

³ L. L. Shchukovskaya, M. G. Votonkov, and O. V. Pavlova, *Izvest. Akad. Nauk S.S.S.R., Ser. khim.*, 1962, 366.

⁴ C. A. Kraus and E. H. Brown, J. Amer. Chem. Soc., 1930, 52, 4414.

tion of products were generally similar to those described previously.^{1,11} I.r. spectra were recorded on a Perkin-Elmer 137 or 337, n.m.r. spectra on a Varian A60-A, and mass spectra using a modified A.E.I. MS 10 instrument.

Tetrafluorosilane was prepared and amines were purified as already described.^{1,12} Solvents were dried (CaH₂, Na), then treated with SiF_4 and finally fractionated in vacuo. Diborane was made by standard methods 13 or, more conveniently, by heating dry tin(II) chloride and NaBH₄ to 200°.14

Analysis .-- Amine in aminofluorosilanes was determined either (i) by treatment with an excess of anhydrous HCl and weighing of the amine salt formed,¹ or (ii) by hydrolysis of the sample with alkali and subsequent pumping of the evolved amine through a known excess of standard acid. Fluorine was estimated by the usual titrimetric procedure with thorium nitrate; 12 as usual, results were always a little low.

Preparative Routes .-- Experimental conditions and quantities are summarized in Tables 1-3. Illustrative procedures are given below for selected compounds.

N-Methylhexafluorodisilazane. Tetrafluorosilane, (i)methylamine, and sodium tetrahydroborate were sealed together in a thick-walled tube and heated as indicated in Table 1, run 3. Some white solid was present, and more deposited on the walls as they cooled. Fractionation yielded hydrogen [57% of that required by equation (3)], the excess of SiF_4 , traces of SiH_4 and $(SiF_3)_2O$, and $(SiF_3)_2$ -NMe [21% based on amine used; held at -120° , passed through -85° [Found: F, 55.0; 55.2; NMe, 14.5, 14.8%;

 ⁵ A. Dornow and H. H. Gehrt, Z. anorg. Chem., 1958, 294, 81.
 ⁶ J. J. Harris and B. Rudner, Inorg. Chem., 1969, 8, 1258.
 ⁷ C. W. Heitsch, Inorg. Chem., 1964, 3, 767.
 ⁸ M. Allan, B. J. Aylett, and I. A. Ellis, Inorg. Nuclear Chem. Letters, 1966, 2, 261.

Letters, 1966, 2, 261. ⁹ J. J. Harris, U.S.P. 3,304,160/1967. ¹⁰ J. J. Harris and B. Rudner, *J. Amer. Chem. Soc.*, 1968, 90, 515; *J. Inorg. Nuclear Chem.*, 1972, 34, 75. ¹¹ B. J. Aylett, I. A. Ellis, and J. R. Richmond, *J.C.S. Dalton*, 1973, 981. ¹² B. J. Aylett, I. A. Ellis, and C. J. Porritt, *J.C.S. Dalton*, 1072, 1052

1972, 1953.

 ¹³ H. C. Brown and P. A. Tierney, J. Amer. Chem. Soc., 1958, 80, 1552; G. F. Freeguard and L. H. Long, Chem. and Ind., 1965, 471

¹⁴ W. Jeffers, Chem. and Ind., 1961, 431.

26	576
- 	

SiF_4 Amine Agent Reaction time Reaction temp. Products ª Run mmol mmol mmol mmol h <u>C</u> $H_2(25; 95\%); (SiF_3)_2NMe(1.2; 9\%); less$ 124NH₂Me (13) LiAlH4 (6.5) b 10 2601 volatile oil, grey and white solids. $\begin{array}{l} H_2(2{\cdot}4; \ 57\%); \ ({\rm SiF}_3)_2 {\rm NMe}(0{\cdot}47; \ 14\%); \\ B_3 H_3 N_3 {\rm Me}_3(0{\cdot}2);^d \ {\rm solids.}^{e} \end{array}$ $\mathbf{2}$ 41 NH₂Me (3·3) $B_2H_6(0.7)$ $\mathbf{2}$ 1753 $H_2(3.5, 57\%); (SiF_3)_2NMe(0.64; 21\%);$ 60 $NH_2Me(3)$ $NaBH_4 (1.5)^{f}$ 10 215solids. H₂; NH₂Me; SiF₄,2NH₂Me; liquid A (see text);^k solids. 4 5 NH₂Me (70) 9 Na-K (5) 340 25 $H_2(16.9;\ 75\%);\ (SiF_3)_2NEt(4.9;\ 44\%);$ almost involatile liquid silazanes; solids. NH₂Et (11·2) 22580 $LiAlH_4$ (5.6) 10 5 H₂(12.9; 65%); (SiF₃)₂NEt(0.4; 4%); probable SiF₃NHEt (ca. 10 mg; see text); solids. 6 80 NH₂Et (10) $NaBH_4$ (5) 10 2157 80 NH₂Ph (8) $LiAlH_4$ (4.5) 12 300 $H_2(9.5; 60\%; (SiF_3)_2NPh(0.48; 6\%);$ solids. $\rm H_{3}(10;\ 50\%);\ C_{6}H_{6}(0\cdot3);\ liquid silazanes (ca. 20 mg); ^{1} solids.$ 8 55NH₂Ph (10·3) LiAlH₄ (5) 4 12310 $\begin{array}{ll} {\rm H_2(9\cdot5;\ 46\%);\ (SiF_3)_2NH(1\cdot03;\ 10\%);} \\ {\rm liquid}\ B\ ({\rm see\ text});^t\ {\rm solids}. \end{array}$ 80 k NH₃ (10·4) 9 $LiAlH_4$ (5.2) 11 260 $H_2(9; 45\%) SiF_3NMe_2 (trace); (SiF_3)_2-NNMe_2 (0.27; 3\%);^n solids.$ 10 Me_2NNH_2 (10) NaBH₄ (5) ^m 10 260 80

