Trifluoromethyliodine(v) Tetrafluoride and Related Compounds †

By Gerald Oates and John M. Winfield,* Chemistry Department, University of Glasgow, Glasgow G12 800

Trifluoromethyl iodide is oxidised by chlorine trifluoride in C_6F_{14} at -78 °C to give trifluoromethyliodine(v) tetrafluoride. Evidence for the formation of trifluoromethyliodine (III) difluoride has also been obtained. CF_3IF_4 Decomposes readily at 20 °C but is more stable in this respect than CF_3IF_2 . Other $R_{I\!\!F}IF_4$ [$R_{I\!\!F} = C_2F_5$, (CF_3)₂CF, or n-C₄F₉] compounds are more stable with respect to decomposition than had been supposed. CF₃IF₄ Reacts with methylmethoxosilanes at 20 °C to give $CF_3IF_{4-n}(OMe)_n$ (n = 1-4).

ALTHOUGH there have been several reports describing the preparation of iodine(III) and iodine(v) compounds of the types RIF_2 (R = CF₃¹ and other C_nF_{2n+1} groups,^{2,3} C₆F₅,^{3,4} or Ph and substituted Ph groups ³) and RIF₄ $(\mathbf{R} = C_n \mathbf{F}_{2n+1} \text{ where } n \ge 2,^2 \text{ Ph, or } C_6 \mathbf{H}_4 \cdot \mathbf{CH}_3^5)$, little is known of their properties. Perfluoroalkyliodine(v) tetrafluorides are of interest to us in connection with a study of substituted derivatives of high oxidation state fluorides,⁶ as in principle the R_F group may be used as an

n.m.r. probe to follow the replacement of fluorine bound to iodine(v) by other ligands. Trifluoromethyliodine(v) tetrafluoride is the preferred compound for this purpose, but it has not been reported previously.

In this paper we report the preparation and some properties of CF₃IF₄, and an n.m.r. study of the replacement of fluoro- by methoxo-ligands. A reinvestigation of other members of the series $R_F IF_A$ has shown that they are more stable with respect to decomposition than had

[†] No reprints available.

¹ M. Schmeisser and E. Sharf, Angew. Chem., 1959, 71, 524; J. Baumanns, L. Deneken, D. Naumann, and M. Schmeisser, Abstracts, 4th European Symposium on Fluorine Chemistry,

<sup>Abstacts, 4th Entopean Symposium on Fuorme Chemistry, 1972, 1-66.
(a) C. S. Rondestvedt, jun., J. Amer. Chem. Soc., 1969, 91, 3054; (b) U.S.P. 3,377/390/1968; Fr.P. 1,521,775/1968.
V. V. Lyalin, V. V. Orda, L. A. Alekseeva, and L. M. Yagulpol'skii, Zhur. Org. Khim., 1970, 6, 329.</sup>

⁴ M. Schmeisser, K. Dahmen, and P. Sartori, Chem. Ber., 1970, **103**, 307.

^{1970, 103, 307.}L. M. Yagulpol'skii, V. V. Lyalin, V. V. Orda, and L. A. Alekseeva, Zhur. obshchei Khim., 1968, 38, 2813.
(a) A. M. Noble and J. M. Winfield, J. Chem. Soc. (A), 1970, 501, 2574; (b) D. W. Walker and J. M. Winfield, J. Fluorine Chem., 1971, 1, 376; (c) G. Oates and J. M. Winfield, Inorg. Nuclear Chem. Letters, 1972, 8, 1093.

been supposed.2a A preliminary account of some of this work 1 is been given.7

RESULTS AND DISCUSSION

Oxidation of Perfluoroalkyliodides by Chlorine Trifluoride.—Perfluoroalkyliodine(v) tetrafluorides R_FIF_4 $[R_F = CF_3, C_2F_5, (CF_3)_2CF, \text{ or } n-C_4F_9]$ are formed from R_FI and ClF₃ in perfluoro-n-hexane at -78 °C according to equation (1). Their characterisation is described

$$3R_FI + 4ClF_3 \longrightarrow 3R_FIF_4 + 2Cl_2$$
 (1)

below. The method used is a modification of that previously described, 2a the main difference being that the addition of ClF_3 to the $R_FI-C_6F_{14}$ mixture is far more rigorously controlled. Fast addition or too little solvent mass (Table 2) and vibrational spectra provide strong supporting evidence.

