Crystal Structure and Physicochemical properties of a Mixed-chelated Nickel Complex: Aquo-\{o-[(2-pyridylmethylene)amino]benzamide\}-[2-(2-pyridyl)-1,2,3,4-tetrahydroquinazolin-4-one]nickel(II) Dinitrate Tetrahydrate

By Anna Bonamartini Corradi, Clotilde Grasselli Palmieri, Mario Nardelli,* and Corrado Pelizzi, Istituto di Chimica Generale ed Inorganica, Centro di Studio per la Strutturistica Diffrattometrica del C.N.R., Parma, Italy

Abstract

The title compound has been prepared and its spectroscopic and magnetic properties and X-ray structure have been studied. The structure was solved from diffractometer data by Patterson and Fourier methods and refined by least-squares techniques to $R 6.3 \%$ for 6530 independent reflexions. Crystals are triclinic, space group $P \bar{T}$. with unit-cell dimensions: $a=15 \cdot 49(1), b=13 \cdot 00(1), c=8 \cdot 99(1) \AA, \alpha=95 \cdot 3(1), \beta=105 \cdot 3(1), \gamma=110 \cdot 8(1)^{\circ}$, $Z=2$. Co-ordination around Ni is octahedral and involves two different organic ligands and a water molecule. The 0 -aminobenzamide ligand is terdentate $[\mathrm{Ni}-\mathrm{O}(1) 2.028, \mathrm{Ni}-\mathrm{N} 2.082 .2 .067 \mathrm{~A}$] and the quinazolinone ligand is bidentate ($\mathrm{Ni}-\mathrm{N} 2 \cdot 164,2.068 \AA$). Packing is determined by a hydrogen bond system and by van der Waals contacts.

The terdentate ligand o-[(2 -pyridylmethylene)amino]benzamide (I) has been prepared by condensing o-aminobenzamide with pyridine-2-carbaldehyde. When this compound is dissolved in methanol solution in presence of nickel(II) nitrate, it partly undergoes a cyclisation

(I)
reaction to give (II). A metal complex (III) containing the two different organic ligands, the Schiff's base (I) and the cyclic derivative (II), is formed, as deduced from an X-ray structural analysis which we now report.

(II)

EXPERIMENTAL

Preparation of (I).-Equimolar quantities of o-aminobenzamide and pyridine-2-carbaldehyde, in benzene were heated under reflux for 2 h . The crude product, obtained by evaporating the solution almost to dryness, was recrystallized from hot acetone, m.p. $155{ }^{\circ} \mathrm{C}$ (Found: C, $69.35 ; \mathrm{H}, 5 \cdot 1$; $\mathrm{N}, 18.9$. Calc. for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 69.3$; $\mathrm{H}, 5 \cdot 35 ; \mathrm{N}, 18.65 \%$).
Preparation of $\mathrm{Ni}^{\mathrm{II}}$ Complex.-(I) dissolved in methanol, was slowly added to nickel nitrate hexahydrate (molar ratio $2: 1$) in methanol. The solution was heated under reflux for 30 min , allowed to evaporate at room temperature, for 2 days, when brown prismatic crystals had been deposited. [Found: $\mathrm{C}, 43.2$; $\mathrm{H}, 4.45$; $\mathrm{N}, 15.35$; $\mathrm{Ni}, 8.1$. $\mathrm{Ni}\left(\mathrm{C}_{26} \mathrm{H}_{22}{ }^{-}\right.$ $\left.\mathrm{N}_{6} \mathrm{O}_{2}\right)\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}$ requires $\mathrm{C}, 43 \cdot 2 ; \mathrm{H}, 4 \cdot 45 ; \mathrm{N}, 15 \cdot 5 ; \mathrm{Ni}$, 7.75]. The room-temperature magnetic susceptibility was
measured on a Gouy balance. Diamagnetic corrections were calculated from Pascal's constants. ${ }^{1}$
I.r. and electronic spectra were recorded on PerkinElmer 457 and 402 spectrophotometers respectively. X-Ray intensity data were collected on a Siemens AED single-crystal computer-controlled diffractometer.

Crystal Properties.-.The compound gives brown triclinic flattened prisms showing pleochroic effects: when examined with plane-polarized light, looking down [010], the colour changes from brown to pale yellow when the electric vector vibrates perpendicular or parallel to the elongation, [001], respectively. Cell dimensions were determined from rotation and Weissenberg photographs, and refined from diffractometer measurements.

Crystal Data.- $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{8} \mathrm{NiO}_{13}, \quad M=723, a=15 \cdot 49(1)$, $b=13 \cdot 00(1), \quad c=8.99(1) \AA, \quad \alpha=95 \cdot 3(1), \quad \beta=105 \cdot 3(1)$, $\gamma=110.8(1)^{\circ}, U=1607 \AA^{3}, D_{\mathrm{m}}=1.52, Z=2, D_{\mathrm{c}}=1.49$, $F(000)=712$. Space group $P \overline{1} . \quad \mathrm{Cu}-K_{\alpha}$ radiation, $\bar{\lambda}=$ $1 \cdot 5418 \AA ; \mu\left(\mathrm{Cu}-K_{\alpha}\right)=15 \cdot 2 \mathrm{~cm}^{-1}$.