^a An excess of SiF₄, also traces of SiH₄ and (SiF₃)₂O recovered in all cases except run 4. ^b When SiF₄ (80 mmol) and LiAlH₄ (16·9 mmol) were heated together at 370° for 18 h, the volatile products were: H₂ (33·5 mmol); (SiF₃)₂O and SiF₄ (60 mmol). ^e Held at -23° . ^d Held at -64° . Found: *M*, 129. Calc. for C₃H₁₂B₃N₃: *M*, 123. I.r. as in: T. Totani, H. Watanabe, and M. Kubo, *Spectrochim. Acta*, 1969, **25A**, 585 and refs. therein. ^e I.r. showed that SiF₄,2NH₂Me was present; on hydrolysis, (NH₃Me)₂SiF₆ was appropriately formed. ^f A mixture of SiF₄ and NaBH₄, after having been heated under the same conditions, was essentially unchanged. ^e Liquid phase present. ^h Almost involatile at 25°; it contained Si and F, and yielded NH₂Me on hydrolysis. ⁱ NH₂Ph and LiAlH₄ were first allowed to react at 25°, then SiF₄ was introduced. ^j Held at -46° ; Found: *M*, 263 Calc. for (SiF₃NH)₂SiF₂: 266. I.r. spectrum similar to that of (SiF₃)₂NH, but additional weak band at 885 cm⁻¹. ^m LiAlH₄ gave similar results. ^{*} Held at -84° , passes through -64° . Found: *M*, 223. Calc. for (SiF₃)₂N₂Me₂: 228. I.r. (gas): 3000ms, 2900ms, 2820m, 1470ms, 1300m, 1240ms, 1180ms, 1100s, 1000vs, 915s, and 825s cm⁻¹.

TABLE 2

Dehydrofluorinations with secondary amines

Run	$\underline{SiF_4}$ mmol	Amine mmol	Agent	$\frac{\text{Reaction time}}{h}$	$\frac{\text{Reaction temp}}{^{\circ}\text{C}}$. <u>Products</u> ^a mmol
1	10	NHMe ₂ (10)	LiAlH ₄ $(2 \cdot 5)$ ^b	12	200	$\begin{array}{l} H_2(9{\cdot}0; \ 90{}\%) ; \ {\rm SiF}_4(0{\cdot}9) ; \ {\rm SiF}_3{\rm NMe}_2(4{\cdot}9 ; \\ 50{}\%) ; \ {\rm SiF}_2({\rm NMe}_2)_2(0{\cdot}2) ; \ {\rm solids.}^{\mathfrak{c}} \end{array}$
2	$2 \cdot 5$	NHMe_2 (2·2)	B ₂ H ₆ (0.6)	1	190	$\begin{array}{ll} H_2(1\cdot1; \ 50\%); \ {\rm SiF}_4(1\cdot2); \ {\rm SiF}_3{\rm NMe}_2(1\cdot1; \\ 50\%); \ {\rm solids}. \end{array}$
3	38	NHMe ₂ (72)	LiAlH ₄ (19·6)	12	200	$\begin{array}{l} H_2(\textit{ca. 75; 100\%}); SiF_3NMe_2(trace);\\ SiF_2(NMe_2)_2(22;69\%); SiF(NMe_2)_3,\\ solids. \end{array}$
4	11.3	NHMe ₂ (25)	Al (7·4) ^d	12	350	H ₂ ; NMe ₃ ; SiF ₂ (NMe ₂) ₂ (1·1; 10%; SiF ₄ ,NMe ₃ ; solids.
5	16	NHMe ₂ (70) ^e	Na (32) ^f	340	25	H ₂ ; SiF ₂ (NMe ₂) ₂ (6·2; 39%); SiF(NMe ₂) ₃ (trace); solids.
6	55	NHEt ₂ (5·2)	$\mathbf{B_2H_6}~(0{\boldsymbol{\cdot}}65)~^g$	$2 \cdot 5$	220	H ₂ ; SiF ₃ NEt ₂ (3.6; 70%); solids.

^a SiF₄, and a trace of $(SiF_3)_2O$ were found in all cases except runs 4 and 5; traces of SiH_4 were found in runs 1—3, and 6. ^b NaBH₄ was also effective. ^c Partly sublimed at 300°; neither component could be definitely identified (i.r., X-ray powder methods). ^d Mg gave similar results, but with lower yields. Zn gave some H₂, but only a trace of aminosilanes. ^e Liquid phase present. ^f K or Na-K alloy gave similar results. ^g LiAlH₄ was also effective.

TABLE 1

Dehydrofluorinations with primary amines and ammonia

M, 197, 199, 200. Calc. for (SiF₃)₂NMe: F, 57.3; NMe, 14.6; M, 199], together with white residual solid.

Physical properties (see also Table 4). Vapour-pressure equation (187—274 K): $\log p/mmHg = 8.354 - 1640/T$. I.r. spectrum (gas): 2960m, 2912m, 2855m, 1820m, 1460w, of SiF₄, traces of SiH₄ and (SiF₃)₂O, also (SiF₃)₂NEt [44% based on amine used; held at -96° , passed through -64°] [Found: F, 52.7; NEt, 20.2%; M, 214. Calc. for (SiF₃)₂-NEt: F, 53.5; NEt, 20.2%; M, 213], an almost involatile silazane fraction, and a mixture of grey and white solids.

