Crystal and Molecular Structure of Di- μ-carbonyl-carbonyl(tricarbonyl-cobalt)- π-indenyliron

Abstract

By Frederick S. Stephens,* Department of Chemistry, University of Essex, Colchester CO4 3SQ The crystal structure of the title compound has been determined by Patterson and Fourier methods from photographic X-ray diffraction data and refined to $R 0.098$, for 1899 unique reflections, by full-matrix least-squares. The monoclinic unit cell, space group $P 2_{1} / c$, has dimensions $a=12.076 \pm 0.014, b=9.905 \pm 0.010 . c=$, $12.683 \pm 0.012 \AA, \beta=97.5 \pm 0.1^{\circ}$, for $Z=4$. The molecule has the expected non-planar $\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Co}$ bridging system, the angle between the two $\mathrm{Fe}(\mathrm{CO}) \mathrm{Co}$ planes being $148 \cdot 0^{\circ}$. Distortions within the bridging system are apparent: $\mathrm{Fe}-\mathrm{C}(\mathrm{br}) 1.916(13)$ and $1.838(12)$, and $\mathrm{Co}-\mathrm{C}(\mathrm{br}) 1.960(13)$ and $2.054(12) \mathrm{A}$. $\mathrm{Fe} \cdots \mathrm{Co}$ is 2.552(2) A.

Spectroscopic studies of the complexes $(\pi-\mathrm{L}) \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Co}-$ $(\mathrm{CO})_{4}(\mathrm{~L}=$ cyclopentadienyl, methylcyclopentadienyl, and indenyl) have shown them to exist solely as carbonylbridged species in the solid state but as mixtures of one non- and two bridged tautomers in solution. ${ }^{1}$ It is suggested ${ }^{1}$ that in the bridged isomers, the $\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Co}$ bridging systems are puckered with bridge angles ${ }^{2}$ ca. $140-145^{\circ}$ between the two $\mathrm{Fe}(\mathrm{CO}) \mathrm{Co}$ planes, and with ligand distributions about the iron and cobalt atoms similar to those found in $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\right]_{2}{ }^{2-4}$ and $\mathrm{Co}_{2}(\mathrm{CO})_{8} \cdot{ }^{5}$ To confirm these suggestions the crystal structure of the indenyl compound was undertaken.

EXPERIMENTAL

Crystal Data.-- $\mathrm{C}_{15} \mathrm{H}_{7} \mathrm{FeO}_{6} \mathrm{Co}, \quad M=398 \cdot 0$, Monoclinic, $a=12.076 \pm 0.014, \quad b=9.905 \pm 0.010, \quad c=12.683 \pm$ $0.012 \AA, \beta=97.5 \pm 0.1^{\circ}, U=1504.1 \AA^{3}, D_{\mathrm{m}}=1.75$ (by
${ }^{1}$ A. R. Manning, J. Chem. Soc. (A), 1971, 2321.
${ }^{2}$ O. S. Mills, Acta Cryst., 1958, 11, 62.
${ }^{3}$ R. F. Bryan and P. T. Greene, J. Chem. Soc. (A), 1970, 3064.
flotation), $Z=4, D_{\mathrm{c}}=1.757, F(000)=792$. Mo- K_{α} radiation, $\lambda=0.71069 \AA, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=21.6 \mathrm{~cm}^{-1}$, for cell dimensions and intensity measurements. Space group $P 2_{1} / C$ ($C_{2 h}^{5}$, No. 14).

The complex crystallises as brown hexagonally shaped plates lying on the (001) face and with pinacoids $\{100\},\{110\}$, and $\{\overline{1} 10\}$. Unit-cell parameters were determined from single-crystal precession photographs with Mo- K_{α} radiation. Intensities were estimated visually from precession photographs for the layers $0-5$ precessing about a, c, and [101]. Each reflection was corrected for Lorentz and polarisation effects but no correction for absorption or extinction was applied. A total of 2741 non-zero reflections was recorded and after internal correlation yielded 1899 unique reflections on a common arbitrary scale.

Wilson's method ${ }^{6}$ was used to place the data approximately on absolute scale. The scattering factor curves for

[^0]all atoms are those given in ref. 7, the values for the iron and cobalt a toms being corrected for anomalous dispersion. All calculations were carried out on the Atlas computer at S.R.C. Chilton, with programmes of Hodgson, Mills, and Stephens.