Data Collection.-Intensity data were collected by the $\theta-20$ scan technique by use of $\mathrm{Cu}-K_{\alpha}$ radiation. The sample was aligned with its [001] axis along the ϕ axis of the diffractometer and all reflexions with $2 \theta \leqslant 140^{\circ}$ were collected. In this way 6530 reflexions were measured, of which only 5650 , having $I>2 \sigma(I)$, were used in the analysis. No absorption correction was used, the crosssection of the crystal being $0.12 \times 0.07 \mathrm{~mm}^{2}$. After the usual data reduction, intensities were put on an absolute scale, first by Wilson's method, then by comparison with the calculated values.

Structure Analysis.-The structure was solved by the heavy-atom technique, starting from the nickel co-ordinates obtained from a three-dimensional Patterson calculation. A three-dimensional Fourier synthesis then gave the coordinates of all other non-hydrogen atoms. Least-squares refinement was then commenced, the function minimized being $\Sigma w|\Delta F|^{2}$. In this way R improved to $8 \cdot 3 \%$, when a difference-Fourier calculation enabled resolution of all hydrogen-atom positions. Further refinement reduced R to the final value of 6.3%. Final atomic co-ordinates and thermal parameters are given in Tables 1 and 2. Observed and calculated structure factors, are listed in Supplementary Publication No. SUP 20793 (28 pp., 1 microfiche).

* See Notice to Authors No. 7 in J.C.S. Dalton, 1972, Index issue.
${ }^{1}$ J. Lewis and R. G. Wilkins, ' Modern Co-ordination Chemistry,' Interscience, New York, 1964, p. 403.

Table 1
Fractional atomic co-ordinates $\left(\times 10^{4}\right)$ and thermal parameters $*\left(\times 10 \AA^{2}\right)$ for non-hydrogen atoms, with estimated