TABLE 3

Other attempted dehydrofluorinations							
-	SiF ₄	Amine	Agent		Reaction temp.		
Run	mmol	mmol	mmol	h	°C	mmol	
1	0.8	$\rm NH_2Me~(1.6)$	None	$2 \cdot 5$	500 b	$H_2(0.02)$; NMe ₃ (0.2); SiF ₄ ,2NH ₂ Me; SiF ₄ ,2NH ₃ .°	
2	9.7	NH ₂ Me (19·4)	None	24	350 d,e	H_2 ; $NMe_3(3.7)$; SiF_4 , $NMe_3(0.5)$; solids.	
3	0.6	NH ₂ Me (1·2)	NEt ₃ (1·2)	1	400 ø	H ₂ (0·11); NEt ₃ ; NH _x Me _{3-x} ($x = 0$ -3) (trace); solids. ^c	
4	0.6	NH ₂ Me (1·2)	$\rm NH_2Ph~(1\cdot 1)$	1	200	$NH_{2}Ph(1.1); SiF_{4}, 2NH_{2}Me(0.6).$	
5	0.6	NH ₂ Me (1·2)	NaF (50)	1	200	$NH_2Me(1\cdot 2)$; Na_2SiF_6 .	
6	75	NH ₂ Me (6)	Fe(CO) ₅ (6)	1	170 %	CO; SiF ₄ ; SiF ₄ , 2NH ₂ Me; Fe(CO); solids.	
7	6.0	NH ₂ Me (12)	Zn dust (6) ⁱ	4	350 ¢	$H_{3}(1.3)$; $NH_{x}Me_{3-x}(x = 0-3) (0.027 \text{ g})$; solids. ¹	
8	6.5	NH ₂ Me (13)	NaNH ₂ (11)	4	320	$H_2(1.0); N_2(0.1); NH_3(10); NH_2Me(8); solids.^k$	
9	l	NH ₂ Pr ⁿ ¹	B_2H_6 '	3	200	H_2 ; SiF ₄ ; $B_3H_3N_3Pr_3^{n}m$; solids.	
10	10.1	NHMe ₂ (19·4)	None	18	350 e, p	$H_2(0.14)$; SiF ₄ (ca. 1.5); SiF ₄ , NMe ₃ ; solids. ⁿ	
11	l	(NHMeCH2-)2 ¹	B_2H_6	3	200	H ₂ ; SiF ₄ ; HBNMeCH ₂ CH ₂ NMe; ^q solids.	
12	83	NH ₃ (4·3)	$B_{2}H_{6}$ (1.0)	2	175	$H_2(4; 65\%); SiF_4;$ partly-sublimable solids.	

^a In most cases, traces of (SiF_a)₂O were formed. ^b Similar mixtures heated at 220° for 2.5 h were unchanged; after 1 h at 600°, more H_2 and some HCN (M, i.r.) were evolved. In all cases the pressure did not exceed 5 atmos., and no liquid adduct was present. ^o Chiefly SiF₄,2NH₂Me (i.r.) but some ammonia was detected after hydrolysis. ^d Pressure was ca. 15 atmos.; liquid adduct was ^e Chiefly SiF₄,2NH₂Me (i.r.) but some ammonia was detected after hydrolysis. ^d Pressure was ca. 15 atmos.; liquid adduct was present. • The reaction vessel was heavily etched. ^J On sublimation, some SiF₄,2NH₃ (i.r.) was obtained; on heating with NaF at 200°, the solid gave NH₃ together with some NH₂Me and NHMe₂; on hydrolysis, a sample gave 68% of the ammonia calculated for SiF₄,2NH₃. ^J No reaction after 1 h at 200°; at 500°, decomposition of NEt₃ was rapid. ^A At higher temperatures, Fe(CO)₅ decomposed, but there was no other reaction up to 400°. ^I Similar results were obtained with Mg powder or K; in the latter case, charring was also observed. ^J These comprised a grey powder (containing Zn²⁺, F⁻) also a sticky off-white solid which gave some NH_xMe_{3-x} (x = 1—3) on hydrolysis. ^k The light brown residue was free from CN⁻; it could not be sublimed up to 300° and hydrolysed very slowly giving F⁻ and silica. It was resistant to boiling NEt₃ or EtOH, but dissolved in acid or alkali. ^I Excess of SiF₄ and roughly equivalent amounts of amine and B₂H₆ were used. ^m Identified by i.r., n.m.r.; on hydrolysis gave NH_xPrⁿ; cf. M. P. Brown, R. W. Heseltine, and D. W. Johnson, *J. Chem. Soc.* (A), 1967, 597. ⁿ Pyrolysis with NaF yielded NH₃ and NHMe₂; to 400° at pressures below 1 atmos. did not react. ^g M.p., -64°; v.p., 14 mmHg, 21° C. On hydrolysis gave (HNMeCH₂-)₂, positive boron test. Found: *M*, 99. Calc. for C₄H₁₁BN₂, 98. I.r. spectrum (gas): 2990s, 2870vs, 2800s, 2560s, 1520s, 1450s, 1420s, 1360m, 1300s, 1235s, br, 1075s, 1065sh, 1035sh, 1030s, 995s, 945w, 878m, 865m, 820w, 638w, and 595 cm⁻¹. N.m.r. (SiMe₄ soln.): τ 7·3 (singlet, CH₃,6H); 6·8 (singlet, CH₂,4H). BH not observed.

1380w, 1310m, 1235s, 1120m, 1083s, 1016vs, 997vs, 911s, 875m, 828sh, 822s, 605m, 440sh, and 420s cm⁻¹.

(ii) N-Ethylhexafluorodisilazane. Tetrafluorosilane, ethylamine, and lithium tetrahydroaluminate were heated

TABLE 4

Physical properties of some aminofluorosilanes

	M.p. a	B.p.(extrap.)	$\Delta H_{ m vap}$	$\Delta S_{\rm vap}$
Compound	°C	°C	kcal mol ⁻¹	cal mol ⁻¹ K ⁻¹
(SiF ₃),NH	ca35 b	66 °	$7 \cdot 2$	22 °
(SiF ₃) ₂ NMe	-50	27	7.50	$25 \cdot 0$
(SiF ₃) ₂ NEt	-75	44	7.64	$24 \cdot 1$
SiF ₃ NMe ₂	-108	20.5 d	6·41 ª	21·8 d
SiF ₂ (NMe ₂) ₂ •	-59^{f}	95 0	8·80 g	23·9 ø

^a \pm 1° Except for (SiF₃)₂NH. ^b Decomposition appreciable at this temperature. ^c Long extrapolation. ^d Supersedes values given in ref. 1. ^e d, 1.001 g cm⁻³, 25 °C. ^f Lit.,¹⁶ -69.5°. ^g Calc from data of ref. 16.

together as shown in Table 1, run 5. The products were: hydrogen [75% of that required by equation (3)], the excess

Physical properties (see also Table 4). V.p. equation $(187-297 \text{ K}): \log p/\text{mmHg} = 8.148 - 1670/T$. I.r. spectrum (gas): 3000m, 2920mw, 1490w, 1460w, 1390m, 1360w, 1320ms, 1195s, 1075vs, 1015vs, 987vs, 950ms, 885m, and 830s cm⁻¹.