Structure Determination.--The positions of the iron and cobalt atoms were obtained from a three-dimensional Patterson synthesis. A Fourier synthesis, phased by these atoms, gave the positions for all non-hydrogen atoms. Structure factors, calculated with the co-ordinates for all atoms, and an overall thermal parameter of $B 3 \cdot 0 \AA^{2}$, gave R 0.21.

Refinement of the structure was carried out by a fullmatrix least-squares procedure in which the function minimised was $\Sigma w\left(\left|F_{0}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$. The weight for each reflection, w, was initially unity and in the final refinement calculated from the expression $\left.w=\left.\langle 0.6| F_{o}|+0.007| F_{0}\right|^{2}\right)^{-1}$. For this latter weighting scheme the average values of $w \Delta^{2}$ for ranges of increasing $\left|F_{\mathrm{o}}\right|$ were almost constant. Reflections having $F_{\mathrm{c}}<\frac{1}{3}\left(F_{\mathrm{o}}\right)$ were omitted from the leastsquares analysis.

Initial refinement, in which 2741 reflections were used, included individual layer scale factors together with positional and individual isotropic thermal parameters for each atom. After two cycles of refinement, at which stage R was $0 \cdot 126$, the positions of the hydrogen atoms on the

Table 1
Atomic co-ordinates with estimated standard deviations in parentheses

	x / a	y / b	z / c	$\sigma_{\text {rms }}(\AA)$
Co	$0 \cdot 3760$ (1)	$0 \cdot 2266(2)$	0.2412(1)	$0 \cdot 0016$
Fe	0.1852(1)	$0 \cdot 1118(2)$	$0 \cdot 2150(1)$	0.0016
$\mathrm{O}(11)$	$0 \cdot 4595(12)$	$0 \cdot 3309$ (15)	$0.4534(11)$	0.014
$\mathrm{O}(12)$	$0 \cdot 5853(9)$	$0 \cdot 1139(12)$	$0 \cdot 1847(11)$	0.012
$\mathrm{O}(13)$	$0 \cdot 3728(12)$	$0 \cdot 4430$ (13)	$0 \cdot 0828(10)$	0.013
$\mathrm{O}(21)$	$0 \cdot 1190(12)$	$0 \cdot 0427(13)$	$0 \cdot 4199(9)$	0.013
$\mathrm{O}(31)$	$0.3713(9)$	-0.0641(10)	$0 \cdot 2936(12)$	0.012
$\mathrm{O}(32)$	$0 \cdot 1825(8)$	$0 \cdot 3933(10)$	$0 \cdot 2763(9)$	0.011
$\mathrm{C}(11)$	$0 \cdot 5042(11)$	$0 \cdot 1534(13)$	$0 \cdot 2032(12)$	0.014
$\mathrm{C}(12)$	$0 \cdot 4236(11)$	$0 \cdot 2898(14)$	$0 \cdot 3700(12)$	0.014
C(13)	$0 \cdot 3717(11)$	$0 \cdot 3617(13)$	$0 \cdot 1431(13)$	0.014
C(21)	$0 \cdot 1476(12)$	$0 \cdot 0708(13)$	$0 \cdot 3415(11)$	0.014
$\mathrm{C}(31)$	$0 \cdot 3304(10)$	$0 \cdot 0397(13)$	$0 \cdot 2625(12)$	0.013
C(32)	$0.2159(10)$	$0 \cdot 2877(11)$	$0 \cdot 2545(11)$	0.013
C(1)	$0 \cdot 0259(11)$	$0 \cdot 0650(14)$	$0 \cdot 1424(14)$	0.015
$\mathrm{C}(2)$	$0 \cdot 0667(11)$	$0 \cdot 1775(13)$	$0 \cdot 0918(11)$	0.014
$\mathrm{C}(3)$	$0 \cdot 1654(12)$	$0 \cdot 1351(15)$	$0 \cdot 0470(13)$	0.015
C(4)	$0 \cdot 1773(12)$	$-0.0057(13)$	$0 \cdot 0649(11)$	0.014
C(5)	$0.0936(10)$	-0.0499(13)	$0 \cdot 1247(10)$	0.013
C(6)	$0 \cdot 0887(12)$	-0.1868(13)	$0 \cdot 1585(12)$	0.015
C(7)	$0 \cdot 1654(15)$	$-0.2733(14)$	$0 \cdot 1261(15)$	0.017
C(8)	$0 \cdot 2465(15)$	$-0.2302(17)$	$0 \cdot 0621(15)$	0.018
$\mathrm{C}(9)$	$0 \cdot 2569(14)$	$-0.0989(16)$	$0.0339(14)$	0.016
H(1)	-0.040	0.064	$0 \cdot 184$	
H(2)	0.031	$0 \cdot 270$	0.091	
H(3)	0.215	$0 \cdot 196$	0.011	
H(6)	0.032	-0.222	$0 \cdot 203$	
H(7)	$0 \cdot 163$	-0.374	$0 \cdot 154$	
$\mathrm{H}(8)$	0.299	-0.296	0.035	
$\mathrm{H}(9)$	$0 \cdot 316$	-0.071	-0.010	