The n.m.r. spectroscopic equivalence of the ¹⁹F nuclei in the IF_4 group and the observation of FCIF coupling indicate that CF_3IF_4 has a square pyramidal structure like that of IF₅,^{8,9} with the CF₃ group axial, or that a fast intramolecular exchange process occurs. We believe the former to be more likely. The IF_4 resonance is to high field of both axial and equatorial 19 F nuclei in IF₅, which is also the case for $IF_4OMe.^{6c}$

IF5 Forms weak complexes with organic donor molecules,¹⁰ and CF_3IF_4 shows similar behaviour. Its n.m.r. spectrum in pyridine shows no FCIF coupling and in MeCN both signals are considerably broadened. There is no n.m.r. evidence for interaction in dioxan solution but

TABLE 1

¹⁹F N.m.r. spectra of perfluoroalkyliodine(v) tetrafluorides

		Chemical shifts/p.p.m.ª			Coupling constants/Hz		
Compound CF ₃ IF ₄ ^{d,e}	Spin system A ₃ X ₄	δ(IF ₄) ^b -32·4	$\delta(CF_2)$ or $\delta(CF)$	$\delta(CF_3)$ - 56.1	³ J(FICF) 18	$^{4}J(\text{FICCF})$	Others •
C ₂ F ₅ IF ₄ d.e.f (CF ₃) ₂ CFIF ₄ d n-C ₄ F ₉ IF ₄ f.g	$\begin{array}{c} \mathbf{A_{3}M_{2}X_{4}}\\ \mathbf{A_{6}MX_{4}}\\ \mathbf{A_{3}M_{2}N_{2}P_{2}X_{4}} \end{array}$	$ \begin{array}{r} -30.2 \\ -30.2 \\ -17.3 \\ -29.2 \end{array} $	$\begin{array}{c} -85.3 \\ -143.6 \\ -81.1(F_1) \\ -129.3 \\ -124.0 \\ F_3 \end{array}$	-77.8 -69.3 -82.2	14 11 16	8 11 16	${}^{3}J({ m F_1F_2}) 1 \ {}^{3}J({ m F_1F_2}) 6 \ {}^{4}J({ m F_2F_4}) 11 \ {}^{3}J({ m F_3F_4}) < 1$

^a From CCl₃F internal. All values to high field. ^b Cf. IF₅ δ (F_{ac}) 59.7, δ (F_{ac}) 10.9 p.p.m. ^c ¹⁹F Nuclei in C_nF_{2n+1} numbered from the α position. ^d In CCl₃F solution. ^e Spectrum invariant down to -90 °C. ^f Chemical shifts reported previously (ref. 2a). Neat liquid.

lead to violent reactions, particularly with CF₃I, resulting in extensive C-I bond cleavage and the apparent formation of ClF.

Oxidation of CF_3I by less ClF_3 than is required by equation (1) gives a mixture of CF_3IF_4 and a species identified as trifluoromethyliodine(III) difluoride from its n.m.r spectrum (first order A_3X_2) $\delta(F_A) - 28.8$, $\delta(F_X)$ -172.7 p.p.m., ${}^{3}J_{\mathbf{F}_{A}\mathbf{F}_{X}}$ 8 Hz. The value of $\delta(\mathbf{F}_{X})$ is very similar to $\delta(IF_2)$ values in other R_FIF_2 compounds.^{2a} CF₃IF₂ Decomposes rapidly in CClF₃ at 20 °C to give a mixture of CF4, CF3I, I2, and IF5, as has been noted elsewhere,¹ and its isolation was not attempted.

Characterisation of Perfluoroalkyliodine(v) Tetrafluorides.--(a) Trifluoromethyliodine(v) tetrafluoride. This compound is a white, moisture-sensitive solid, which is volatile at 20 °C and freely soluble in CCl₃F, IF₅, dioxan, MeCN, or pyridine. Decomposition of the pure solid, giving a mixture of CF_4 , CF_3I , IF_5 , and I_2 , is apparent after 4 h at 20 °C. Impure samples decompose more quickly. In CCl_aF solution there is no detectable decomposition for up to 12 h at 20 °C. The compound is characterised by its n.m.r. spectrum (Table 1). Its

7 O. R. Chambers, G. Oates, and J. M. Winfield, J.C.S. Chem. Comm., 1972, 839.

8 A. G. Robiette, R. H. Bradley, and P. N. Brier, Chem.

⁸ A. G. Robiette, R. H. Bradley, and P. N. Brier, Chem. Comm., 1971, 1567.
⁹ E. L. Muetterties and W. D. Phillips, J. Amer. Chem. Soc., 1959, 81, 1084; N. Bartlett, S. Beaton, L. W. Reeves, and E. J. Wells, Canad. J. Chem., 1964, 42, 2531.
¹⁰ E. L. Muetterties, 'Advances in the Chemistry of the Co-ordination Compounds,' ed. S. Kirschner, Macmillan, New York, 1961, p. 509; M. T. Rogers and W. K. Meyer, J. Phys. Chem., 1962, 66, 1397.

a white solid which appears to be a molecular complex, is isolated from solution.

