Crystal Structure of a New Form (β) of Tetrakis(thiourea)mercury(i) Chloride

By Peter Donald Brotherton and Allan Henry White,* Department of Physical and Inorganic Chemistry, University of Western Australia. Nedlands, 6009 Western Australia

Abstract

The crystal structure of the title compound has been determined by photographic X-ray methods by the heavy-atom method, and refined by block-diagonal least-squares to $R 0.096$ for 1203 independent reflections. Crystals are monoclinic, space group $P 2_{1} / a, a=33 \cdot 45(5), b=8 \cdot 47(2) . c=6 \cdot 09(1) \AA, \beta=92 \cdot 2(3)^{\circ}, Z=4$. As in the other (α) form the cell contains discrete $\left[\mathrm{Hg}\left\{\mathrm{CS}\left(\mathrm{NH}_{2}\right)_{2}\right\}_{4}\right]^{2+}$ and $\mathrm{Cl}-$ units, the mercury atom being in a highly distorted tetrahedron of sulphur atoms $\left[\mathrm{Hg}-\mathrm{S} 2 \cdot 51-2 \cdot 62 \AA, \mathrm{~S}-\mathrm{Hg}-\mathrm{S} 112-117^{\circ}\right]$.

Thiourea (tu) has been reported to form a series of complexes with mercury(II) chloride, with stoicheiometries $\mathrm{HgCl}_{2}(\mathrm{tu})_{n}(n=1-4) .{ }^{1} \quad$ Structural data have been reported for the $n=2,3$ derivatives ${ }^{2-4}$ and a further structural determination was undertaken on $\mathrm{HgCl}_{2}(\mathrm{tu})_{4}$. By use of the preparative method given in the literature, ${ }^{1}$ but with more concentrated warm solutions, crystallization of the complex occurred simultaneously in two different forms from two different nuclei in the same Petri dish. One of the forms, compact polyhedra, appeared identical with that previously reported (α); the other (thick rods) appeared to be a new phase (β). The analyses of the two samples were identical with that expected for $\mathrm{HgCl}_{2}(\mathrm{tu})$. The structures of both phases have been determined; during the course of our work, however, a structure determination of the α-form was reported, ${ }^{5}$ and as our results are in substantial agreement, we do not describe that structure, and report only that of the β-form.

EXPERIMENTAL

Photographic multiple-film equi-inclination Weissenberg data were collected on a single prismatic crystal section ($0.07 \times 0.10 \times 0.15 \mathrm{~mm}$) about b and c; cell calibration was effected by superposition of aluminium powder lines ($a=4.0494 \AA$) ${ }^{6}$ on zero-layer photographs.

Crystal Data.- $\mathrm{C}_{4} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{HgN}_{8} \mathrm{~S}_{4}, M=575 \cdot 9$, Monoclinic, $a=33 \cdot 45(5), b=8.47(2), c=6.09(1) \AA, \beta=92 \cdot 2(3)^{\circ}, D_{\mathrm{m}}=$ $2 \cdot 20(2), Z=4, D_{\mathrm{c}}=2 \cdot 22 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=1096$. Space group $P 2_{1} / a\left(C_{2 h}^{5}\right.$, No. 14). ${ }^{7} \quad \mathrm{Cu}-K_{\alpha}$ radiation (Ni-filtered), $\lambda=1.5418 \AA,{ }^{8} \mu=284 \mathrm{~cm}^{-1}$, transmission coefficient range $0.05-0.23$.
Data for the layers $h 0-3 l$ and $h k 0-3$ were measured, processed, and refined by our usual methods, ${ }^{9}$ yielding a final residual $R 0.096$ (1203 reflections), $R^{\prime}\left\{=\left[\Sigma w\left(\left|F_{0}\right|-\right.\right.\right.$ $\left.\left.\left.\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma\left(w\left|F_{\mathrm{o}}\right|^{2}\right)\right]^{\frac{1}{2}}\right\} \quad 0 \cdot 12$; the weighting scheme was of the form $w=\left(a+\left|F_{0}\right|+b\left|F_{\mathrm{o}}\right|^{2}\right)^{-1}$ (final values: $a \quad 1 \cdot 34$, b 0.19). Final difference-Fourier maps showed no significant features and at refinement termination, all parameter shifts were $<0 \cdot 2 \sigma$. Scattering factors were for the

* For details see Notice to Authors No. 7 in J.C.S. Dalton, Index issue. (Items less than 10 pp . are sent as full-size copies.)
${ }^{1}$ Inovg. Synth., 1960, 6, 27.
${ }^{2}$ K. K. Cheung, R. S. McEwen, and G. A. Sim, Nature, 1965, 205, 383.