(iii) N-Phenylhexafluorodisilazane. The products from pyrolysis of a mixture of SiF_4 , aniline, and $LiAlH_4$ in mole ratios of 18: 1.8: 1 (Table 1, run 7) were: hydrogen [60%]of that required by equation (3)], the excess of SiF₄, and slightly impure (SiF₃)₂NPh [6% based on amine used; held at -85° , passed through -46° ; liquid at room temperature; v.p.: 1.5 mmHg/23°. I.r. spectrum (gas): 3450vw, 3060w, 1615m, 1510m, 1480w, 1380mw, 1315w, 1290m, 1135w, 1030vs, 1010sh, 975m, 845m, and 748m cm⁻¹] [Found: NPh, 36.2%; * M, 249.* Calc. for $(SiF_3)_2$ NPh: NPh, 34.9%; M, 261], together with a mixture of white and dark grey solids.

In another experiment, the same reactants in mole ratios

* Consistent with the presence of ca. 10% of SiF₃NHPh.

of 5:0.7:1, after 10 h at 250°, gave a white solid, held at -23° but volatile at room temperature. Its i.r. spectrum was very similar to that recorded above, and it gave aniline on hydrolysis.

Other attempted reactions of SiF_4 and aniline with $NaBH_4$ or B_2H_6 , and of SiF_4 with $LiAl(NHPh)_4$ (prepared in situ from aniline and LiAlH₄) ¹⁵ yielded almost no volatile Si-N compounds, although up to 85% of the calculated hydrogen was evolved.

(iv) Hexafluorodisilazane. When SiF4, ammonia, and $LiAlH_4$ were pyrolysed together in mole ratios of 16:2:1(Table 1, run 9), the volatile products included hydrogen [46% of that required by equation (3)] and $(SiF_3)_2NH$ [10% yield based on ammonia used; held at -96° , passed through -64° . Found: F, 60.8; NH, $8\cdot0\%$; *M*, 185 ± 2 . Calc. for (SiF₃)₂NH: F, 61.6; NH, $8\cdot1\%$; *M*, 185]. The mixture of white and dark grey solids remaining in the tube smelled strongly of ammonia when exposed to air. Extensive decomposition of (SiF₃)₂NH occurred during fractionation. Attempted preparations using B_2H_6 or $NaBH_4$ in place of $LiAlH_4$, or with smaller proportions of SiF_4 , were unsuccessful.

Physical properties (see also Table 4). V.p. equation $(186-230 \text{ K}): \log p/\text{mmHg} = 7.68 - 1580/T.$ I.r. spectrum (gas): 3400m, 1320m, 1260sh, 1235s, 1145m, 1020vs, 1005vs, 975sh, 940m, 825s, and 685m, br cm⁻¹.

(v) Dimethylaminotrifluorosilane. Tetrafluorosilane, dimethylamine, and diborane were heated together as shown in Table 2, run 2. Only a little viscous liquid could be seen in the hot reaction vessel; on cooling to room temperature, the liquid set to a gum and additional white solid was deposited on the tube walls. The volatile products were hydrogen [50% of that required by equation (10)], excess of SiF_4 , and SiF_3NMe_2 [50% yield based on amine used; held at -96° , passes -64° . Found: F, 43.5; NMe₂, 34.2%; M, 128, 130. Calc. for SiF₃NMe₂: F, 44.1; NMe₂, 34·1%; M, 129].

Physical properties (see also Table 4). V.p. equation $(241-273 \text{ K}): \log p/\text{mmHg} = 7.663 - 1405/T$ 8.416-1606/T). I.r. spectrum (gas): 2990m, (lit.,16 2915s. 2890sh, 2825m, 1495m, 1460m, 1326s, 1188sh, 1174s, 1090sh, 1078m, 1030s, 980vs, 958vs, 879s, and 665s cm⁻¹.

(vi) Bisdimethylaminodifluorosilane. Tetrafluorosilane and sodium were sealed with liquid dimethylamine in a small tube as shown in Table 2, run 5. After 2 weeks at room temperature, with occasional shaking, the darkcoloured reaction mixture yielded hydrogen, excess of amine, $SiF_2(NMe_2)_2$ [39% yield based on equation (11); held at -64° , passed through -23° . Found: F, $23 \cdot 6$; NMe₂, 56.8%; \dot{M} , 151, 155. Calc. for SiF₂(NMe₂)₂: F, 24.6; NMe₂, 57.2%; M, 154. d, 1.001 g ml⁻¹ at 25°. I.r. spectrum (gas): 2960m, 2875s, 2855sh, 2800s, 2160w, 1910w, 1750w, 1610w, 1460sh, 1440m, 1395w, 1305s, 1175s, 1070m, 1008vs, 909s, 873s, and 746m cm^{-1}], and small amounts of the tris- and tetrakis-derivatives.

RESULTS AND DISCUSSION

In order to make Si-N compounds by condensations such as that shown in equilibrium (2), hydrogen fluoride

$$n \operatorname{SiF}_4 + \operatorname{NH}_n \operatorname{R}_{3-n} \Longrightarrow (\operatorname{SiF}_3)_n \operatorname{NR}_{3-n} + n \operatorname{HF} (2)$$

* This compound proved surprisingly difficult to isolate in a pure state, possibly because small amounts of SiF₃NHPh formed with it tended to induce decomposition.