The Raman spectrum of solid CF_3IF_4 and its gas phase i.r. spectrum suggest, but do not prove, that the molecule has C_{4v} symmetry. Some band assignments can be made by comparison with the spectra of CF₃I,¹¹ IF₅,¹² and CF₃SF₅¹³ as follows: 1260 (i.r.) CF₃ antisym. stretch, 1068 (i.r.) 1054 (R) CF₃ sym. stretch, 756 (i.r.) 754 (R)

TABLE	2
-------	----------

Mass spectrum of CF₃IF₄ ^a

	Relative			Relative		
m/e	abundance	Assignment	m/e	abundance Assignment		
215	1	CFaIF+ b	165	70	IF_{2}^{+}	
203	16	IF_4^+	146	21	IF^{+}	
196	34	CF ₃ I+ •	127	47	I+	
184	13	IF_3^+	69	100	CF₃+ °	

 $^{\circ}$ Independent of source temperature in the range 130--210 °C. $^{\circ}$ Assuming bond energies to be C-F > I-F. $^{\circ}$ Other C-F fragments not given.

CF₃ sym. deformation, 599 (i.r.) IF₄ antisym. stretch, and 264 (R) cm⁻¹ C-I stretch. Other Raman bands are four in the region $300-100 \text{ cm}^{-1}$, which may be due to an out-of-plane bending, and to deformation modes of IF_4 and a CF_3 rocking mode, and a broad envelope ca. 560

¹¹ R. C. Taylor, J. Chem. Phys., 1954, 22, 714; W. F. Edgell and C. E. May, *ibid.*, 1954, 22, 1808.
¹² (a) G. M. Begun, W. H. Fletcher, and D. F. Smith, J. Chem. Phys., 1965, 42, 2236; (b) R. J. Gillespie and H. J. Clase, *ibid.*, 1967, 47, 1071; (c) H. Selig and H. Holzmann, Israel J. Chem., 1969, 7, 417; (d) L. E. Alexander and I. R. Beattie, J. Chem. Soc. (A), 1971, 3091.
¹³ J. E. Griffiths, Spectrochim. Acta, 1967, 23A, 2145.

 cm^{-1} containing at least three strong bands. Three IF₄ stretching modes and a CF₃ deformation are expected in this region. There is also the possibility of an additional band as observed in liquid IF₅, which some workers have attributed to weak association between IF_5 molecules.^{12c, d} A complete analysis must await a gas-phase Raman spectrum.

(b) Other $R_{\rm F}IF_4$ compounds. $C_2F_5IF_4$ and $n-C_4F_9IF_4$ have been reported previously,^{2a} and $(CF_3)_2CFIF_4$ has been mentioned in the patent literature.^{2b} Properties that have been described already are not discussed here. The compounds are more stable with respect to decomposition than had been supposed. A solution of $C_{2}F_{5}IF_{4}$ in CCl₃F may be kept for at least 24 h at 20 °C without observable decomposition, and solutions of $(CF_3)_2 CFIF_4$ or $n-C_4F_9IF_4$ are stable for several weeks.

 $^{19}F^{-19}F$ Spin-spin coupling between the IF₄ groups and both α and β C-F groups is observed in their n.m.r spectra (Table 1). The relatively large values of the rotationally averaged ${}^{4}J(FICCF)$ may mean that there is a contribution from 'though space' coupling as has been suggested for some ${}^{4}J(FF)$ coupling constant in highly fluorinated propane fragments and in some

TABLE 3

Mass spectra of R_FIF_4 compounds

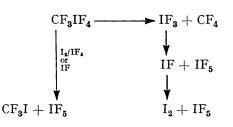
m/e	Relative abundance	Assignment	m/e	Relative abundance	Assignment		
		C_2F_5I	F_4				
265	1	C ₂ F ₅ IF+ a	146	14	IF^+		
246	43	$C_{*}F_{5}I^{+}$	127	$\begin{array}{c} 46 \\ 67 \end{array}$			
$\begin{array}{c} 203 \\ 184 \end{array}$	$14 \\ 6$	${_{}}{_{}}{_{}}{_{}}{_{}}{_{}}{_{}}{_{}}{_{}}{_{}}$	$\begin{array}{c} 119 \\ 69 \end{array}$	100	$^{\mathrm{C_2F_5^+}}_{\mathrm{CF_3^+}}$		
$165 \\ 165$	19	$\operatorname{IF}_{2}^{3}$	05	100	013		
$(CF_3)_2 CFIF_4$							
334	< 1	C ₃ F ₇ IF ₉ + a	165	1	IF_{2}^{+}		
315	$<\!1$	$C_{3}F_{7}IF_{2}^{+a}$ $C_{3}F_{7}IF^{+}$ $C_{3}F_{7}I^{+}$	169	12	C _s F ₇ +		
296	41	$C_3F_7I^+$	146	1	IF+		
203	< 1	$1F_{4}$ +	127	26	I+		
184	<l	IF_3^+	69	100	CF3 ^{+ b}		
$n-C_4F_9IF_4$							
346	19	$\begin{array}{c} \mathrm{C_4F_9I^+}\\ \mathrm{C_4F_9^+} \end{array}$	165	1	IF_2^+		
219	35	$C_4F_9^+$	146	1	IF^+		
203	2	IF ₄ +	127	48	I+		
184	1	IF_{3}^{*+}	69	100	CF ₃ + ^b		