indenyl ring were calculated assuming $\mathrm{C}-\mathrm{H} 1 \cdot 00 \AA$. In subsequent refinement these atoms were included with a thermal parameter of $B 5 \cdot 0 \AA^{2}$, but not refined. After a further two cycles of refinement the refined layer scale factors were used to produce a unique set of reflection data which were used in further refinement.
Final refinement was carried out with anisotropic thermal

* For details see Notice to Authors No. 7 in J.C.S. Dalton, 1972, Index Issue.
parameters for all non-hydrogen atoms. The refinement was terminated when the maximum shift in any parameters was $<0 \cdot 1 \sigma$. Only four reflections were omitted from the final cycle of refinement. Final values for R, based on 1899 reflections, and $R^{\prime}\left\{=\left[\Sigma w \Delta^{2} / \Sigma w\left|F_{o}\right|^{2}\right]\right\}$ were 0.098 and 0.017 .

Final atomic co-ordinate and thermal parameters together with their estimated standard deviations are given in Tables 1 and 2. Calculated and observed structure factors are listed in Supplementary Publication No. SUP 20836 ($13 \mathrm{pp} ., 1$ microfiche).*

Table 2
Thermal parameters $\left(\times 10^{4}\right)$,* with estimated standard deviations in parentheses

	b_{11}	b_{22}	b_{33}	b_{12}	b_{13}	b_{23}
Co	42(1)	70(2)	53(1)	$-9(1)$	$11(1)$	-6(1)
F	38(1)	67(2)	$47(1)$	-4(1)	9(1)	-1(1)
$\mathrm{O}(11)$	107(13)	209(20)	78(10)	-25(13)	$8(9)$	-15(12)
$\mathrm{O}(12)$	68(9)	143(14)	112(11)	35(9)	$27(8)$	6(11)
$\mathrm{O}(13)$	126(13)	125(14)	99(11)	13(11)	15(10)	47(10)
$\mathrm{O}(21)$	143(15)	162(16)	59(8)	4(12)	39(9)	29(10)
$\mathrm{O}(31)$	67(8)	82(10)	160(14)	16(8)	4(9)	32(10)
$\mathrm{O}(32)$	62(8)	89(10)	107(10)	8(7)	25 (7)	-15(8)
C(11)	50(9)	98(14)	56(10)	- 19(9)	-5 (8)	$-31(10)$
$\mathrm{C}(12)$	50(9)	82(12)	77(12)	0 (9)	4(9)	$-10(10)$
C(13)	45(8)	86(13)	80(12)	2(8)	$8(9)$	16(11)
C(21)	71(11)	94(14)	41 (9)	-10 (10)	-14(9)	-4(9)
C(31)	$38(8)$	79(12)	81 (11)	-2(8)	9(8)	-14(10)
$\mathrm{C}(32)$	50(8)	57(10)	75(10)	7(8)	24(8)	8(9)
C(1)	$46(8)$	89(14)	102(14)	$-5(9)$	6 (10)	-19(11)
$\mathrm{C}(2)$	$60(9)$	$91(13)$	49(9)	13(9)	-7(8)	$-4(9)$
$\mathrm{C}(3)$	56(9)	119(16)	75(11)	$-24(10)$	31(9)	-1(11)
C(4)	59(10)	87(13)	56(10)	$-11(9)$	7(8)	-11(9)
C(5)	45(8)	90(13)	47 (8)	-7(8)	2(7)	0 (9)
C(6)	68(11)	79(13)	75(12)	-27(9)	10 (9)	6 (10)
C(7)	94(14)	72(13)	110(16)	-5(12)	15(13)	-6(13)
C(8)	$85(14)$	120(18)	102(15)	11(13)	17(12)	$-37(15)$
$\mathrm{C}(9)$	75(11)	118(17)	81(12)	-2(12)	31 (10)	-27(13)

For all hydrogen atoms $B=5 \cdot 0 \AA^{2}$.