3 A. Korczynski, Roczniki Chem., 1968, 42, 1207.
${ }^{4}$ P. D. Brotherton, P. C. Healy, C. L. Raston, and A. H. White, J.C.S. Dalton, 1973, 334.
neutral atoms, ${ }^{10}$ that for mercury being corrected for anomalous dispersion $\left(\Delta f^{\prime}, \Delta f^{\prime \prime}\right) .{ }^{11} \quad 31$ Low-angle reflections which appeared to be heavily affected by exinction were not included in the final data set. [Final $\left|F_{\mathrm{o}}\right|$ and $\left|F_{\mathrm{c}}\right|$ are given in Supplementary Publication No. SUP 20769 (3 pp.,

TAble 1
Final atomic fractional co-ordinates and thermal parameters

Atom	z	y	z	B / \AA^{2}
Hg	0.13540(4)	$0 \cdot 0738(2)$	$0.4158(2)$	*
$\mathrm{S}(1)$	0.1187(2)	$0 \cdot 359(1)$	$0 \cdot 475$ (1)	2.4(1)
C(1)	$0 \cdot 0823$ (6)	$0 \cdot 351(3)$	$0 \cdot 679$ (3)	0.7(4)
N(11)	$0.0958(7)$	$0 \cdot 333(2)$	$0 \cdot 893(4)$	$2 \cdot 4(5)$
N(12)	$0 \cdot 0461$ (7)	$0 \cdot 352(3)$	0.638(4)	3.0(5)
S(2)	0.2033(2)	$0 \cdot 011(1)$	$0 \cdot 598(1)$	$2 \cdot 7$ (1)
C(2)	$0 \cdot 2369(9)$	-0.015(4)	$0.398(5)$	3-3(7)
N(21)	$0 \cdot 2333(8)$	0.026(4)	$0 \cdot 199(5)$	$4 \cdot 0$ (6)
N(22)	$0 \cdot 2734(11)$	-0.087(4)	0.453(6)	6.0(9)
S(3)	$0 \cdot 1365(2)$	$-0.019(1)$	$0.021(1)$	$3 \cdot 1(2)$
C(3)	$0 \cdot 1507(10)$	-0.222(5)	$0 \cdot 035(1)$	$4 \cdot 4(8)$
N(31)	$0 \cdot 1456(9)$	$-0.312(4)$	$-0.135(6)$	$4 \cdot 9(7)$
$\mathrm{N}(32)$	$0 \cdot 1657(8)$	$-0.282(3)$	$0 \cdot 222(4)$	$3 \cdot 9(6)$
$\mathrm{S}(4)$	0.0781 (2)	$-0.099(1)$	$0 \cdot 572(2)$	2.9(2)
C(4)	0.0546(10)	-0.172(5)	$0.335(6)$	4-3(8)
N(41)	$0.0606(9)$	-0.305(4)	$0 \cdot 256(5)$	$4 \cdot 7(7)$
$\mathrm{N}(42)$	$0 \cdot 0340(10)$	$-0.077(4)$	0.197(6)	5-3(8)
$\mathrm{Cl}(1)$	$0 \cdot 1891$ (2)	$0 \cdot 365(1)$	$0 \cdot 046(1)$	2.9(2)
$\mathrm{Cl}(2)$	0.0106(2)	$0 \cdot 307(1)$	$0 \cdot 149(1)$	3•1(2)

| β_{11} | β_{12} | $\beta_{13} \dagger$ | $\beta_{22} \dagger$ | $\beta_{23} \dagger$ |
| :--- | :--- | :--- | :--- | :--- |$\beta_{33} \dagger$

Hg 684(14) - 23(87) 1080(120) $8960(26)-4660(52) 21560(450)$
\dagger Rounded.