^{σ} Assuming bond energies to be C-F > I-F. ^b Peaks assigned to other C-F ions not given.

fluoroethylsulphur(VI) pentafluorides.¹⁴ Vicinal FCCF coupling constants are small, and it has been shown that in acyclic perfluoroalkanes this is due to the rotational averaging of larger coupling constants of opposite signs.¹⁵

¹⁴ R. J. Abraham, J. Chem. Soc. (B), 1969, 1022; M. G. Barlow, R. R. Dean, and J. Lee, Trans. Faraday Soc., 1969, **65**,

321.
¹⁵ R. K. Harris and N. Sheppard, Trans. Faraday Soc., 1963, 59, 606; R. K. Harris and C. M. Woodman, J. Mol. Spectroscopy, 1968, 26, 432.


J. W. Emsley and L. Phillips, Progr. N.M.R. Spectroscopy,

1971, 7, 1. ¹⁷ D. W. Osborne, F. Schreiner, and H. Selig, J. Chem. Phys., 1971, 54, 3790.

The $R_{\mathbf{F}}$ chemical shifts are as expected by comparison with the parent iodides.¹⁶ In the straight chain compounds substitution of an iodine atom by an IF_4 group results in increased shielding of the α ¹⁹F nuclei, but the reverse is the case for the $(CF_3)_2CF$ - compounds.

The mass spectra (Table 3) of these compounds are very similar to that of CF_3IF_4 , and extensive fragmentation is observed.

Decomposition of CF_3IF_4 .—This is rationalised by the following scheme. The formation of CF_4 and IF_3 can be

most simply explained by a fluorine transfer process. Evidence for the association of IF_{5} molecules in the liquid state via weak fluorine bridges has been mentioned above and is indicated also by heat capacity measurements.¹⁷ If similar interactions are present in solid CF3IF4 intermolecular fluorine transfer can be readily visualised. IF_3 is known to disproportionate below 20 °C to give I₂ and IF₅, IF being a possible intermediate,¹⁸ and a single broad peak, $\delta - 165$ p.p.m., in the n.m.r. spectrum of partially decomposed CF_3IF_4 , which disappears with time, is tentatively assigned to IF₃. In the presence of AsF_5 , CF_3IF_4 decomposes at -78 °C to give CF_4 and a thermally unstable solid which may be IF₃·AsF₅.

The presence of CF_3I as a decomposition product can be accounted for either by a series of F transfers from $CF_{3}IF_{4}$ to other species, or by C-I bond cleavage with ' IF '. The latter route is considered more likely for the following reasons. It explains the catalytic effect of I_2 and IF_5 on the decomposition. It is analogous to the reaction of CF_3IF_4 with hexafluoropropene at 20 °C which gives $(CF_3)_2$ CFI. This product is also formed from the reaction of CF_3 ·CF: CF_2 with an I_2 -IF₅ mixture or IF.¹⁹ A series of I-F bond cleavage reactions involving $\mathrm{CF}_3\mathrm{IF}_4$ would produce $\mathrm{CF}_3\mathrm{IF}_2$ as an intermediate which was not observed.

The increasing stability of R_FIF_4 to decomposition as the size of R_F increases is consistent with the proposed scheme and the decomposition of CF_3IF_2 is similarly envisaged with CF_4 and IF as the initial products. In contrast to the conclusions drawn previously 2a about the relative stabilities of R_FIF_2 and R_FIF_4 compounds, CF_3IF_2 decomposes more readily than does CF_3IF_4 .