* Anisotropic thermal parameters are given by: exp $\left(h^{2} b_{11}+k^{2} b_{22}+l^{2} b_{33}+2 h k b_{12}+2 h l b_{13}+2 k l b_{23}\right)$.

discussion

Bond distances and angles together with their estimated standard deviations derived directly from the leastsquares inverse matrix are given in Table 3. Figure 1 shows the packing of the molecules in the crystal and the labelling of the atoms. The molecules are held in the crystal by van der Waals forces. The closest approach of two atoms involving carbonyl groups is $3 \cdot 17 \AA\left[\mathrm{O}(31) \cdots \mathrm{C}(12)\right.$ at $\left.1-x, y-\frac{1}{2}, \frac{1}{2}-z\right]$ and of two ring atoms is $3 \cdot 39 \AA[\mathrm{C}(2) \cdots \mathrm{C}(5)$ at $\bar{x}, \bar{y}, \bar{z}]$.

The molecular structure corresponds to that postulated, ${ }^{1}$ but shows some unusual distortions from the ideal. The molecule is in a cis-configuration and the $\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Co}$ bridging system is non-planar (see Table 4). The angle between the two $\mathrm{Fe}(\mathrm{CO}) \mathrm{Co}$ planes $\left(148.0^{\circ}\right)$ is intermediate between that $\left(127^{\circ}\right)$ in $\mathrm{Co}_{2}(\mathrm{CO})_{8}{ }^{5}$ and that $\left(164^{\circ}\right)$ in cis-$\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\right]_{2}{ }^{4} \quad$ For comparison Table 5 gives the details for the bridge systems in related compounds. The Fe . . Co distance of $2.552 \AA$ is in accord with the metalmetal distances given in Table 5.

The indenyl ring is planar within experimental error (see Table 4). The distance of the iron atom to the centroid

[^1]of the C_{5} ring is $1.76 \AA$ and the angle between the direction of this contact and the $\mathrm{Fe}-\mathrm{C}(21)$ bond is $127 \cdot 7^{\circ}$.

The most surprising distortion in the structure is seen in the metal to bridge-carbon distances. It might be expected that two $\mathrm{Fe}-\mathrm{C}_{\mathrm{b}}$ distances (where $\mathrm{C}_{\mathrm{b}}=$ bridge carbon) would be the same, as would the two $\mathrm{Co}^{-} \mathrm{C}_{b}$

Table 3
Bond lengths (\AA) and angles (${ }^{\circ}$), with estimated standard deviations in parentheses
(a) Distances