	x / a	y / b	z / c	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
Ni	2048(1)	3232(1)	1801(1)	35(1)	38(1)	29(1)	15(1)	12(1)	7(1)
$\mathrm{O}(1)$	3491 (2)	3872(2)	3030(3)	22(1)	40(1)	17(1)	14(1)	8(1)	5(1)
$\bigcirc(2)$	5127(2)	6167(2)	1382(3)	22(1)	$33(1)$	$22(1)$	9(1)	6(1)	$-1(1)$
$\mathrm{O}(3)$	640 (2)	3348(3)	7176(4)	41 (1)	$50(2)$	$51(2)$	26(1)	-2(1)	0(1)
$\mathrm{O}(4)$	401 (3)	4648 (3)	8405 (5)	$63(2)$	$74(2)$	$55(2)$	$38(2)$	2(2)	$-14(2)$
$\mathrm{O}(5)$	-429(3)	3887(4)	6014(4)	$59(2)$	108(3)	44(2)	$57(2)$	0(1)	12(2)
$\mathrm{O}(6)$	4046(4)	10012(4)	6422(7)	$94(3)$	$20(3)$	132(4)	7 (2)	61 (3)	$2(3)$
$\mathrm{O}(7)$	3207(5)	9142(5)	7746(8)	225(6)	92(3)	105(5)	97(4)	131(5)	62 (3)
$\mathrm{O}(8)$	2630(3)	9345(4)	5358(7)	$85(3)$	91 (3)	116(4)	44(2)	$20(3)$	-40(3)
$\mathrm{O}(9)$	1993(2)	1926(2)	3012 (3)	$35(1)$	$35(1)$	$35(1)$	16(1)	17(1)	18(1)
$\mathrm{O}(10)$	570 (3)	8711(3)	4817(4)	$65(2)$	$45(2)$	57(2)	23(1)	17(2)	$3(1)$
O(11)	368(2)	417(3)	3267(4)	43 (1)	$54(2)$	$55(2)$	10(1)	$21(1)$	16(1)
$\mathrm{O}(12)$	3454(3)	1106(4)	3441 (5)	88(3)	84(2)	71 (2)	60(2)	27(2)	16(2)
$\mathrm{O}(13)$	4295(4)	481 (5)	1260(7)	116(4)	107(4)	117(1)	58(3)	$50(3)$	$22(3)$
N(1)	4218(2)	3551 (3)	5302(3)	$29(1)$	40 (1)	20 (1)	19(1)	7(1)	$5(1)$
N(2)	1813(2)	4098(2)	3618(3)	$26(1)$	29(1)	19(1)	15(1)	10(1)	$6(1)$
N(3)	543(2)	2612(2)	1057(3)	24(1)	30(1)	$25(1)$	10(1)	8(1)	$8(1)$
$\mathrm{N}(4)$	2213(2)	$4511(2)$	396(3)	20(1)	23(1)	19(1)	10(1)	8(1)	$3(1)$
$N(5)$	3738(2)	4749(2)	-32(3)	19(1)	24(1)	19(1)	8(1)	8(1)	$1(1)$
N(6)	2190(2)	2408(2)	-143(3)	$26(1)$	22(1)	20(1)	11(1)	10(1)	3(1)
N(7)	200(2)	3971 (3)	7201(4)	28(1)	43(2)	31 (1)	18(1)	6(1)	$4(1)$
N(8)	3275(4)	9473(4)	6536(7)	94(3)	58(2)	$89(3)$	44(2)	49(3)	$10(2)$
C(1)	3720 (2)	4062(3)	4494(4)	20 (1)	33(2)	$21(1)$	10(1)	9(1)	7 (1)
C(2)	3463(2)	4885(3)	5375(4)	28(1)	28(2)	19(1)	11 (1)	10(1)	$6(1)$
C(3)	4176(3)	5674(3)	6669(4)	29(1)	33(2)	20(1)	8(1)	8(1)	7 (1)
$\mathrm{C}(4)$	3992 (3)	$6515(3)$	7432(4)	$42(2)$	$29(2)$	$24(2)$	8(1)	$9(1)$	$3(1)$
C(5)	3037(3)	6555(3)	6936(5)	52(2)	$33(2)$	28(2)	21 (2)	13(2)	$3(1)$
C(6)	2361 (3)	$5764(3)$	5698(4)	$39(2)$	36 (2)	$25(2)$	$21(1)$	10(1)	$4(1)$
$\mathrm{C}(7)$	2541 (2)	4916(3)	4909(4)	$28(1)$	28(1)	17(1)	13(1)	$9(1)$	5 (1)
C(8)	916(2)	3816 (3)	3505(4)	$26(1)$	$34(2)$	26(1)	15(1)	11(1)	8(1)
C(9)	194(2)	3011 (3)	2118(4)	$24(1)$	$33(2)$	29(2)	12(1)	12(1)	$11(1)$
C(10)	-797(3)	2680(4)	1903(5)	$25(2)$	46(2)	43(2)	14(1)	12(1)	13(2)
C(11)	-1438(3)	1925(4)	550(6)	$27(2)$	$46(2)$	$50(2)$	$11(1)$	7 (2)	18(2)
C(12)	-1079(3)	1527(4)	-526(5)	3 l (2)	37(2)	40(2)	7(1)	$2(1)$	10(2)
C(13)	-80(3)	1888(3)	-229(5)	$28(2)$	$32(2)$	$31(2)$	5(1)	$5(1)$	5 (1)
C(14)	2644(2)	$5653(3)$	1219(4)	28(1)	24(1)	18(1)	13(1)	$9(1)$	7 (1)
C(15)	$2036(3)$	6134(3)	1793(4)	36(2)	$30(2)$	29(2)	$21(1)$	14(1)	$9(1)$
C(16)	2541 (3)	$7212(3)$	2697(5)	$47(2)$	34(2)	$34(2)$	$25(2)$	$16(2)$	7 (1)
C(17)	3524(3)	7819 (3)	3016(5)	$50(2)$	27(2)	$38(2)$	18(2)	$13(2)$	O(1)
$\mathrm{C}(18)$	4079(3)	7352 (3)	2415(5)	38(2)	26(1)	$32(2)$	12(1)	9 (1)	$2(1)$
$\mathrm{C}(19)$	3644(2)	6271(3)	1534(4)	$27(1)$	$25(1)$	20 (1)	12(1)	8 (1)	4(1)
$\mathrm{C}(20)$	4224(2)	$5735(3)$	948(4)	$24(1)$	27(1)	17(1)	$9(1)$	$8(1)$	6 (1)
C(21)	2684 (1)	4270(3)	-755(4)	$21(1)$	$24(1)$	$17(1)$	$8(1)$	$8(1)$	3(1)
C(2)	2395(2)	3013(3)	-1218(4)	18(1)	26(1)	18(1)	10 (1)	6(1)	$2(1)$
C(23)	$2402(3)$	2544(3)	-2663(4)	34(2)	$32(2)$	24(1)	12(1)	$13(1)$	1 (1)
C(24)	$2236(3)$	1423(3)	-2974(5)	$41(2)$	$32(2)$	29(2)	14(1)	$15(1)$	1(1)
C(25)	$2050(3)$	807(3)	-1857(6)	$46(2)$	26(2)	46(2)	16(1)	14(2)	-1(1)
C(26)	2017 (3)	1321 (3)	$-454(5)$	43 (2)	$25(1)$	$28(2)$	14(1)	14(1)	$\check{5}$ (1)

* Anisotropic thermal parameters are in the form: $\exp [-1) \cdot 25\left(B_{11} h^{2} a^{* 2}+B_{22} z^{2} b^{* 2}+B_{33} l^{2} c^{* 2}+2 B_{12} h k a^{*} b^{*} \cos \gamma^{*}+2 B_{13} h l a^{*} c^{*}\right.$ $\left.\left.\cos \beta^{*}+2 B_{33} z^{3} l b^{*} c^{*} \cos \alpha^{*}\right)\right]$

Atomic scattering factors were taken from ref. 2 for nonhydrogen atoms and from ref. 3 for hydrogen atoms. All calculations were performed on a CDC 6600 computer of the Centro di Calcolo Elettronico Interuniversitario dell'Italia Nord-Orientale (Bologna) using programs written by Immirzi. ${ }^{4}$

RESULTS AND DISCUSSION

I.R. Spectrum.--Table 3 lists the main i.r. absorption bands ($4000-250 \mathrm{~cm}^{-1}$) and their relative assignments for (I) and for the $\mathrm{Ni}^{\mathrm{II}}$ complex (III). The ligand spectrum displays characteristic bands which may be assigned to $\nu(\mathrm{NH}), \nu(\mathrm{C}: \mathrm{C})$, and $\nu(\mathrm{C}: \mathrm{N})$.