Reactions of CF₃IF₄ with Methyl(methoxo)silanes.—In

¹⁸ (a) M. Schmeisser, W. Ludovici, D. Naumann, P. Sartori, and E. Scharf, *Chem. Ber.*, 1968, **101**, 4214; (b) M.Schmeisser, P. Sartori, and D. Naumann, *ibid.*, 1970, **103**, 590.
¹⁹ (a) R. D. Chambers, W. K. R. Musgrave, and J. Savory, *J. Chem. Soc.*, 1961, 3779; (b) M. Hauptschein and M. Braid, *J. Amer. Chem. Soc.*, 1961, **83**, 2383; (c) P. Sartori and A. J. Lehnen, *Chem. Ber.*, 1971, **104**, 2813.

common with many other high oxidation state fluorides ^{6,20} CF₃IF₄ reacts with trimethylmethoxo- or dimethyldimethoxo-silane in CCl₃F at 20 °C with the replacement of I-F by I-OMe groups and the formation of Me₃SiF or Me₂SiF₂. Reactions designed to produce individual members of the series CF₃IF_{4-n}(OMe)_n give colourless involatile liquids for which decomposition is apparent within 0.5 h at 20 °C giving HF as one product. They are stable in solution for longer periods. The species present are identified by their n.m.r. spectra (Table 4) and their mass spectra (Table 5) provide additional support.

Assignment of the ¹⁹F n.m.r. spectra is straightforward except for the signals in product (1) due to $CF_3IF_3(OMe)$ which are temperature dependent. At -80 °C a complete A_3M_2X spectrum is observed. At 20 °C neither attributable to P - 69, P - 31, or P - 19 are present. In product (2) m/e 277 (1) and 265 (1) are assigned to $CF_3IF(OMe)_2^+$ and $CF_3IF_2(OMe)^+$ respectively, in product (3) m/e 289 (<1) and 239 (3) are assigned to CF_3I - $(OMe)_3^+$ and $IF(OMe)_3^+$ respectively, and in product (4) m/e 251 (<1) is assigned to $I(OMe)_4^+$. Some assignments are ambiguous due to the identical mass numbers of OMe and CF, but they are reasonable in view of the likely order of bond energies and the mass spectrum of CF_3IF_4 .

Assuming that $CF_3IF_{4-n}(OMe)_n$ have square pyramidal structures with axial CF_3 groups and F and OMe ligands in equatorial positions, the unique F atom in CF_3IF_3 -(OMe) must be *trans* to the OMe group. Two structures having *cis* or *trans* OMe groups are possible for CF_3IF_2 -(OMe)₂. The $\delta(IF_2)$ value is more consistent with the

	N.m.r. sp	ectra of inv	olatile liquids from 1	eactions of CF	IF ₄ with methy	l(methoxo)silar	ies
	Reactan		Compounds	¹⁹ F Spin	Chemical shif		Coupling
No.	$[CF_3IF_4]$	[OMe] a	identified	system ^b	δ(¹⁹ F)	δ(¹ H)	constants/Hz
1	3.0	3.1	$CF_{3}IF_{4}$	$A_{3}X_{4}$	$-33 \cdot 4(F_X) -57 \cdot 6(F_A)$		${}^{3}J(AX)$ 18
			$CF_3IF_3(OMe)$	$\mathbf{A_{3}M_{2}X}$	$-7.0(\mathbf{F_{X}}) -46.5(\mathbf{F_{M}}) -56.6(\mathbf{F_{A}})$	3.91	${}^{3}J(AM) 17$ ${}^{3}J(AX) 25$ ${}^{2}J(MX) 113$
			$\mathrm{CF_3IF_2(OMe)_2}$	A_3X_2	$-23 \cdot 3(F_X)$ -59 · 1(F _A)]	${}^{3}J(AX) 24$
2	1.7	3.4	$\mathrm{CF_3IF_2(OMe)_2}$	$\mathbf{A_3X_2}$	$-21.9(F_X) -58.3(F_A)$	4.34	${}^{3}J(AX) 24$
3	1.8	$5 \cdot 4$	$\operatorname{CF_3IF_2(OMe)_2}^d$	$\Lambda_3 X_2$	$-21.0(F_x) - 58.2(F_A)$		
			$CF_3IF(OMe)_3$	$A_{3}\mathbf{X}$	$-\frac{33\cdot3(F_X)}{-56\cdot8(F_A)}$	$\left. \right\} 4.20$	³ <i>J</i> (AX) 22
4	1.25	5.0	$CF_{3}IF(OMe)_{3}$	$\Lambda_{3}X$	$-35.7(F_X) - 57.5(F_A)$	$\left.\right\}$ 4.15	³ <i>J</i> (AX) 22
			$CF_{3}I(OMe)_{4}$	A_3	-55.8	J	

TABLE 4

^{*a*} [Me₃SiOMe] or 2[Me₂Si(OMe)₂]. ^{*b*} Neglecting ¹H-¹⁹F coupling. ^{*c*} From CCl₃ internal or Me₄Si external. ^{*d*} Product ratio ca. 1:2.

the F_X signal nor F_A-F_X coupling in the F_A signal are observed. Usually F_A-F_M coupling is not observed in the F_M signal at 20 °C, but it is always observed in the F_A signal. The spectral changes are completely reversible. Thus the unique F atom of the $-IF_3$ group undergoes intermolecular exchange more readily than the other two, and is possibly subject to more efficient quadrupolar relaxation by ¹²⁷I.