[†] No evidence for (SiF₃)₃N or SiF₃NH₂¹¹ was found.

must be efficiently removed.1 Generalized bases that might be used include H⁻, NH₂⁻, amines, F⁻, and metals. We now indicate the scope and limitations of different dehydrofluorinating agents.

(a) Lithium Tetrahydroaluminate and Sodium Tetrahydroborate.—These two reagents proved to be the most versatile and generally applicable. Thus ${\rm LiAlH}_4$ reacted with SiF_4 and NH_2 -derivatives according to equation (3) $(M^{\bar{1}} = Li, M^2 = Al)$ when R = Me, Et,

Ph,* H,† or NMe₂ (Table 1). The fully-substituted product obtained from Me₂NNH₂ compared with SiF_3NHNMe_2 formed from SiF_4 and Me_2NNH_2 alone.¹⁷ The lithium compound similarly reacted with SiF_4 and secondary amines according to equation (4), n = 1, $(M^1 = Li, M^2 = Al)$ when R = Me or Et; with an excess of dimethylamine, further substitution occurred, as in equation (4), n = 2 (Table 2). To obtain reasonable

$$(6 - 2n) \text{SiF}_4 + 4\text{NHR}_2 + M^1 M^2 H_4 \longrightarrow (6 - 2n) \text{SiF}_{4-n} (\text{NR}_2)_n + M^1 F + M^2 F_3 + 4H_2$$
(4)

yields of disilazanes, it was essential to restrict disproportionation by using a large excess of SiF_4 in reaction (3); such an excess was also helpful in reaction (4), n = 1.

Sodium tetrahydroborate behaved similarly in most cases, although the yields were typically lower [equations (3) and (4); $M^1 = Na$, $M^2 = B$]. A comparison of runs 5 and 6 in Table 1 shows that although the extent of reaction (as measured by hydrogen evolution) was similar, side-reactions leading to loss of product were less serious with LiAlH₄. All dehydrofluorinations successful with $NaBH_4$ could also be effected with $LiAlH_4$, but the converse was not true: systems with SiF_4 , $NaBH_4$, and ammonia or aniline yielded no disilazane.

The role of $LiAlH_4$ in the reaction is by no means selfevident. Recent studies by Dilts and Ashby¹⁸ have clarified the stages of thermal decomposition of LiAlH₄, and under the conditions used in the present work, reactions (5) and (6) would be complete. These can

$$3\text{LiAlH}_{4} \longrightarrow \text{Li}_{3}\text{AlH}_{6} + 3\text{H}_{2} + 2\text{Al}$$
(5)
$$\text{Li}_{2}\text{AlH}_{6} \longrightarrow 3\text{LiH} + \frac{3}{2}\text{H}_{2} + \text{Al}$$
(6)

account for some 36% of the hydrogen required by equations (3) and (4) $(M^1 = Li, M^2 = Al)$. Both LiH and aluminium are doubtless produced in a highly reactive form. The latter reacts with SiF₄ and amines even when used as the normal oxide-coated powder (see Table 2 and below) while the former is expected ¹⁹ to

¹⁵ N. G. Gaylord, 'Reduction with Complex Metal Hydrides,' Interscience, New York, 1956. ¹⁶ H. Grosse-Ruyken and R. Kleesaat, Z. anorg. Chem., 1961,

- ¹⁷ G. G. Strathdee, Ph.D. thesis, McGill University, Montreal,
- 1967; M. Onyszchuk, personal communication.
 ¹⁸ J. A. Dilts and E. C. Ashby, *Inorg. Chem.*, 1972, **11**, 1230.
 ¹⁹ Cf. B.P. 293 040/1928; R. N. Hader, R. L. Nielsen, and M. G. Herre, *Ind. and Eng. Chem.*, 1951, **43**, 2636.

³⁰⁸, 122.

form Li-N derivatives with amine [e.g. equation (7)]; these are known ²⁰ to react with SiF₄ to give aminosilanes [equation (8)]. The extent to which these reactions

$$LiH + NHR_2 \longrightarrow LiNR_2 + H_2$$
(7)

$$\operatorname{LiNR}_2 + \operatorname{SiF}_4 \longrightarrow \operatorname{SiF}_3 \operatorname{NR}_2 + \operatorname{LiF}$$
 (8)

compete with direct reaction of HF [from equilibrium (2)] with LiH, etc., is not known.

Initial reaction of amine with LiAlH₄ to give hydrogen and $LiAlH_n(NR_2)_{4-n}$ (ref. 21) or other Al-N derivatives ²² is unlikely, given the excess of SiF₄ normally present and the very low dissociation pressures of most SiF₄-amine adducts at room temperature.¹² On heating, it is only when the partial pressure of amine becomes significant before LiAlH₄ has decomposed that formation of Al-N derivatives is likely; if formed, they are expected however to react readily with SiF_4 (cf. ref. 23). In one experiment, aniline and LiAlH₄ were allowed to react together before introducing SiF_4 ; after pyrolysis, the hydrogen evolved corresponded exactly to that required by equation (9), but was only 50% of that demanded by

$$LiAlH_4 + 4NH_2R \longrightarrow LiAl(NHR)_4 + 4H_2$$
 (9)

equation (3). Some C-N bond cleavage had occurred to give benzene, but the only volatile silazane product was a small quantity of thermally unstable liquid, thought to be SiF_aNHPh (see below). Small amounts of silane arose from slight reduction of SiF_4 by $LiAlH_4$; however, when $LiAlH_4$ and SiF_4 were pyrolysed under more extreme conditions (370° for 18 h), hydrogen was quantitatively released as H_2 , and some SiF_4 was removed.

It is concluded that dehydrofluorination can occur directly with LiAlH₄ and its pyrolysis and/or reaction products, and indirectly via reaction of Li-N and/or Al-N reaction products with SiF₄. Silicon hydrides appear to be unimportant as intermediates.