1 microfiche].* Anisotropic thermal parameters quoted are of the form $\exp -\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+\beta_{12} h k+\right.$ $\beta_{13} h l+\beta_{23} h l$. Block-diagonal least-squares estimated standard deviations are given in parentheses in Tables 1 and 2, which list atomic co-ordinates and molecular geometry. Least-squares planes are given in Table 3.
Computation was carried out on a DEC PDP 10 at the University of Western Australia.
${ }^{5}$ A. Korczynski, M. Nardelli, and M. Pellinghelli, Cryst. Struct. Comm., 1972, 1, 327.
${ }^{6}$ B. W. Delf, J. Appl. Phys., 1963, 14, 345.
7 'International Tables for X-Ray Crystallography,' vol. I, 2nd edn., Kynoch Press, Birmingham, 1965, p. 99.
${ }^{8}$ Ref. 7, vol. III, 1962, p. 59.
${ }^{\circ}$ P. W.' G. Newman and A. H. White, J.C.S. Dalton, 1972, 1460, 2238.
${ }^{10}$ Ref. 8, p. 210.
${ }_{11}$ Ref. 8, p. 213.

DISCUSSION

The cell contents (Figure) consist of discrete $\left[\mathrm{Hg}(\mathrm{tu})_{4}\right]^{2+}$ cations and Cl^{-}anions. The crystal packing is dominated by $\mathrm{Cl}^{-} \cdots \mathrm{NH}_{2}$ interactions, the environment of each chloride ion being the hydrogen atoms of some six

Table 2

Interatomic distances (\AA) and angles (deg.)
(a) Cation geometry

	$i=(1)$	(2)	(3)	(4)
$\mathrm{Hg}-\mathrm{S}(i)$	2.506(8)	2.544(8)	2.527(8)	2.617(8)
$\mathrm{S}(i)-\mathrm{C}(i)$	1.77(2)	$1 \cdot 70$ (3)	$1 \cdot 79$ (4)	1.73(4)
$\mathrm{C}(i)-\mathrm{N}(i 1)$	$1 \cdot 38(3)$	1.27(4)	$1 \cdot 29(5)$	$1 \cdot 25$ (5)
$\mathrm{C}(i)-\mathrm{N}(i 2)$	$1 \cdot 23(3)$	$1 \cdot 39(5)$	1-32(4)	$1 \cdot 34(5)$
$\mathrm{Hg}-\mathrm{S}(i)-\mathrm{C}(i)$	103.3(8)	108.6(11)	$105 \cdot 5(12)$	102.3(12)
$\mathrm{S}(i)-\mathrm{C}(i)-\mathrm{N}(i 1)$	117(2)	128(3)	120(3)	125(3)
$\mathrm{S}(i)-\mathrm{C}(i)-\mathrm{N}(i 2)$	124(2)	$119(3)$	120(3)	121 (3)
$\mathrm{N}(i 1)-\mathrm{C}(i)-\mathrm{N}(i 2)$	$119(2)$	113(3)	120(3)	113(3)
$\mathrm{S}(1)-\mathrm{Hg}-\mathrm{S}(2)$	109.9(3)	$\mathrm{S}(2)-\mathrm{Hg}-\mathrm{S}(3)$ $107 \cdot 7(3)$ $\mathrm{S}(2)-\mathrm{Hg}-\mathrm{S}(4)$ $112 \cdot 2(3)$ $\mathrm{S}(3)-\mathrm{Hg}-\mathrm{S}(4)$ $102 \cdot 1(3)$		
$\mathrm{S}(1)-\mathrm{Hg}-\mathrm{S}(3)$	$116 \cdot 6(3)$			
$\mathrm{S}(1)-\mathrm{Hg}-\mathrm{S}(4)$	$108 \cdot 3(3)$			
(b) Chloride contacts ($<3 \cdot 5 \AA$)				
$\mathrm{Cl}(1) \cdots \mathrm{N}\left(11^{\text {II }}\right)$	3.23(2)	$\mathrm{Cl}(2)$	- $\mathrm{N}\left(1 \mathrm{I}^{\mathrm{II}}\right)$	$3 \cdot 31$ (2)
$\mathrm{Cl}(\mathrm{I}) \cdots \mathrm{N}(21)$	3.35(3)	$\mathrm{Cl}(2)$	N(12)	3-18(3)
$\mathrm{Cl}(\mathrm{I}) \cdots \mathrm{N}\left(21^{\mathrm{III}}\right)$	3.33(3)	$\mathrm{Cl}(2)$.	$\mathrm{N}\left(12^{\text {II }}\right.$)	$3 \cdot 39(3)$
$\mathrm{Cl}(\mathrm{I}) \cdots \mathrm{N}\left(22^{\text {IV }}\right)$	3.28(4)	$\mathrm{Cl}(2) \cdot$	N(41v)	$3 \cdot 36(3)$
$\mathrm{Cl}(1) \cdots \mathrm{N}\left(22^{\mathrm{III}}\right)$) $3 \cdot 36(4)$	$\mathrm{Cl}(2) \cdot$	N(42)	$3 \cdot 36(3)$
$\mathrm{Cl}(1) \cdots \mathrm{N}\left(31^{\mathbf{I V}}\right)$	3-27(3)	$\mathrm{Cl}(2) \cdot$	$\mathrm{N}\left(42^{\mathrm{V}}\right)$	3-20(3)