The spectrum of the nickel complex differs from that of the ligand in several features. In the $3000 \mathrm{~cm}^{-1}$ region a broad intense and multiple band is present
${ }^{2}$ D. T. Cromer and J. B. Mann, Acta Cryst., 1968, A24,
which can be assigned to $v(\mathrm{OH})$ and $v(\mathrm{NH})$. The frequencies of the four bands due to pyridine are increased significantly from the values for the free ligand as a consequence of $\mathrm{Ni}-\mathrm{N}$ co-ordination. The shifts of two amide bands (at 1655 and $1560 \mathrm{~cm}^{-1}$) to lower frequences indicate metal co-ordination through the amide-oxygen atom. The two bands at 1380 s and $823 \mathrm{~m} \mathrm{~cm}^{-1}$ can be attributed to $v(\mathrm{~N}-\mathrm{O})$ and $\delta\left(\mathrm{NO}_{3}\right)$ respectively indicating ionic nitrate groups.

Electronic Spectrum.-In the visible region only two bands (430 and 890 nm) are observed, which can be attributed to ${ }^{3} T_{1 g}(P) \leftarrow \leftarrow^{3} A_{2 g}\left(\nu_{3}\right)$ and ${ }^{3} T_{1 g} \nleftarrow^{3} A_{2 g}\left(\nu_{2}\right)$ transitions, for Ni^{2+} in an octahedral field. The u.v. region shows a band at $230-240 \mathrm{~nm}$ attributable to a $\pi-\pi^{*}$

[^0] Phys., 1965, 42, 3175.
${ }^{4}$ A. Immirzi, Ricerca sci., 1967, 37, 743.
transition and an intense band at $330-340 \mathrm{~nm}$ which is probably due primarily to an $\mathrm{M} \rightarrow \mathrm{L}$ charge transfer and also to an $n-\pi^{*}$ transition.

Table 2
Final atomic fractional co-ordinates $\left(\times 10^{3}\right)$ and isotropic thermal parameters ($\times 10 \AA^{2}$) for hydrogen atoms, with estimated standard deviations in parentheses

	x / a	y / b	z / c	B
H(1)	244(3)	176(3)	318(5)	49(10)
$\mathrm{H}(2)$	153(3)	148(3)	295(5)	38(9)
$\mathrm{H}(3)$	122(4)	883(4)	506(6)	$73(14)$
$\mathrm{H}(4)$	$23(4)$	810(4)	433(6)	77(14)
H(5)	24(4)	76(5)	368(7)	82(16)
$\mathrm{H}(6)$	41 (5)	$-25(5)$	372(8)	108(20)
$\mathrm{H}(7)$	387 (4)	105(4)	265(6)	69(14)
$\mathrm{H}(8)$	293(4)	46(5)	329(7)	80 (16)
$\mathrm{H}(9)$	477(4)	74(4)	253(6)	69(14)
$\mathrm{H}(10)$	435(3)	98(4)	42(6)	69(13)
$\mathrm{H}(11)$	429(3)	301 (3)	484(б)	38(9)
H(12)	439(3)	364 (3)	618(5)	40 (9)
$\mathrm{H}(13)$	478(3)	$562(3)$	703(5)	$35(9)$
H(14)	448(3)	710(3)	822(5)	46(10)
$\mathrm{H}(15)$	301 (3)	723(4)	733(5)	49(11)
$\mathrm{H}(16)$	171 (3)	581 (3)	524(5)	38(9)
$\mathrm{H}(17)$	68(3)	412(3)	403(5)	$35(9)$
$\mathrm{H}(18)$	$-99(3)$	296(3)	267(5)	47(10)
H(19)	-215(3)	164(4)	28(6)	56(12)
$\mathrm{H}(20)$	-145(3)	104(4)	-146(6)	57(12)
H(21)	$20(3)$	156(3)	$-91(5)$	44 (10)
$\mathrm{H}(22)$	139(3)	564(3)	150(5)	$33(9)$
$\mathrm{H}(23)$	217(3)	756(3)	308(5)	40 (10)
$\mathrm{H}(24)$	389 (3)	864(3)	362(5)	40(10)
$\mathrm{H}(25)$	474(3)	775 (3)	248(5)	40 (8)
$\mathrm{H}(26)$	402(3)	450(3)	-26(5)	36 (9)
$\mathrm{H}(27)$	261 (3)	461 (3)	$-161(5)$	$39(9)$
$\mathrm{H}(28)$	166(3)	437(3)	-8(5)	$32(9)$
$\mathrm{H}(29)$	259(3)	296(3)	-332(5)	35(9)
$\mathrm{H}(30)$	234(4)	105(4)	-398(6)	68(14)
H(3I)	192(3)	9(3)	-196(5)	46(10)
$\mathrm{H}(32)$	189 (3)	87(3)	34(4)	32(9)

$\mathrm{H}(1)$ and (2) are on $\mathrm{O}(9), \mathrm{H}(3)$ and (4) on $\mathrm{O}(10), \mathrm{H}(5)$ and (6) on $\mathrm{O}(11), \mathrm{H}(7)$ and (8) on $\mathrm{O}(12)$, and $\mathrm{H}(9)$ and (10) on $\mathrm{O}(13)$.