$\mathrm{Co} \cdot \mathrm{FFe} \quad 2 \cdot 552(2)$			
$\mathrm{Co}-\mathrm{C}(31)$	$1.960(13)$	$\mathrm{Fe}-\mathrm{C}(31)$	1.916 (13)
$\mathrm{Co}-\mathrm{C}(32)$	$2 \cdot 054(12)$	$\mathrm{Fe}-\mathrm{C}(32)$	$1.838(12)$
$\mathrm{C}(31)-\mathrm{O}(31)$	$1 \cdot 186(16)$	$\mathrm{C}(32)-\mathrm{O}(32)$	1-167(14)
$\mathrm{Co}-\mathrm{C}(11)$	$1 \cdot 774(14)$	$\mathrm{C}(11)-\mathrm{O}(11)$	$1 \cdot 163(18)$
$\mathrm{Co}-\mathrm{C}(12)$	$1 \cdot 830(13)$	$\mathrm{C}(12)-\mathrm{O}(12)$	$1 \cdot 108(16)$
Co-C(13)	$1 \cdot 823(14)$	$\mathrm{C}(13)-\mathrm{O}(13)$	$1 \cdot 112(16)$
lie-C(21)	1.771(14)	$\mathrm{C}(21)-\mathrm{O}(21)$	$1 \cdot 129(16)$
$\mathrm{Fe}-\mathrm{C}(1)$	$2.074(14)$	$\mathrm{C}(5)-\mathrm{C}(1)$	$1.436(18)$
$\mathrm{Fe}-\mathrm{C}(2)$	$2 \cdot 080(14)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.406(20)$
$\mathrm{Fe}-\mathrm{C}(3)$	$2 \cdot 125(16)$	$\mathrm{C}(2)-\mathrm{C}(3)$	1.448 (18)
$\mathrm{Fe}-\mathrm{C}(4)$	$2 \cdot 222(13)$	$\mathrm{C}(3)-\mathrm{C}(4)$	1.418(19)
$\mathrm{Fe}-\mathrm{C}(5)$	$2 \cdot 184(13)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.410(17)$
$\mathrm{C}(5)-\mathrm{C}(6)$	1-425(18)	$\mathrm{C}(4)-\mathrm{C}(9)$	$1 \cdot 424(19)$
C $(6)-\mathrm{C}(7)$	$1 \cdot 363(22)$	$\mathrm{C}(9)-\mathrm{C}(8)$	$1 \cdot 359(23)$
C $(7)-\mathrm{C}(8)$	1-417(25)		
(b) Angles			
$\mathrm{C}(31)-\mathrm{Co}-\mathrm{C}(32)$	$89 \cdot 0(5)$	$\mathrm{C}(31)-\mathrm{Fe}-\mathrm{C}(32)$	$97 \cdot 1$ (6)
Te-C(31)-Co	$82 \cdot 4(5)$	$\mathrm{Fe}-\mathrm{C}(32)-\mathrm{Co}$	81-8(4)
$\mathrm{Fe}-\mathrm{C}(31)-\mathrm{O}(31)$	138.8(11)	$\mathrm{Fe}-\mathrm{C}(32)-\mathrm{O}(32)$	$148 \cdot 3(11)$
$\mathrm{Co}-\mathrm{C}(31)-\mathrm{O}(31)$	138.8(11)	$\mathrm{Co}-\mathrm{C}(32)-\mathrm{O}(32)$	$129.9(10)$
$\mathrm{C}(31)-\mathrm{Co}-\mathrm{C}(11)$	105.6(7)	$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)$	108.4(12)
$\mathrm{C}(31)-\mathrm{Co}-\mathrm{C}(13)$	$143 \cdot 5(7)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$107 \cdot 7(11)$
$\mathrm{C}(11)-\mathrm{Co}-\mathrm{C}(13)$	$110 \cdot 3(7)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	107.1(11)
$\mathrm{C}(32)-\mathrm{Co}-\mathrm{C}(12)$	$167 \cdot 5(6)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	109•1(11)
$\mathrm{C}(32)-\mathrm{Co}-\mathrm{C}(1 \mathrm{~J})$	90.9 (6)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1)$	107.5(11)
$\mathrm{C}(32)-\mathrm{Co}-\mathrm{C}(13)$	$84 \cdot 0(5)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(9)$	$130 \cdot 7(13)$
$\mathrm{C}(12)-\mathrm{Co}-\mathrm{C}(31)$	85.7(5)	$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	131.3(12)
$\mathrm{C}(12)-\mathrm{Co}-\mathrm{C}(11)$	101.5(6)	$\mathrm{C}(9)-\mathrm{C}(4)-\mathrm{C}(5)$	$120 \cdot 3(9)$
$\mathrm{C}(12)-\mathrm{Co}-\mathrm{C}(13)$	$93 \cdot 5(6)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$121 \cdot 2(12)$
$\mathrm{Co}-\mathrm{C}(11)-\mathrm{O}(11)$	$177 \cdot 0(13)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$116 \cdot 8(12)$
$\mathrm{Co}-\mathrm{C}(12)-\mathrm{O}(12)$	175.8(14)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	122.1(14)
$\mathrm{Co}-\mathrm{C}(13)-\mathrm{O}(13)$	$177.5(13)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	122.2(14)
$\mathrm{Fe}-\mathrm{C}(21)-\mathrm{O}(21)$	$176 \cdot 8(14)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(4)$	$117 \cdot 3(13)$
$\mathrm{Fe}-\mathrm{Co}-\mathrm{C}(11)$	117.1(4)	$\mathrm{Co}-\mathrm{Fe}-\mathrm{C}(21)$	108.5(5)
$\mathrm{Fe}-\mathrm{Co}-\mathrm{C}(12)$	124.1(4)	$\mathrm{C}(31)-\mathrm{Fe}-\mathrm{C}(21)$	87.8(7)
$\mathrm{Fe}-\mathrm{Co}-\mathrm{C}(13)$	107.0(4)	$\mathrm{C}(32)-\mathrm{Fe}-\mathrm{C}(21)$	92-1(6)

distances. This type of arrangement has been observed in the structure of $\left(\pi-\mathrm{C}_{7} \mathrm{H}_{8}\right) \mathrm{Co}_{2}(\mathrm{CO})_{6}, 8$ in which the environments of the two cobalt atoms are different. However, in the present structure the two $\mathrm{Fe}-\mathrm{C}_{\mathrm{b}}$ distances are not equivalent nor are the two $\mathrm{Co}^{-} \mathrm{C}_{\mathrm{b}}$ distances. The largest distortion involves the bridge atom $\mathrm{C}(32)$. The $\mathrm{Fe}-\mathrm{C}(32)$ distance ($\mathbf{1 . 8 4} \AA$) is intermediate between that ($1.91-1.92 \AA$) for $\mathrm{Fe}-\mathrm{C}_{\mathrm{b}}$ in related compounds (Table 5) and that (ca. $1.75 \AA$) for iron to terminal-carbonyl carbon. ${ }^{2-4}$ As the $\mathrm{Fe}-\mathrm{C}(32)$ distance is shortened so the $\mathrm{Co}-\mathrm{C}(32)$ distance $(2.04 \AA)$ is lengthened, when compared with the $\mathrm{Co}^{-} \mathrm{C}_{\mathrm{b}}$ distances observed in related compounds (Table 5). The shortening of the $\mathrm{Fe}-\mathrm{C}(32)$ distance is accompanied by an opening of the $\mathrm{Fe}-\mathrm{C}(32)-\mathrm{O}(32)$ angle which is tending towards the linear arrangement of a terminal carbonyl group. The planar environment about the carbon aton, $\mathrm{C}(32)$, is maintained by an equivalent closure of the $\mathrm{Co}-\mathrm{C}(32)-\mathrm{O}(32)$ angle. From these observations it would seem that this carbonyl group,
$\mathrm{C}(32)-\mathrm{O}(32)$, has both the characteristics of a terminal and of a bridging carbonyl group with the latter probably being predominant. The distances and angles involving the other bridge carbon atom, $\mathrm{C}(31)$, are comparable with

Figure 2 The bridging system of the molecule seen projected on the plane of the C_{5} ring
the values given in Table 5 . The $\mathrm{Co}-\mathrm{C}(31)$ distance $(1.96 \AA)$ is longer than that ($1.91-1.93 \AA$) in $\mathrm{Co}_{2}(\mathrm{CO})_{8}{ }^{5}$ and in $\left[(\pi \text {-diene }) \mathrm{Co}(\mathrm{CO})_{2}\right]_{2},{ }^{9,10}$ but shorter than that ($1.987 \AA$) of the $\mathrm{Co}(\mathrm{CO})_{3}$, moiety in $\left(\pi-\mathrm{C}_{7} \mathrm{H}_{8}\right) \mathrm{Co}_{2}(\mathrm{CO})_{6} .{ }^{8}$

Although the arrangement of the carbonyl-carbon atoms bonded to the iron atom, when projected on the place of the C_{5} ring, is similar to the corresponding
${ }^{8}$ F. S. Stephens, J.C.S. Dalton, 1972, 1754.
${ }^{9}$ F. S. Stephens, J. Chem. Soc. (A), 1970, 2745.
${ }^{10}$ F. S. Stephens, J.C.S. Dalton, 1972, 1752.
J.C.S. Dalton

Table 4
Least-squares planes and their equations given by $l X^{\prime}+m Y^{\prime}+n Z^{\prime}-p=0$ where X^{\prime}, Y^{\prime}, and Z^{\prime} are orthogonal co-ordinates related to the atomic co-ordinates X, Y, and Z by: $X^{\prime}=X \sin \beta, Y^{\prime}=Y, Z^{\prime}=Z+X \cos \beta$. Deviations (\AA) of the most relevant atoms from the planes are given in square brackets

Plane 1: $\mathrm{Co}, \mathrm{Fe}, \mathrm{C}(31), \mathrm{O}(31)$
[Co 0.004, Fe 0.004, C(31) -0.016, O(31) 0.009]
Plane 2: $\mathrm{Co}, \mathrm{Fe}, \mathrm{C}(32), \mathrm{O}(32)$

l	m	n	p
-0.1261	0.2261	0.9659	2.3189
0.1201	-0.2676	0.9560	2.3000
0.6071	0.1991	0.7693	1.6862
0.4349	-0.8793	0.1942	0.4636
0.5198	-0.8517	-0.0670	0.0462
0.1957	0.8750	-0.4427	1.7215
0.4369	0.5309	0.7261	4.7388
0.3594	0.1711	0.9174	4.0652

[Co $-0.001, \mathrm{Fe}-0.002, \mathrm{C}(32) 0.008, \mathrm{O}(32)-0.005]$
$\begin{array}{lllllllll}\text { Plane 3: } \mathrm{C}(1)-(9) & 0.6071 & 0.1991 & 0.7693 & 0.6862\end{array}$
$[\mathrm{C}(1)-0.01, \mathrm{C}(2)-0.04, \mathrm{C}(3) 0.04, \mathrm{C}(4) 0.01, \mathrm{C}(5)<0.01, \mathrm{C}(6) 0.03$, $\mathrm{C}(7) 0.01, \mathrm{C}(8) 0.04, \mathrm{C}(9) 0.01]$
$\begin{array}{llll}\begin{array}{c}\text { Plane 4: Co, Fe, } \mathrm{C}(11) \\ {\left[C(21) 0.48, X^{*}-0 \cdot 27\right]}\end{array} & 0.4349 & -0.8793 & 0.1942 \\ \text { Plane 5: } \mathrm{Fe}, \mathrm{C}(21), X^{*} & 0.5198 & -0.8517 & -0.0670\end{array}$
Plane 5: $\mathrm{Fe}, \mathrm{C}(21), \mathrm{X}^{*}$
[Co 0.22, C(11) -0.12]
Plane 6: $\mathrm{C}(11), \mathrm{C}(12), \mathrm{C}(32$ [Co 0.03]
Plane 7: C(13), C(12), C(32) [Co 0.21]
Plane 8: $\mathrm{C}(31), \mathrm{C}(12), \mathrm{C}(32)$
[Co 0.20]

* X is the centroid of the C_{5} ring.

Table 5
Details of the bridging systems in compounds related to $\left(\pi-\mathrm{C}_{9} \mathrm{H}_{7}\right) \mathrm{FeCo}(\mathrm{CO})_{6}$

	Angle between the two $\mathrm{MC}_{\mathrm{b}} \mathrm{M}$ planes $\left(^{\circ}\right)$	M $\cdots \mathrm{M} / \AA$	$\mathrm{M}-\mathrm{C}_{\mathrm{b}} / \AA$	$\underset{\left({ }^{\circ}\right)}{\mathrm{C}_{\mathrm{b}}-\mathrm{M}-\mathrm{C}_{\mathrm{b}}}$	$\begin{gathered} \mathrm{M}-\mathrm{C}_{\mathrm{b}}-\mathrm{M} \\ \left({ }^{\circ}\right) \end{gathered}$
trans $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\right]_{2}{ }^{\text {a }}$	180	2.534(2)	1.914(4)	97.1(4)	82-9(2)
cis-[($\left.\left.\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\right]_{2}{ }^{\text {b }}$	164	2.531(2)	$1.917(4)$	96.0(2)	82.6(2)
$\begin{aligned} & (\mathrm{OC})_{4} \mathrm{Fe}_{2}\left[\pi-\mathrm{C}_{5} \mathrm{H}_{4} \cdot \mathrm{CH}\left(\mathrm{NMe}_{2}\right)\right]_{2} \cdot \\ & (\text { cis-configuration }) \end{aligned}$	159.3	$2 \cdot 510(1)$	1-925(4)	96.5(2)	$81 \cdot 4(2)$
$\underset{\text { (cis-configuration) }}{\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)_{2} \mathrm{Fe}_{4}(\mathrm{CO})_{10} \cdot \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}}$	$154 \cdot 7$	2.508(3)	1-930(4)	95.7(3)	$81 \cdot 0(3)$
$\left(\pi-\mathrm{C}_{9} \mathrm{H}_{7}\right) \mathrm{FeCo}(\mathrm{CO})_{6}{ }^{e}$	$148 \cdot 0$	2.552(2)	$\begin{aligned} & 1 \cdot 92, f \quad 1 \cdot 84(1) \\ & 1 \cdot 96,0 \\ & 2 \cdot 05(1) \end{aligned}$	$\begin{aligned} & 97 \cdot 1(6)^{f} \\ & 89 \cdot 0(5)^{f} \end{aligned}$	$82 \cdot 1(3)$
$\mathrm{Co}_{2}(\mathrm{CO})_{8}{ }^{\boldsymbol{h}}$	127	$2 \cdot 524(2)$	1-92(1)	$85 \cdot 0(5)$	$83 \cdot 0(5)$
$\left(\pi-\mathrm{C}_{7} \mathrm{H}_{8}\right) \mathrm{CO}_{2}(\mathrm{CO})_{6}{ }^{i}$	$135 \cdot 0$	$2 \cdot 531$ (1)	$\begin{aligned} & 1.871(3)^{j} \\ & 1.987(3) \end{aligned}$	$\begin{aligned} & 91 \cdot 1(2)^{j} \\ & 84 \cdot 5(1) \end{aligned}$	$82 \cdot 0(\mathrm{l})$
cis- $\left[\left(\pi-\mathrm{C}_{6} \mathrm{H}_{8}\right) \mathrm{Co}(\mathrm{CO})_{2}\right]_{2}{ }^{k}$	$175 \cdot 1$	$2 \cdot 559(3)$	$1.911(10)$	95.8(6)	$84 \cdot 1(5)$
trans $\left.-\left[\pi-\mathrm{C}_{6} \mathrm{H}_{10}\right) \mathrm{Co}(\mathrm{CO})_{2}\right]^{\text {d }}$	180	2.549(1)	1-927(3)	97-1(2)	$82 \cdot 9(2)$