(c) Sulphur-nitrogen contacts $(<3 \cdot 5 \AA)$

$$
\begin{array}{llll}
\mathrm{S}(3) \cdots \mathrm{N}(11) & 3 \cdot 35(3) \\
\mathrm{S}(3) \cdots \mathrm{N}(21) & 3 \cdot 40(3) & \mathrm{S}(4) \cdots \mathrm{N}(31) & 3 \cdot 35(3)
\end{array}
$$

Roman numeral superscripts denote the following transformations relative to the reference molecule at x, y, z :

$$
\begin{array}{ll}
\text { II } x, y, z-1 & \text { V } \bar{x}, \bar{y}, \bar{z} \\
\text { III } \frac{1}{2}-x, \frac{1}{2}+y, z & \text { VI } x, y-1, z \\
\text { IV } \frac{1}{2}-x, \frac{1}{2}+y, 1-z &
\end{array}
$$

or seven amino-groups, nitrogen-chlorine distances being ca. 3•2-3.4 \AA (Table 2).

Within the cation, the four ligands are co-ordinated to
atom, which deviates by ca. $0 \cdot 6-2.5 \AA$ (Table 3). The mercury-sulphur distances are irregular, varying between $c a .2 .51-2.62 ~ \AA$ and the sulphur-mercury-

Table 3
(a) Ligand planes in the cation, in the form $p X+q Y+r Z=$ s,* with atomic deviations (\AA) in square brackets. Atoms defining the plane are italicized

Plane	p	q	γ	s	σ / \AA
(a): Ligand (1)	0.0131	0.9959	0.0896	$3 \cdot 341$	0.01
$\left[\begin{array}{cc} {[S(1)} & -0.01 \\ \mathrm{Hg} & -2.43 \end{array}\right]$	$C(1) \quad 0.0$	$N(11)$	$-0.01, N$	2) -0	
$\text { (b) : } \underset{\mathrm{C}(1)}{\mathrm{Hg}} \mathrm{~S}(1),$	$0 \cdot 7108$	$0 \cdot 0592$	$0 \cdot 7009$	$5 \cdot 031$	
(c): Ligand (2)	$0 \cdot 3916$	0.8924	$0 \cdot 2242$	$3 \cdot 502$	$0 \cdot 00$
$[S(2) 0.00, C(2)$	0.00,	0.00	(22) 0.00	-0.	
$(d): \underset{\mathrm{C}(2)}{\mathrm{Hg},} \mathrm{~S}(2),$	$0 \cdot 2163$	0.9759	$0 \cdot 0284$	$1 \cdot 661$	
(e): Ligand (3)	0.9307	0.2356	-0.2798	$4 \cdot 171$	$0 \cdot 00$
$[S(3) 0 \cdot 00, C(3)$	$0.01, N$	$0.00, N$	2) 0.00	$-0.61]$	
$(f): \underset{\mathrm{C}(3)}{\mathrm{Hg}, \mathrm{~S}}(3)$	0.9625	$0 \cdot 2618$	-0.0713	$4 \cdot 342$	
(g) : Ligand (4)	0.8292	$0 \cdot 2840$	-0.4815	$0 \cdot 122$	0.04
$[S(4) 0.02, C(4)$	-0.07,	1) $0 \cdot 02$,	$N(42) 0.02$,	Hg 2.51]	
$(h): \underset{\mathrm{C}(4)}{\mathrm{Hg}, \mathrm{~S}(4)},$	-0.6089	0.7933	-0.0072	-2.280	