Table 3
Selected i.r. bands with tentative assignments for (I) and for the nickel complex (III)

(I)	(III) $3390 \mathrm{br}, \mathrm{s}$	Assignment $\nu(\mathrm{OH})$
3340 m		$\nu(\mathrm{NH})$
3180 m	$3180 \mathrm{br}, \mathrm{s}$	
1670 s	1655 vs	Amide (I)
1650 s		
1625 s	1560 m	Amide (II)
1590 m	1608 m	py (I)
1573 m	1580 m	py (II)
1500 s	1500 m	$\vee(\mathrm{C=N})$
1478 m	1475 m	py (III)
1450 m	1445 m	py (IV)
	1380 vs	$\nu(\mathrm{NO})$
1292 m		Amide (III)
	823 w	$\delta(\mathrm{NO})$

$\mathrm{br}=$ Broad, $\mathrm{m}=$ medium, $\mathrm{sh}=$ shoulder, $\mathrm{s}=$ strong, $\mathrm{vs}=$ very strong.

Magnetic Data.-The observed magnetic moment (3.08 B.M.) is in agreement with the values generally found for octahedral $\mathrm{Ni}^{\mathrm{Ir}}$ complexes.

X-Ray Structure.-Co-ordination around nickel is octahedral and involves two different organic ligands and a water molecule (Figure 1). The ligand (I) is terdentate
through the pyridine nitrogen, the azomethine nitrogen, and the amide oxygen, to form five- and six-membered chelate rings. The five-membered ring, $[\mathrm{Ni}, \mathrm{N}(2)$, $\mathrm{C}(8), \mathrm{C}(9), \mathrm{N}(3)]$ is planar and lies almost in the same plane of the pyridine ring [$\mathrm{N}(3), \mathrm{C}(9)-(13)]$ the dihedral angle they form being $2 \cdot 4^{\circ}$. In the six-membered ring $[\mathrm{Ni}, \mathrm{O}(1), \mathrm{C}(1), \mathrm{C}(2), \mathrm{C}(7), \mathrm{N}(2)]$ the atoms $\mathrm{C}(1), \mathrm{C}(7)$, and $O(1)$ are out of the mean plane by $-0.36,0.21$, $0 \cdot 19 \AA$. Ligand (II) is bidentate and co-ordinates through the pyridine and quinazoline nitrogen atoms forming a five-membered chelate ring [$\mathrm{Ni}, \mathrm{N}(4), \mathrm{C}(21)$, $\mathrm{C}(22), \mathrm{N}(6)$] which is nearly planar [displacements from the mean plane: $\mathrm{Ni}-0.01, \mathrm{~N}(4) 0.17, \mathrm{~N}(6) 0.63, \mathrm{C}(21)$ $-0 \cdot 27, C(22) 0.05 \AA]$.

The co-ordination octahedron is not perfectly regular, as indicated by the bond angles at nickel which are in

Figure 1 Clinographic projection of the cation
the range $79 \cdot 2-97 \cdot 2^{\circ}$. The $\mathrm{Ni}^{-} \mathrm{O}$ distances are in agreement with those usually found in other Ni-complexes; nevertheless the distance involving the oxygen of the co-ordinated water is slightly longer than the one involving that of the carbonyl. $\mathrm{Ni}-\mathrm{N}$ Distances involving trigonal nitrogen atoms are practically equal and sensibly shorter than $\mathrm{Ni}^{-} \mathrm{N}(4)$ which involves the tetrahedral quinazoline nitrogen.

The aromatic rings are all planar and bond distances in them are generally in good agreement with those usually found in aromatic systems. In the $\mathrm{N}(2)$, $\mathrm{C}(7)-(9)$ bridging group, the double bond is localized mainly between $\mathrm{N}(2)-\mathrm{C}(8)$, even if some conjugation is spread through the $\mathrm{C}(7)-\mathrm{N}(2)$ and $\mathrm{C}(8)-\mathrm{C}(9)$ bonds which are slightly shorter than the single bonds [theoretical values: $\left.\sigma\left(\mathrm{C} s p^{2} \sim \mathrm{~N} s p^{2}\right) 1 \cdot 44, \sigma\left(\mathrm{C} s p^{2}-\mathrm{C} s p^{2}\right) 1 \cdot 48 \AA\right]$.

Figure 2 Projection of the structure along [001]

The amide group is planar and rotated by 46° with respect to the benzene ring to which it is attached. In the quinazoline ligand, the pyridine ring is rotated by $67 \cdot 4^{\circ}$ with respect to the benzene plane of the quinazoline moiety. There is some π-delocalization along $\mathrm{O}(2)$, $\mathrm{C}(20), \mathrm{N}(5)$. The $\mathrm{N}(4)$ atom assumes a tetrahedral configuration as a consequence of co-ordination, the angles around it (including those involving hydrogen) being in the range $101-117^{\circ}$. Bond angles around the oxygen atom of the co-ordinated water molecule $[\mathrm{Ni}-\mathrm{O}(9)-\mathrm{H}(1)$ 116.7, $\left.\mathrm{Ni}-\mathrm{O}(9)-\mathrm{H}(2) 127 \cdot 5, \mathrm{H}(1)-\mathrm{O}(9)-\mathrm{H}(2) 115 \cdot 3^{\circ}\right]$ indicate some trigonal instead of tetrahedral character, and this is possibly due to some π character in the $\mathrm{Ni}-\mathrm{O}(9)$ bond. This water molecule forms two hydrogen bonds with the $O(11)$ and $O(12)$ water molecules. These molecules and that corresponding to $\mathrm{O}(10)$ and $\mathrm{O}(13)$, form the hydrogen bond system shown in Figures 2 and 3. This system also involves the oxygen atoms of the nitrate ions, as well as those of the water molecules. Contacts involving hydrogen are given in Table 4. The two $\mathrm{NO}_{3}{ }^{-}$groups are not equivalent, one $[\mathrm{N}(8), \mathrm{O}(6)-(8)]$ showing some disorder, as indicated by the exceptionally high thermal parameters. Packing is due to hydrogen
bonds and to normal van der Waals contacts, the most significant of which are quoted in Table 5.