Sodium tetrahydroborate is known to be more resistant to pyrolysis²⁴ than LiAlH₄, and in this work there was very little reaction when it was heated with SiF_4 . Thus B_2H_6 , silicon hydrides, or LiH are not likely to be involved as intermediates. Pyrolysis of NaBH₄ with salts of primary or secondary amines can lead to borazoles or aminoboranes, but these were not detected here. This implies either that any B-N compounds formed react completely with SiF_4 to give Si-N derivatives and BF_3 , or that direct abstraction of HF [from (2)] by NaBH₄ occurs preferentially. The first possibility, which seems unlikely on grounds of bond energy values, is excluded by the observation that borazoles and SiF_A were co-products of reactions involving B_2H_6 (see below).

(b) Diborane.—Equation (10) shows a possible course for dehydrofluorination using diborane. Adducts of BF₃ with amines are stronger than those of SiF_4 , and are expected to appear as products, even with an excess of

 SiF_4 . Sufficient amine was therefore added to combine with all the expected BF_3 .

Good yields were obtained with secondary amines [equation (10); n = 2, R = Me or Et]; all reactants were volatile, making it easy to fill reaction vessels, and no volatile boron-containing products were detected. At the reaction temperatures used, the contents of the vessel were entirely gaseous: at higher pressures and with a condensed phase present self-dehydrofluorination occurs, especially when R is large.¹

Primary amines [equation (10): n = 1] gave only a low yield of silazane with R = Me, and none at all with R = H, Pr^n , or Ph. Substituted borazoles (BHNR)₃ were identified as products when R = Me or Pr^n ; there appeared to be no reaction between SiF_4 and these borazoles up to 200°. Analogously, the substituted diamine NHMe·[CH₂]₂·NHMe gave rise to 1,3-dimethyl-

1,3,2-diazaborolidine,²⁵ HBNMeCH₂CH₂NMe, but no Si-N products.

It is concluded that diborane is generally less satisfactory than $LiAlH_4$ or $NaBH_4$, although it has some use in the preparation of dialkylamino-derivatives.

(c) Metals.—Powdered aluminium, magnesium, and zinc were able to remove HF from heated gaseous mixtures of SiF_4 and dimethylamine. There was little reaction below 300° , but at 350° small yields of dimethylaminofluorosilanes were obtained, decreasing in the order Al > Mg > Zn. Such high temperatures are probably needed to break the protective oxide coating on the metal surface.

The enthalpy changes ²⁶ at 298 K associated with removal of HF by metals [equation (11)] have the approx-

$$M + nHF \longrightarrow MF_n + n/2 H_2$$
(11)

imate values: M = Mg, -570; Al, -495; K, -295; Zn, -230 kJ mol⁻¹. However, the entropy changes ²⁶ $(-\Delta S)$ lie in the order: Al > Mg ~ Zn > K. The observed order of efficacy is therefore reasonable at high temperatures. Disproportionation of amine (e.g. Table 2, run 4) was equally apparent in systems without added metals, and will be discussed under (d) below.

Alkali metals also slowly removed HF from reaction mixtures of SiF4,2NHMe2 and liquid dimethylamine [equation (12)]. The large excess of amine and the

$$SiF_4 + nNHMe_2 + nM \longrightarrow SiF_{4-n}(NMe_2)_n + nMF + n/2 H_2$$
(12)

²⁴ D. S. Stasinevich and G. A. Egorenko, *Russ. J. Inorg. Chem.*, 1968, 13, 341; H. I. Schlesinger and H. C. Brown, *J. Amer. Chem. Soc.*, 1940, 62, 3429.
 ²⁵ E. F. Rothgery, P. J. Busse, and K. Niedenzu, *Inorg. Chem.*, 1071 do on to solve and the solution of the solution.

1971, 10, 2343.

²⁰ U. Wannagat, H. Bürger, and F. Höfler, Monatsh., 1968, 99,

²¹ A. E. Finholt, A. C. Bond, and H. I. Schlesinger, J. Amer.

Chem. Soc., 1947, 69, 1199. ²² R. G. Beach and E. C. Ashby, *Inorg. Chem.*, 1971, 10, 1888. ²³ C. Glidewell and D. W. H. Rankin, *J. Chem. Soc.* (A), 1970, 279.

²⁶ National Bureau of Standards Circular No. 500, Selected Values of Chemical Thermodynamic Properties, Washington, D.C., 1952.

relative susceptibility of SiF₃NMe₂ towards base-catalysed disproportionation ²⁷ ensured that SiF₂(NMe₂)₂ was the major product. Further substitution to give $SiF(NMe_2)_3$ is clearly difficult.

Corresponding reactions with primary amines in no case produced hexafluorodisilazanes. At 350°, zinc, magnesium, or potassium removed some HF (ca. 20%) measured by evolution of hydrogen), but no volatile Si-N compounds were detected. Evidently further reaction led to species such as polymeric (SiF₂NR)_x. Also about 10% of the original amine disproportionated to give all possible species NH_nR_{3-n} (n = 0-3) when R = Me. Alkali metals with SiF_4 in an excess of methylamine slowly yielded hydrogen and a barely volatile oligometric silazane (A) that showed no tendency to lose SiF_4 , and was probably cyclic $(SiF_2NMe)_n$ (see refs. 1, 10, and 28). These observations are all consistent with the known readiness 27 of hexafluorodisilazanes to disproportionate.

(d) Other Dehydrofluorinating Agents.—The simplest procedure would appear to be pyrolysis of the 1:2 adduct, either alone or with added amine. When SiF₄,2NH₂Me was pyrolysed at 500° in the gas phase (Table 3, run 1) no volatile silazanes were detected, and the chief reaction was disproportionation of the amine (ca. 40%), leading to free NMe_3 and ammonia (present as the relatively strong adduct SiF_4 , 2NH₃). A small quantity of hydrogen arose from decomposition of methylamine according to: $CH_3NH_2 \longrightarrow HCN + 2H_2$; this was confirmed by isolation of HCN and more hydrogen after pyrolysis at 600°.