(b) Angles (deg.) between plane normals:

$$
\begin{array}{llll}
(a)-(b) & 83 \cdot 5 & (c)-(f) & 12 \cdot 2 \\
(c)-(d) & 15 \cdot 8 & (g)-(h) & 74 \cdot 0
\end{array}
$$

* X, Y, Z are orthogonal co-ordinates in \AA where $X=a x+$ $c z \cos \beta, Y=b y$, and $Z=c z \sin \beta$.
sulphur angles between $\mathbf{c a}$. $\mathbf{1 0 2}-\mathbf{1 1 7} 7^{\circ}$. An approximate inverse correlation exists between the distance $\mathrm{Hg}-\mathrm{S}(i)$ and the sum of angles $\sum_{j}[\mathrm{~S}(i)-\mathrm{Hg}-\mathrm{S}(j)]$. Similar irregularities are found in the HgS_{4} co-ordination tetrahedron in the α-form ${ }^{5}$ and in fact, in all other

Unit-cell contents, projected down c, showing the ligand numbering system
the metal atom via the sulphur atom, as is usual. The ligands are planar, but not coplanar with the mercury

[^0]'tetrahedral' $\mathrm{M}(\mathrm{tu})_{4}{ }^{n+}$ species reported ${ }^{\mathbf{1 2 , 1 3}}$ (except $\left[\mathrm{Hgtu}_{4}\right]^{2+}\left[\mathrm{Co}(\mathrm{NCS})_{4}\right]^{2-}$ in which the point-symmetry of
${ }^{13}$ G. F. Gasparri, A. Mangia, A. Musatti, and M. Nardelli, Acta Cryst., 1969, B25, 203.
the mercury atom is abnormally high). ${ }^{\mathbf{1 4}}$ In the present structure, the $\mathrm{Hg}-\mathrm{C}-\mathrm{S}$ to thiourea dihedral angle is very variable and indicates a wide variation in the participation of the p_{π} orbital of the sulphur atom in bonding; such variations have been previously observed, ${ }^{12,15}$ and in the present structure, there appear to be no observable consequences of this in the metal or ligand geometries: it is probable that all the irregularities described are a consequence of the strong hydrogen interactions in-

[^1]volved in the crystal packing. Although in both α - and β-forms there is no apparent correlation of variation in $\mathrm{Hg}-\mathrm{S}$ distance with the degree of p_{π} participation by the sulphur atom, it is clear that in both α-and β-forms the $\mathrm{Hg}^{-} \mathrm{S}$ distances are significantly longer than that observed in $\left[\mathrm{Hg}(\mathrm{tu})_{2} \mathrm{Cl}\right] \mathrm{Cl}(2 \cdot 42 \AA)^{2,4}$ the environment of the mercury atom in the latter being trigonal planar, presumably as a consequence of decrease in co-ordination number.
[3/274 Received, 6th February, 1973]

[^2]
[^0]: 12 W. A. Spofford, P. Boldrini, E. L. Amma, P. Carfagno, and P. S. Gentile, Chem. Comm., 1970, 40, and references therein.

[^1]: 14 A. Korczynski and M. A. Porai-Koshits, Roczniki Chen., 1965, 39, 1567.

[^2]: ${ }^{15}$ K. Fosheim, O. Foss, A. Scheie, and S. Solheimsnes, Acta Chem. Scand., 1965, 19, 2336.