Table 4
Bond distances (\AA) and angles $\left({ }^{\circ}\right)$, with standard deviations in parentheses
(a) In the co-ordination polyhedron
(i) Distances

$\mathrm{Ni}-\mathrm{O}(1)$	2.028(3)	$\mathrm{Ni}-\mathrm{N}(3)$	$2 \cdot 067(4)$
$\mathrm{Ni}-\mathrm{O}(9)$	2.089(4)	$\mathrm{Ni}-\mathrm{N}(4)$	$2 \cdot 164(4)$
$\mathrm{Ni}-\mathrm{N}(2)$	2.082(4)	$\mathrm{Ni}-\mathrm{N}(6)$	$\because \cdot 068(4)$
(ii) Angles			
$\mathrm{O}(1)-\mathrm{Ni}-\mathrm{O}(9)$	84.0(8)	$\mathrm{O}(9)-\mathrm{Ni}-\mathrm{N}(6)$	93.6(3)
$\mathrm{O}(1)-\mathrm{Ni}-\mathrm{N}(2)$	89.4(2)	$\mathrm{N}(2)-\mathrm{Ni}-\mathrm{N}(3)$	79.2(3)
$\mathrm{O}(1)-\mathrm{Ni}-\mathrm{N}(4)$	93-1(3)	$\mathrm{N}(2)-\mathrm{Ni}-\mathrm{N}(4)$	96.7(3)
$\mathrm{O}(1)-\mathrm{Ni}-\mathrm{N}(6)$	94.6(3)	$\mathrm{N}(3)-\mathrm{Ni}-\mathrm{N}(4)$	94.7(3)
$\mathrm{O}(9)-\mathrm{Ni}-\mathrm{N}(2)$	$90 \cdot 0(3)$	$\mathrm{N}(3)-\mathrm{Ni}-\mathrm{N}(6)$	97.2(3)
$\mathrm{O}(9)-\mathrm{Ni}-\mathrm{N}(3)$	89.5(3)	$\mathrm{N}(4)-\mathrm{Ni}-\mathrm{N}(6)$	79.9(2)
(b) In the ligand (I)			
(i) Distances			
$\mathrm{O}(1)-\mathrm{C}(1)$	1.246(4)	$\mathrm{C}(7)-\mathrm{N}(2)$	1-407(4)
$\mathrm{N}(1)-\mathrm{C}(1)$	1-312(6)	$\mathrm{N}(2)-\mathrm{C}(8)$	1-277(5)
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.498(6)$	$\mathrm{C}(8)-\mathrm{C}(9)$	1-447(5)
$\mathrm{C}(2)-\mathrm{C}(3)$	1-387(5)	$\mathrm{C}(9)-\mathrm{C}(10)$	1-392(6)
$\mathrm{C}(3)-\mathrm{C}(4)$	1-390(7)	$\mathrm{C}(10)-\mathrm{C}(11)$	1-371(6)
$\mathrm{C}(4)-\mathrm{C}(5)$	1-376(7)	$\mathrm{C}(11)-\mathrm{C}(12)$	1-382(8)
$\mathrm{C}(5)-\mathrm{C}(6)$	$1 \cdot 367$ (5)	$\mathrm{C}(12)-\mathrm{C}(13)$	$1 \cdot 389$ (6)
$\mathrm{C}(6)-\mathrm{C}(7)$	1-405(7)	$\mathrm{C}(13)-\mathrm{N}(3)$	1.311(5)
$\mathrm{C}(7)-\mathrm{C}(2)$	1-394(6)	$\mathrm{N}(3)-\mathrm{C}(9)$	1.361(5)

Table 4 (Continued)

(ii) Angles

$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{Ni}$	116.9(5)	$\mathrm{C}(8)-\mathrm{N}(2)-\mathrm{Ni}$	114.2(5)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{N}(1)$	$119.7(7)$	$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(8)$	120.0(7)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$121.8(7)$	$\mathrm{N}(2)-\mathrm{C}(8)-\mathrm{C}(9)$	$117.8(7)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$118.5(8)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	121.0(7)
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(3)$	$118.5(7)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{N}(3)$	116.2(7)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$120 \cdot 7(8)$	$\mathrm{N}(3)-\mathrm{C}(9)-\mathrm{C}(10)$	122.9(9)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	120-2(9)	$\mathrm{C}(9)-\mathrm{N}(3)-\mathrm{Ni}$	112-4(5)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	120.2(8)	$\mathrm{Ni}-\mathrm{N}(3)-\mathrm{C}(13)$	128.9(7)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$120 \cdot 1(8)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	117.3(6)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(2)$	120.1(9)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	119.2(9)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(2)$	121.5(8)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	120.1(9)
$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{N}(2)$	118.4(7)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{N}(3)$	$121 \cdot 5(8)$
$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{Ni}$	$125 \cdot 8$	$\mathrm{C}(13)-\mathrm{N}(3)-\mathrm{C}(3)$	118.7