When the pressure was sufficiently high to ensure that a liquid phase was present, amine disproportionation occurred at a lower temperature: at 350° , 65% of the methylamine in SiF_4 , $2NH_2Me$ had reacted after 24 h. Similar results were obtained with SiF4,2NHMe2, although it has now been shown that this adduct will undergo self-dehydrofluorination, using milder conditions and added SiF4.1 Added tertiary amines were similarly ineffectual under our conditions (e.g. Table 3, run 3), although successfully used ¹⁰ in benzene solution with an excess of SiF₄. These results reinforce our previous conclusions ¹ about the enabling role of SiF_{A} in dehydrofluorination.

The disproportionation of methylamines is not well documented. Usually they decompose 29 on heating above ca. 450°, but Brown 30 has shown that on heating BF₃,NHMe₂ at 240-295°, besides the main products Me₂NBF₂ and NH₂Me₂⁺NF₄⁻, some BF₃,NMe₃ is formed. Considerably more disproportionation was observed with SiF_4 and NH_2Me_2 in this work since self-dehydrofluorination did not compete, and higher temperatures could be used. Free-radical processes are expected to lead to methane, which was not observed; an intermediate such as (1), with both amines co-ordinated to silicon, seem possible.

In further experiments with SiF₄,2NH₂Me, heating with sodium fluoride led to quantitative displacement of amine, and no NaHF₂ was detected; aniline,* also $Fe(CO)_5$ and its decomposition products, were without effect. Sodium amide (used ³¹ to prepare NH₂BF₂ from BF_{3} , NH_{3}) produced 90% of the ammonia required by equation (13), but additional methylamine arose via

$$\begin{array}{l} \mathrm{SiF}_{4}, \mathrm{2NH}_{2}\mathrm{Me} + 2\mathrm{NaNH}_{2} \longrightarrow \\ \mathrm{2NaF} + \mathrm{NH}_{2}\mathrm{Me} + 2\mathrm{NH}_{3} + 1/x (\mathrm{SiF}_{2}\mathrm{NMe})_{x} \quad (13) \end{array}$$

displacement by F⁻ from unreacted adduct and/or amine exchange between ammonia and the Si-N product.32 Hydrogen † and nitrogen were formed by reaction (14); absence of CN⁻ in the solid products showed that thermolysis of amine and reaction (15)³³

$$\begin{split} \text{NaNH}_2 &\longrightarrow \text{NaH} + \tfrac{1}{2}\text{H}_2 + \tfrac{1}{2}\text{N}_2 \qquad (14)\\ \text{NaNH}_2 + \text{NH}_2\text{Me} &\longrightarrow \text{NaCN} + \text{NH}_3 + 2\text{H}_2 \quad (15) \end{split}$$

could be disregarded. A disadvantage of this reagent is that evolved ammonia may react with the Si-N product and make it disproportionate; rather high temperatures are also needed.

Simple Silicon-Nitrogen Products.-Physical properties of some of the volatile compounds prepared are shown in Table 4. Values of m.p. and ΔS_{vap} suggest that intermolecular forces are smallest when the Si: N ratio is unity.[‡] In terms of a discussion given ^{32,34} for corresponding SiH₃ or SiH₂ compounds, enhanced Lewis acid character results when this ratio increases, and enhanced base character when it falls. The relatively high m.p. of (SiF₃)₂NH can be rationalized in terms of intermolecular $N-H \cdots F$ bonding.

I.r. spectra of these compounds can be interpreted similarly to those in ref. 1: hexafluorodisilazanes show mixed $v_{as}(SiF)$ and $v_{as}(SiNSi)$ modes in the region 910-1020 cm⁻¹, and $v_s(SiF)$ ca. 825 cm⁻¹. For $(SiH_3)_2NR$ derivatives, strong bands in the region 1050-1300 cm⁻¹

28 W. Airey, G. M. Sheldrick, B. J. Aylett, and I. A. Ellis, ²⁹ H. J. Emeléus and L. J. Jolley, J. Chem. Soc., 1935, 929.
 ³⁰ J. F. Brown, J. Amer. Chem. Soc., 1952, 74, 1219.
 ³¹ C. W. Keenan and W. K. McDowell, J. Amer. Chem. Soc.,

- 1953, 75, 6348.
- J. Aylett and M. J. Hakim, J. Chem. Soc. (A), 1969, 1788.
 B. J. Aylett and W. V. Culp, Rec. Trav. chim., 1935, 54, 838.
 B. J. Aylett and L. K. Peterson, J. Chem. Soc., 1964, 3429; 1965, 4043.

^{*} Aniline, like NEt₃, is known¹² not to displace methylamine from SiF₄, 2NH₂Me.

[†] Additional hydrogen arose via reaction of H⁻ [from (14)] with adduct.

[‡] The value of ΔS_{vap} for $(SiF_3)_2NH$ is not strictly comparable with the others, since it refers to the solid-vapour equilibrium.

²⁷ M. Allan, B. J. Aylett, and I. A. Ellis, Chem. and Ind., 1966, 1417.

have been assigned ^{23,35} to alkyl rocking and CN stretching vibrations. Somewhat similar bands are observed with $(SiF_3)_2NR$ compounds [R = Me or Et (this work); $R = Pr^n$, Bu^n , or Bu^s (ref. 1)]. Thus corresponding bands occur in (SiH₃)₂NEt ²³ at 1111 * and 1171 cm⁻¹, and in (SiF₃)₂NEt at 1075 and 1195 cm⁻¹. This assignment is consistent with the lack of strong bands for $(SiF_3)_2$ NH in this region.