Separate ¹H signals due to the chemically different -OMe groups in products (1), (3), and (4) were not observed, either due to rapid exchange between species, or because of very small chemical shift differences. However a ¹H-{¹⁹F} double resonance experiment on product (4) indicates the presence of a very small ¹H-¹⁹F coupling in CF₃I(OMe)₄.

The products' mass spectra (Table 5) show qualitative differences with increasing substitution, for example the base peak in products (1) and (2) is m/e 69 assigned to CF_3^+ , and in products (3) and (4) is m/e 29 assigned to CHO^+ . Parent ions were not observed but peaks

²⁰ E.g., R. Müller and D. Mross, Z. anorg. Chem., 1963, **324**, 78; R. J. Singer, M. Eisenhut, and R. Schmutzler, J. Fluorine Chem., 1971, **1**, 193 and references therein.

former which also would be favoured on statistical grounds. It is noteworthy that $\text{TeF}_4(\text{OMe})_2$ has a *cis*-configuration.²¹ However a *trans*-configuration might be expected because of the faster exchange observed for the unique F in $\text{CF}_3\text{IF}_3(\text{OMe})$. An unambiguous decision between the two is not possible, but we tentatively suggest that $\text{CF}_3\text{IF}_2(\text{OMe})_2$ has a *cis*-configuration, the *trans*-isomer being a possible intermediate in its formation.

The rates of the individual OMe for F substitutions are very different, for example the 1 : 1 reaction [reaction (1) in Table 4] is complete after 0.5 h at 20 °C but quantitative formation of $CF_3I(OMe)_4$ is not achieved even after 9 h. The presence of $CF_3IF_2(OMe)_2$ and CF_3IF_4 in addition to $CF_3IF_3(OMe)$ from reaction (1) is substantiated by the distribution of products observed at different times in reaction (3) (1 : 3 mole ratio). $CF_3IF_3(OMe)$ and $CF_3IF_2(OMe)_2$ are both detected at the same time. Both increase at the expense of CF_3IF_4 , the maximum concentrations of $CF_3IF_3(OMe)$ being observed *ca.* 1.5 h after it is first detected. Thereafter $CF_3IF_2(OMe)_2$ in-²¹ A. Clouston, R. D. Peacock, and G. W. Fraser, *Chem. Comm.*, 1970, 1197.

TABLE 5

Mass spectra of involatile liquids from the reactions of CF_3IF_4 with methyl(methoxo)silanes ^a

m e	Relative abundance	Assignment ⁸	m/e	Relative abundance	Assignment ^b
		Mole ratio $CF_{3}IF_{4}$:	[OMe] = 1:1		
265	1	CF ₃ IF ₂ OMe ⁺	165	10	IF_{2}^{+}
227	3	CF ₃ IOMe ⁺	158	7	$IOMe^+$
	Ū				CFI+
215	2	CF ₃ IF+	140	10	TD+
		IF ₃ OMe ⁺	146		${f IF^+}{f I^+}$
196	39	CF ₃ I+ IF ₂ OMe+	127	56	1'
189	2	$I(OMe)_2^+$	69	100	CF_{3}^{+}
184	ĩ	IF_3^+	31	35	OMe+
177	$2\overline{3}$	IFOMe+	29	56	OCH+
		CF_2I^+			
			(O)(]]] 0		
		Mole ratio CF_3IF_4 :		~-	TROLL
277	1	$CF_{3}IF(OMe)_{2}^{+}$	177	51	IFOMe ⁺
0.0r	1	CE IE OMat	165	17	$\mathrm{CF_{2}I^{+}}_{\mathrm{IF_{2}^{+}}}$
$\begin{array}{c} 265\\ 227 \end{array}$	$1 \\ 23$	CF ₃ IF ₂ OMe ⁺ CF ₃ IOMe ⁺	158	9	IOMe+
241	20	CI 310Me	100	v	CFI+
215	3	$CF_{3}IF^{+}$			
		IF ₃ OMe ⁺			
196	94	CF ₃ I+	157	3	IOCH ₂
105	0	IF_2OMe^+	146	17	IF^+
195	6	$IF_2OCH_2^+$	$\begin{array}{c} 146 \\ 127 \end{array}$	17 71	IF I+
189	6	$I(OMe)_2^+$	69	100	CF_{3}^{+}
184	1	IF_{a}^{+}	31	65	OMe+
101	-	3			CF^+
			29	77	OCH+
		Mole ratio CF_3IF_4 :		_	
289	< 1	$CF_{3}I(OMe)_{3}^{+}$	177	28	IFOMe ⁺
0.55	0	CE IE(OM-) +	165	5	$\mathrm{CF}_{2}\mathbf{I^{+}}$ IF_{2}^{+}
$\begin{array}{c} 277 \\ 239 \end{array}$	3 3	$CF_{3}IF(OMe)_{2}^{+}$ IF(OMe)_{3}^{+}	105	20	10^{11} 2 10^{10} Me^+
200	0	II (OMC/3	100	20	CFI+
265	11	CF ₃ IOMe ⁺			
		$IF_2(OMe)_2^+$	157	6	$IOCH_2^+$
215	1	CF ₃ IF ⁺	146	8	IF^+
		$\mathrm{IF}_{3}\mathrm{OMe^{+}}$	127	69	\mathbf{I}^+
196	37	$CF_{3}I^{+}$	127	09	1'
190	57	IF ₂ OMe ⁺	69	79	CF_{3}^{+}
195	2	IF ₂ OCH ₂ +	31	63	OMe+
					CF+
189	14	$I(OMe)_2^+$	90	100	0011+
			29	100	OCH+
		Mole ratio CF_3IF_4 :	[OMe] == 1 : 4		
289	<1	$CF_3I(OMe)_3^+$	177	13	IFOMe+
209	< 1	Cl'31(OMe)3	177	15	CF ₂ I+
277	<1	$CF_{3}IF(OMe)_{2}^{+}$			
			165	< 1	IF_{2}^{+}
251	< 1	$I(OMe)_4^+$			
			158	19	IOMe ⁺
239	1	IF(OMe) ₃ +			CFI+
209	1	II (Ome) ₃	157	7	IOCH ₂ +
227	4	$\mathrm{IF}_2(\mathrm{OMe})_2^+$	146	$\dot{2}$	IF ⁺
		$CF_{3}IF(OMe)_{2}^{+}$			
			127	41	I+
196	25	CF ₃ I+	a ^		
100	ი	IF_2OMe^+	69 21	31	CF ₃ +
189	3	$I(OMe)_2^+$	31	100	OMe+ CF+
			29	100	OCH+
					0.011

^a Source temperatures (1) 147; (2) 75; (3) 127; (4) 110 °C. ^b In some cases are ambiguous due to the identical mass numbers of CF and OCH₃. Assignments made are those which appear to be most reasonable.

creases at the expense of both CF_3IF_4 and $CF_3IF_3(OMe)$ and after a further 1 h is the only species observed. Additional substitution occurs very slowly and after a further 3.5 h the ratio $CF_3IF(OMe)_3 : CF_3IF_2(OMe)_2$ is ca. 2:1. These observations strongly imply that CF_3IF_3 -(OMe) undergoes a redistribution reaction according to equation (2) which is consistent with the lability of the unique F atom.

$$2CF_3IF_3(OMe) \longrightarrow CF_3IF_2(OMe)_2 + CF_3IF_4$$
 (2)

EXPERIMENTAL

Volatile compounds were manipulated in a Pyrex vacuum line equipped with PTFE-glass stop-cocks (Rotaflow or West-Glass) or in a Monel-metal vacuum line constructed from standard couplings and valves (Autoclave Engineers) and a Monel Bourdon Gauge (Helicoid). Reactions involving ClF₃ were carried out in Kel-F traps (Argonne National Laboratory) attached to the line *via* Hoke diaphragm valves. The line was calibrated with CO₂ and both line and traps were well seasoned with ClF₃ before use. Other reactions were performed in Pyrex vessels fitted with PTFE-glass stop-cocks. Involatile compounds were handled in a Lintott inert atmosphere box in which the concentrations of H₂O and O₂ were ≤ 10 p.p.m.

N.m.r. spectra were recorded using Perkin-Elmer R10 and Jeol C60-HL instruments at 60 MHz (¹H referred to Me₄Si) and 56·4 MHz (¹⁹F referred to CCl₃F). Chemical shifts are reported as δ values which are positive to low field of the reference. Mass spectra were obtained using a G.E.C./A.E.I. MS 12 instrument at 70 V, samples being introduced directly or *via* the gas inlet as appropriate. I.r. and laser Raman spectra were obtained using Perkin-Elmer 457 and Spex Ramalog instruments.

Chlorine trifluoride (Matheson), perfluoroalkyl iodides (Peninsular Chem Research or Fluorochem), and perfluoro-nhexane were used as received. Methylmethoxosilanes (Pierce) and organic solvents were degassed, dried over molecular sieves (4A), and stored *in vacuo*. Microanalyses were by A. Bernhardt, W. Germany.

Preparation of Perfluoroalkyliodine(v) Tetrafluorides.— **Caution!** Care must be exercised in these reactions. On some occasions the mixture ignited and small explosions occurred. A mixture of CF_3I (4.6 mmol) and $n-C_6F_{14}$ (16.5 mmol) in a Kel-F trap attached to the Monel line was held at -78 °C. Gaseous ClF_3 (9.1 mmol) was added in small portions the time for the total addition being 0.5 h. Reaction was rapid to give a white solid and a greenish yellow solution. The mixture was allowed to warm to -40 °C over 14 h and the bulk of the liquid removed by distillation. The trap was transferred to a Pyrex line and the contents distilled onto NaF. Fractional distillation of the mixture gave a white solid, identified as trifluoromethyliodine(v) tetrafluoride, as the least volatile component.

²² O. Risgin and R. C. Taylor, Spectrochim. Acta, 1959, **15**, 1036; J. K. Brown and K. J. Morgan, Adv. Fluorine Chem., 1965, **4**, 253.

Similarly prepared were $C_2F_5IF_4$, $(CF_3)_2CFIF_4$ m.p. 48 °C (Found: C, 9.6; F, 56.4; I, 34.0. $C_3F_{11}I$ requires C, 9.7; F, 56.2; I, 34.1%), and $n-C_4F_9IF_4$ which is liquid at 20 °C.

The vibrational spectrum of CF_3IF_4 was as follows: Raman (solid) ν_{max} , 1054(5), 754(10), 584(15), 553(50), 548(27), 298(7), 264(33), 220(3), 163(8), 105(2) cm⁻¹. I.r. (gas 2000—400 cm⁻¹) ν_{max} , 1260vs, 1237m, 1187m, 1068vs, 1028wsh, 845m, 756s, 736sh, 646m, 599vs, 488w cm⁻¹. The i.r. spectra of other R–IF₄ compounds contained bands characteristic of the R_F group,²² and a strong band *ca*. 600 cm⁻¹ which appeared to be characteristic of the IF₄ group.

Decomposition of R_FIF_4 —Decomposition of CF_3IF_4 at 20 °C was followed in the gas phase by i.r. spectroscopy, in the solid state by monitoring the i.r. spectrum of the volatile products, and in CCl_3F solution by n.m.r. spectroscopy. Decomposition of impure samples was detectable within 0.5 h, but that of pure samples was much slower. $C_2F_5IF_4$ Behaved similarly, the products being C_2F_5I , C_2F_6 , IF_5 , and I_2 .

Reactions of CF_3IF_4 .—(a) Hydrolysis. In ethanolic KOH the products were CHF_3 and a sparingly soluble white solid containing positive I and C-F groups. Similar solids were obtained from other R_FIF_4 hydrolyses and have been formulated previously ^{2a} as impure $(R_F)_2I^+$ compounds.

(b) With hexafluoropropene. CF_3IF_4 Reacted slowly with C_3F_6 over 2 days at 20 °C to give $(CF_3)_2CFI$, identified by its mass spectrum m/e 296 (17) assigned to $C_3F_7I^+$ and i.r. spectrum which distinguishes it from $CF_3CF_2CF_2I$.^{19a,b} Decomposition products of CF_3IF_4 were also formed. U.v. irradiation had no effect on the reaction rate or products. $C_2F_5IF_4$ Reacted similarly but more slowly.

(c) With arsenic pentafluoride. A vigorous reaction occurred at -78 °C to give CF₄ as the sole volatile product and a red-brown solid, soluble in IF₅ giving a green solution, which contained As, F, and I. It appeared to be similar to the previously reported IF₃·AsF₅.^{18a}

(d) With trimethylmethoxo- or dimethyldimethoxo-silane. The reaction stoicheiometries and identities of the iodinecontaining products are given in Table 4. Reaction times were as follows: reaction (1) 0.5 h, reaction (2) 0.75 h, reaction (3) 6.5 h, and reaction (4) 9 h. Quantitative formation of fluoromethylsilane was observed only in reaction (1). The course of reaction (3) was followed by transferring a sample to an n.m.r. tube *in vacuo* and recording its ¹⁹F spectrum after various times.

The i.r. spectra of the liquid products were all very similar and showed the presence of CF₃, I-F, and OMe groups. That of CF₃IF₂(OMe)₂ [reaction (2)] was as follows: ν_{max} . (4000-400 cm⁻¹) 2985sh, 2945s, 2812s, 2292m, 1452sh, 1440s, 1217vs, 1044w, 1062vs, 972vs, 837s, 746vs, 500vs,br cm⁻¹.

We thank Mr. J. Pirie for help in constructing the metal line and the S.R.C. for a grant towards the purchase of n.m.r. and Raman equipment, and for a maintenance award (to G. O.).

[3/1532 Received, 23rd July, 1973]

© Copyright 1974 by The Chemical Society