(c) In the ligand (II)
(i) Distances
$\mathrm{C}(14)-\mathrm{C}(15)$
$\mathrm{C}(15)-\mathrm{C}(16)$
$\mathrm{C}(16)-\mathrm{C}(17)$
$\mathrm{C}(17)-\mathrm{C}(18)$
$\mathrm{C}(18)-\mathrm{C}(19)$
$\mathrm{C}(19)-\mathrm{C}(14)$
$\mathrm{C}(19)-\mathrm{C}(20)$
$\mathrm{C}(20)-\mathrm{O}(2)$
$\mathrm{C}(20)-\mathrm{N}(5)$

(ii) Angles

$\mathrm{C}(19)-\mathrm{C}(14)-\mathrm{C}(15)$	$120 \cdot 2(8)$	$\mathrm{C}(21)-\mathrm{N}(4)-\mathrm{C}(14)$	$113 \cdot 7(6)$
$\mathrm{C}(19)-\mathrm{C}(14)-\mathrm{N}(4)$	$119 \cdot 5(6)$	$\mathrm{Ni}-\mathrm{N}(4)-\mathrm{C}(14)$	$117 \cdot 2(4)$
$\mathrm{N}(4)-\mathrm{C}(14)-\mathrm{C}(15)$	$120 \cdot 2(7)$	$\mathrm{Ni}-\mathrm{N}(4)-\mathrm{C}(21)$	$108 \cdot 3(4)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$118 \cdot 9(8)$	$\mathrm{N}(4)-\mathrm{C}(21)-\mathrm{C}(22)$	$110 \cdot 2(5)$
$\mathrm{C}(14)-\mathrm{C}(16)-\mathrm{C}(17)$	$121 \cdot 0(8)$	$\mathrm{N}(6)-\mathrm{C}(22)-\mathrm{C}(23)$	$122 \cdot 6(8)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(18)$	$120 \cdot 2(9)$	$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21)$	$120 \cdot 5(7)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$119 \cdot 7(9)$	$\mathrm{N}(6)-\mathrm{C}(22)-\mathrm{C}(21)$	$116 \cdot 8(6)$
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(4)$	$119 \cdot 9(7)$	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	$118 \cdot 9(8)$
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(14)$	$119 \cdot 2(7)$	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	$118 \cdot 6(9)$
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	$120 \cdot 9(8)$	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	$119 \cdot 6(9)$
$\mathrm{O}(2)-\mathrm{C}(20)-\mathrm{C}(19)$	$122 \cdot 2(8)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(6)$	$121 \cdot 99)$
$\mathrm{O}(2)-\mathrm{C}(20)-\mathrm{N}(5)$	$120 \cdot 7(7)$	$\mathrm{C}(22)-\mathrm{N}(6)-\mathrm{C}(26)$	$118 \cdot 4(7)$
$\mathrm{C}(20)-\mathrm{N}(5)-\mathrm{C}(21)$	$123 \cdot 3(7)$	$\mathrm{C}(26)-\mathrm{N}(6) \mathrm{Ni}$	$125 \cdot 3(6)$
$\mathrm{N}(5)-\mathrm{C}(21)-\mathrm{N}(4)$	$110 \cdot 1(5)$	$\mathrm{Ni}-\mathrm{N}(6)-\mathrm{C}(22)$	$116 \cdot 0(5)$

(d) In the nitrate groups
(i) Distances

$\mathrm{N}(7)-\mathrm{O}(3)$	$\mathrm{I} \cdot 232(6)$	$\mathrm{N}(8)-\mathrm{O}(6)$	$1 \cdot 188(8)$
$\mathrm{N}(7)-\mathrm{O}(4)$	$1 \cdot 223(6)$	$\mathrm{N}(8)-\mathrm{O}(7)$	$1 \cdot 223(10)$
$\mathrm{N}(7)-\mathrm{O}(5)$	$1 \cdot 206(5)$	$\mathrm{N}(8)-\mathrm{O}(8)$	$1 \cdot 200(8)$
(ii) Angles			
$\mathrm{O}(3)-\mathrm{N}(7)-\mathrm{O}(4)$	$120 \cdot 2(9)$	$\mathrm{O}(6)-\mathrm{N}(8)-\mathrm{O}(7)$	$121 \cdot 1(1 \cdot 5)$
$\mathrm{O}(4)-\mathrm{N}(7)-\mathrm{O}(5)$	$121 \cdot 7(9)$	$\mathrm{O}(7)-\mathrm{N}(8)-\mathrm{O}(8)$	$128 \cdot 0(1 \cdot 6)$
$\mathrm{O}(3)-\mathrm{N}(7)-\mathrm{O}(5)$	$118 \cdot 1(9)$	$\mathrm{O}(6)-\mathrm{N}(8)-\mathrm{O}(8)$	$110 \cdot 9(1 \cdot 0)$