${ }^{a}$ Ref. 3. ${ }^{b}$ Ref. 4. © Ref. 11. a M. R. Churchill and P. H. Bird, Inorg. Chem., 1969, 8, 1941. θ This work. f M $=$ Fe. a $\mathrm{M}=$ Co. ${ }^{n}$ Ref. 5. 'Ref. 8. ${ }^{\text {b }}$ Involving Co atom bonded to diene. k Ref. 10. ${ }^{l}$ Ref. 9.
arrangements in trans- $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\right]^{3}$ and for the b-ring in cis- $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\right],{ }^{4}$ some distortions are apparent. The most notable is that involving the bridge atom $C(31)$, which lies almost directly above the ring atom $C(4)$ (see Figure 2); the $C(31) \cdots C(4)$ contact is $2.95 \AA$, and the angle between the direction of this contact and the normal to the plane containing the C_{5} ring is $3 \cdot 6^{\circ}$. Further the centroid of the C_{5} ring and the atoms $\mathrm{Fe}, \mathrm{C}(21), \mathrm{Co}, \mathrm{C}(11)$ are not coplanar; the dihedral angle between the planes defined by the centroid of the C_{5} ring, $\mathrm{Fe}, \mathrm{C}(21)$ and by $\mathrm{Fe}, \mathrm{Co}, \mathrm{C}(11)$ is 15.9° and the dihedral angles between these planes and the plane of the C_{5} ring are 85.4 and $76 \cdot 8^{\circ}$. These latter values should be compared with those of $89-92^{\circ}$ in related compounds. ${ }^{3,4,9-11}$

The environment about the cobalt atom is inter${ }_{11}$ F. S. Stephens, J. Chem. Soc. (A), 1970, 1722.
mediate between trigonal bipyramidal and square-based pyramidal (Table 6) which is in contrast to the squarebased pyramidal environments about the cobalt atoms in $\mathrm{Co}_{2}(\mathrm{CO})_{8}{ }^{5}$ and in $\left(\pi-\mathrm{C}_{7} \mathrm{H}_{8}\right) \mathrm{Co}_{2}(\mathrm{CO})_{6} .{ }^{8}$

Table 6
Comparison of trigonal bipyramidal vs. square-based pyramidal environment about the Co atom. Planes defined by the ax-eq-ax atoms of a trigonal bipyramid. For the present structure atoms $\mathrm{C}(12)$ and $\mathrm{C}(32)$ are axial

Angles between planes $\left({ }^{\circ}\right)$

Angles between planes (${ }^{\circ}$)				
Present structure			Trigonal	Squ
				based
		$\left(\pi-\mathrm{C}_{7} \mathrm{H}_{8}\right)$	pyra-	pyra-
	$\mathrm{CO}_{2}(\mathrm{CO})_{8}{ }^{\text {a }}$	$\mathrm{CO}_{2}(\mathrm{CO})_{6}$	mi	mid
103.1	$91 \cdot 3$	$94 \cdot 3$	120	90
100.7	$94 \cdot 4$	$96 \cdot 3$	120	90
156.1	174.2	$169 \cdot 3$	120	180
	f. 5. b R	f. 8.		

It is not possible at present to rationalise the distortions in the $\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Co}$ bridging system. Possibly, the position of the indenyl ligand, which may be dictated by packing considerations, creates an asymmetric electrondensity distribution about the iron atom and this asymmetry may be, in turn, reflected in the bridge system.

I thank Dr. A. R. Manning for supplying a sample of the compound and the School of Chemistry, Macquarie University, Sydney, Australia, for hospitality and clerical help in preparing this manuscript.

[^0]: ${ }^{4}$ R. F. Bryan, P. T. Greene, D. S. Field, and M. J. Newlands, J. Chem. Soc. (A), 1970, 3068.
 ${ }_{5}^{5}$ G. G. Sumner, H. P. Klug, and L. E. Alexander, Acta Cryst., 1964, 17, 732.
 ${ }_{6}^{64}$ A. J. C. Wilson, Nature, 1942, 150, 152.

[^1]: ${ }^{7}$ ' International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962.