The spectra of $(SiF_3)_2NH$ and isoelectronic $(SiF_3)_2O$ (refs. 11 and 36) are generally similar, except that (a)bands appear in the former at 3400 and 1235 cm⁻¹, reasonably assigned to NH stretching and bending modes, \dagger and (b) the v_{as}(SiOSi) vibration at 1205 cm⁻¹ in $({\rm SiF}_3)_2{\rm O}$ is replaced by $\nu_{as}({\rm SiNSi}),$ chiefly associated with a band at 1005 cm⁻¹. The broad bands at 685 cm⁻¹ in (SiF₃)₂NH and 605 cm⁻¹ in (SiF₃)₂NMe may be tentatively assigned to v_s (SiNSi), mixed with other skeletal modes: a similar band was observed 35 at 562 cm⁻¹ in the Raman spectrum of (SiH₃)₂NMe and inferred ^{37a} to lie near 545 cm^{-1} in (SiH₃)₂NH.

Because of the low volatility and thermal stability of $(SiF_3)_2$ NPh, its i.r. spectrum could not be thoroughly investigated, but band positions appear reasonable by comparison with those of other hexafluorodisilazanes and of (SiH₃)₂NPh (ref. 37b). Weak additional bands at 3450 and 1380 cm⁻¹ suggested (as did the amine analysis and molecular weight) that some SiF₃NHPh was also present.[‡] Similarly in the SiF₄-NH₂Et-NaBH₄ reaction, together with (SiF₃)₂NEt, a slightly more volatile compound was produced; it contained an N-H bond (i.r., 3400 cm⁻¹), and is thought to be SiF₃NHEt. Like SiF_aNHPh, it decomposed on attempted separation. The i.r. spectrum of SiF₂(NMe₂)₂ shows close similarities to those of $SiF_2(NEt_2)_2^{20}$ and $SiH_2(NMe_2)_2$: ³⁴ bands at 1305, 1175, and 1070 cm⁻¹ can be assigned to mixed $\nu(\rm CN)$ and $\rho(\rm CH_3),$ and those at 1008, 909, and 873 $\rm cm^{-1}$ to mixed v(SiF) and v(SiN).

Mass Spectrum of (SiF₃)₂NH.§ Cleavage of the Si-N bond and loss of SiF_{3}^{+} (85) is an important process; the ions SiF_{2}^{+} , SiF^{+} , and SiF_{n}^{2+} (n = 1-3) are also found. Stepwise loss of fluorine leads to $Si_2F_5NH^+$ (166), also $Si_2F_4NH^+$ (147) and the corresponding hydrogenfree ion, but further loss of fluorine seems to lead to Si-N bond cleavage. A similar situation has been noted¹ in the mass spectrum of SiF₃NEt₂, where SiF₂NEt₂⁺ is observed, but not $SiFNEt_2^+$; this suggests that $Si_2F_4NH^+$ is the symmetrical species. Other abundant ions include SiF_2NH^+ (81) and SiF_2N^+ (80) (but not SiF_3N^+ , $SiFNH^+$, or SiFN⁺). Minor peaks attributed to SiHF⁺_n (n =0-3) provide some evidence for transfer of H from N to Si. Small amounts of oxygen-containing ions (e.g. $\rm SiF_3OH^+,~SiF_2OH^+,~and~SiF_2O^+)$ doubtless arose via reaction with traces of water in the spectrometer: the (SiF₃)₂NH used was shown (i.r.) to be initially free from $(SiF_3)_2O.$

More Condensed Silicon-Nitrogen Products.--Most dehydrofluorination experiments with primary amines or ammonia yielded, in addition to the simple compounds already described, liquids or solids of low volatility. Thus a fraction (B) with ir. spectrum and molecular weight appropriate for (SiF₃NH)₂SiF₂ was isolated from the reaction of SiF_4 and NH_3 with $LiAlH_4$. The same substance resulted, together with SiF_4 , when $(SiF_3)_2NH$ was held for a short time at room temperature. No $(SiF_3)_2NMe$ was isolated from the reaction of SiF_4 with Na-K alloy in liquid methylamine, only an almost involatile liquid (A) with properties appropriate for oligomeric $(SiF_2NMe)_x$; similar products were formed in minor amount from the reaction of SiF₄ and NH₂Me with LiAlH₄. Other examples can be found in the Tables. In all cases the products are consistent with those shown in equation (16). Systems with R = H or

$$SiF_{3}NR(SiF_{2}NR)_{n-1}SiF_{3} + (n-1)SiF_{4}$$

$$n(SiF_{3})_{2}NR \qquad (16)$$

$$(SiF_{2}NR)_{n} + nSiF_{4}$$

Ph seemed particularly prone to this decomposition.

We thank the Ministry of Technology for support and Dr. M. N. Lilly for assistance with mass spectra.

[3/1408 Received, 6th July, 1973]

- ³⁵ M. J. Buttler, D. C. McKean, R. Taylor, and L. A. Woodward,
- Spectrochim. Acta, 1965, 21, 1379. ³⁶ J. L. Margrave, K. G. Sharp, and P. W. Wilson, J. Amer. Chem. Soc., 1970, 92, 1530.
- ³⁷ B. J. Aylett and M. J. Hakim, J. Chem. Soc., 1969, (a) 639;
- (b) 800. ³⁸ H. Bürger and U. Goetze, Monatsh., 1968, **99**, 155. See also: ³⁸ H. Bürger and J. C. Wiley, I. Organometallic L. W. Breed, R. L. Elliott, and J. C. Wiley, J. Organometallic Chem., 1971, 31, 179.

^{*} Assigned by the original authors to ν (CC). † Corresponding band centres in $(SiH_3)_2NH$ appear at 3425 and 1190 cm⁻¹ (ref. 37).

and 1190 cm⁻¹ (ref. 37). \ddagger Corresponding bands have been observed for SiF₃NHBut (ref. 1), SiH₃NHPh (ref. 37b), and SiMe₃NHPh (ref. 38). § A Table of mass spectral data for (SiF₃)₂NH has been deposited in Supplementary Publication No. SUP 20846 (3 pp.). For details of Supplementary Publications see Notice to Authors No. 7 in J.C.S. Dalton, 1972, Index issue. (Items less than 10 pp. are sent as full size conies) sent as full size copies.)