(e) Contacts involving hydrogen
(i) Distances

$\mathrm{O}(9) \cdots \mathrm{O}(12)$	$2 \cdot 78$	$\mathrm{H}(7) \cdots \mathrm{O}(13)$	1.77
$\mathrm{H}(1) \cdots \mathrm{O}(12)$	$2 \cdot 00$	$\mathrm{O}(13) \cdots \mathrm{O}\left(6^{\text {III }}\right)$	$3 \cdot 15$
$\mathrm{O}(9) \cdots \mathrm{O}(11)$	$2 \cdot 67$	$\mathrm{H}(9) \cdots \mathrm{O}\left(\mathrm{6III}^{\text {(}}\right.$	$2 \cdot 39$
$\mathrm{H}(2) \cdots \mathrm{O}(11)$	1.95	$\mathrm{O}(13) \cdots \mathrm{O}\left(7^{\text {III }}\right)$	$3 \cdot 15$
$\mathrm{O}(10) \cdots \mathrm{O}(8)$	$2 \cdot 89$	$\mathrm{H}(10) \cdots \mathrm{O}\left(7^{\text {IV }}\right.$)	$2 \cdot 88$
$\mathrm{H}(3) \cdots \mathrm{O}(8)$	1.98	$\mathrm{N}(1) \cdots \mathrm{O}(12)$	$3 \cdot 10$
$\left.\mathrm{O}(10) \cdots \mathrm{O} 3^{1}\right)$	$2 \cdot 77$	$\mathrm{H}(11) \cdots \mathrm{O}(12)$	$2 \cdot 38$
$\mathrm{H}(4) \cdots \mathrm{O}\left(3^{1}\right)$	1.99	$\mathrm{N}(1) \cdots \mathrm{O}\left(2^{111}\right)$	2.83
$\bigcirc(11) \cdots\left(10^{\text {II }}\right)$	2.79	$\mathrm{H}(12) \cdots \mathrm{O}\left(2^{\text {III }}\right)$	2.08
$1 \mathrm{~L}(5) \cdots \mathrm{O}\left(10^{\text {II }}\right)$	$2 \cdot 56$	$\mathrm{N}(5) \cdots \mathrm{O}\left(2^{\mathrm{v}}\right)$	$2 \cdot 89$
$\mathrm{O}(12) \cdots \mathrm{O}(13)$	$2 \cdot 83$	$\mathrm{H}(26) \cdots \mathrm{O}\left(2^{\mathbf{v}}\right)$	$2 \cdot 20$

Table 4 (Continued)

(ii) Angles

$\mathrm{O}(9)-\mathrm{H}(1)$.	$\mathrm{O}(12)$	172	$\mathrm{O}(13)-\mathrm{H}(9) \cdots \mathrm{O}\left(6^{\text {III }}\right.$)	3
$\mathrm{O}(9)-\mathrm{H}(2)$.	$\mathrm{O}(12)$	167	$\mathrm{O}(13)-\mathrm{H}(10) \cdots \mathrm{O}\left(7^{\text {IV }}\right)$	95
$\mathrm{O}(10)-\mathrm{H}(3)$	- O(8)	168	$\mathrm{N}(1)-\mathrm{H}(11) \cdots \mathrm{O}(12)$	144
$\mathrm{O}(10)-\mathrm{H}(4)$	$\cdots \mathrm{O} 3^{\text {I }}$	171	$\mathrm{N}(1)-\mathrm{H}(12) \cdots \mathrm{O}\left(2^{\mathrm{HII}}\right)$	178
$\mathrm{O}(11)-\mathrm{H}(5)$. O(10I)	120	$\mathrm{N}(5)-\mathrm{H}(26) \cdots \mathrm{O}\left(2^{\text {V }}\right.$)	69
$\mathrm{O}(12)-\mathrm{H}(7)$	- O(13)	161		

Roman numerals as superscripts refer to the following equivalent positions relative to the reference molecule at x, y, z :

$$
\begin{array}{ll}
\text { I } \bar{x}, 1-y, 1-z & \text { IV } x, y-1, z-1 \\
\text { II } x, y-1, z & \text { V } 1-x, 1-y, z
\end{array}
$$

Figure 3 Clinographic projection of hydrogen-bonded chains running along [001]

Table 5
Significant intermolecular contacts (\AA)

$\mathrm{O}(9) \cdots \mathrm{N}(1)$	$3 \cdot 23$	$\mathrm{O}(11) \cdots \mathrm{O}\left(10^{\mathrm{I}}\right)$	$2 \cdot 91$
$\mathrm{O}(12) \cdots \mathrm{O}(9)$	$3 \cdot 09$	$\mathrm{C}(11) \cdots \mathrm{O}\left(3^{\mathrm{V})}\right.$	$2 \cdot 95$
$\mathrm{~N}(4) \cdots \mathrm{O}\left(\mathbf{3}^{\mathrm{VI}}\right)$	$3 \cdot 08$	$\mathrm{C}(22) \cdots \mathrm{O}\left(3^{\mathrm{VI}}\right)$	$2 \cdot 92$
$\mathrm{~N}(4) \cdots \mathrm{O}\left(4 \mathbf{4 V}^{\mathrm{VI}}\right)$	$2 \cdot 98$	$\mathrm{O}(12) \cdots \mathrm{O}\left(6^{\mathrm{II}}\right)$	$3 \cdot 22$
$\mathrm{O}(5) \cdots \mathrm{O}\left(0^{\mathrm{I}}\right)$	$3 \cdot 31$	$\mathrm{C}(6) \cdots \mathrm{O}\left(5^{\mathrm{I}}\right)$	$3 \cdot 19$
$\mathrm{O}(8) \cdots \mathrm{O}\left(12^{\mathrm{VII}}\right)$	$3 \cdot 11$		
$\mathrm{VI} x, y, z-1$	$\mathrm{VII} x, y+1, z$		

Bond distances involving hydrogen atoms are in the usual range.
[3/735
Received, 9th April, 1973]

[^0]: ${ }^{3}$ R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem

