Compounds containing Platinum-Carbon Bonds. Part III. ${ }^{1}$ Crystal and Molecular Structure of trans-Chlorobis(dimethylphenylphosphine)(trimethylsilylmethyl)platinum(iI)

By Borjana Jovanović, Ljubica Manojlović-Muir, and Kenneth W. Muir," \dagger Department of Chemistry, University of Glasgow, Glasgow G12 800

Abstract

The crystal structure of the title compound has been determined from X-ray diffractometric data. Crystals are monoclinic, $a=8.919(4), b=21 \cdot 723(8), c=13.865(6) A, \beta=113.88(3)^{\circ}$, space group Cc. The structure was solved by the heavy-atom method and refined by full-matrix least squares to $R 0.039$ for 2573 independent reflections. The crystals contain discrete square planar $\left[\mathrm{PtCl}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ molecules. $\mathrm{Pt}-\mathrm{P}$, is $2 \cdot 293(3)$. $\mathrm{Pt}-\mathrm{Cl} 2 \cdot 415(5)$, and $\mathrm{Pt}-\mathrm{C} 2 \cdot 079(14) \mathrm{A}$.

As part of our investigations into the relative transinfluencing abilities of organic ligands ${ }^{\mathbf{1}}$ we have determined the crystal structure of the title compound by X-ray analysis. We expected that this work would also shed some light on the electronic effects of $\mathrm{Me}_{3} \mathrm{SiCH}_{2}^{-}$and related ligands in transition-metal complexes. A preliminary report has appeared. ${ }^{2}$

Spectroscopic data indicate that $\mathrm{Me}^{-}, \mathrm{Me}_{3} \mathrm{SiCH}_{2}{ }^{-}$, and $\mathrm{MePh}_{2} \mathrm{Si}^{-}$are ligands of high trans-influence in platinum(II) complexes and that the relative ability to weaken a trans-bond increases along the series: $\mathrm{Me}^{-} \simeq$ $\mathrm{Me}_{3} \mathrm{SiCH}_{2}{ }^{-} \ll \mathrm{MePh}_{2} \mathrm{Si}^{-} .2$ The exceptional trans-influence of $\mathrm{MePh}_{2} \mathrm{Si}^{-}$has been confirmed by a structure analysis of trans $-\left[\mathrm{PtCl}\left(\mathrm{SiMePh}_{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]{ }^{3}{ }^{3}$

There is evidence that $\mathrm{Me}_{3} \mathrm{SiCH}_{2}$ and Me substituents in organic compounds release electrons by an inductive mechanism to π-bonded or electron-deficient carbon atoms; however $\mathrm{Me}_{3} \mathrm{SiCH}_{2}$ is appreciably more electronreleasing than Me , and hyperconjugation involving the $\mathrm{Me}_{3} \mathrm{Si}-\mathrm{CH}_{2}$ bond has been invoked to explain this difference. ${ }^{4,5}$ Transition-metal complexes of the type ML_{n} ($\mathrm{L}=\mathrm{Me}_{3} \mathrm{SiCH}_{2}{ }^{-}$) are known to be appreciably more stable than corresponding complexes with $\mathrm{L}=$ $\mathrm{Me}^{-.}$. ${ }^{6-8}$ However, this effect is thought to be kinetic in origin and the importance of hyperconjugative electron release in $\mathrm{Me}_{3} \mathrm{SiCH}_{2}{ }^{-}$complexes of transition metals has yet to be demonstrated.

EXPERIMENTAL

Crystal Data.- $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{ClP}_{2} \mathrm{PtSi}, M=594 \cdot 1$, Monoclinic, $a=8.919(4), b=21.723(8), c=13.865(6) \AA, \beta=113.88(3)^{\circ}$, $U=2456 \AA^{3}, D_{\mathrm{m}}$ (by flotation) $=1 \cdot 63, Z=4, D_{\mathrm{c}}=1 \cdot 606$, $F(000)=1168$. Space group Cc. Mo- K_{α} radiation, $\lambda=$ $0.71069 \AA ; \mu\left(\mathrm{Mo}-K_{\alpha}\right)=62.9 \mathrm{~cm}^{-1}$.

Approximate unit-cell constants and the Bragg reflections extinguished because of space-group symmetry were determined from Weissenberg and precession photo-
\dagger No reprints available.
${ }^{1}$ Part II, B. Jovanović, Lj. Manojlović-Muir, and K. W. Muir, J.C.S. Dalton, 1972, 1178; Part I, B. Jovanović and Lj. Manoj-lović-Muir, ibid., p. 1176.
${ }_{2}$ M. R. Collier, C. Eaborn, B. Jovanović, M. F. Lappert, Lj. Manojlović-Muir, K. W. Muir, and M. M. Truelock, J.C.S. Chem. Comm., 1972, 613.
${ }_{3}$ R. McWeeny, R. Mason, and A. D. C. Towl, Discuss. Faraday Soc., 1969, 47, 20.
${ }^{4}$ C. G. Pitt, J. Organometallic Chem., 1970, 23, C35; Chen. Comm., 1971, 819.
${ }^{5}$ M. A. Cook, C. Eaborn, and D. R. M. Walton, J. Organometallic Chem., 1970, 24, 293.
graphs. The absences $h k l, h+k=2 n+1$ and $h 0 l, l=$ $2 n+1$, are consistent with the space groups $C 2 / c$ and $C c$. With $Z=4$ the former space group would require the platinum atom to have C_{2} or C_{i} site symmetry; either is incompatible, assuming no disorder, with the expected chemical structure. Accordingly, the space group $C c$ was initially chosen and this choice has been confirmed by a successful structure analysis.

Final values of the cell parameters and the intensities of all 3135 independent reflections with $\theta\left(\mathrm{Mo}-K_{\alpha}\right) \leqslant 28^{\circ}$ were measured on a Hilger and Watts Y 290 four-circle diffractometer by standard methods which we have previously described in detail. ${ }^{9}$ The crystal employed was plateshaped, with dimensions $0.53 \times 0.52 \times 0.22 \mathrm{~mm}$, and was set so that its a axis was approximately coincident with the diffractometer ϕ axis. To monitor crystal and electronic stability the intensities of two strong reflections were measured periodically throughout the experiment, but only random fluctuations of up to $\pm 3 \%$ of their mean values were observed.

The integrated intensities and their standard deviations were derived as described previously, ${ }^{9}$ and were corrected for Lorentz, polarisation, and absorption effects. The transmission factors on $\left|F_{0}\right|$, the observed structure amplitude, calculated by an analytical method, ${ }^{10}$ ranged from 0.34 to 0.57 .

A total of 2573 reflections for which $I \geqslant 3 \sigma(I)$ were used in the analysis.
Structure Analysis.-The position of the platinum atom was derived from a Patterson synthesis, and those of the other non-hydrogen atoms from subsequent difference syntheses.

The structure was refined by the method of full-matrix least squares. The function minimised was $\Sigma w \Delta^{2}$, where $\Delta=\left|\left|F_{0}\right|-\left|F_{0}\right|\right|$. The weights w were taken as the reciprocals of the variances of $\left|F_{\mathrm{o}}\right|$, as previously described. ${ }^{9}$ Atomic scattering factors from ref. 11 were used, except for those of hydrogen ${ }^{12}$ and platinum. ${ }^{13}$ Allowance was made for the anomalous scattering of the platinum,
${ }^{6}$ M. R. Collier, M. F. Lappert, and M. M. Truelock, J. Organometallic Chem., 1970, 25, C36; G. Yagupsky, W. Mowat, A. Shortland, and G. Wilkinson, Chem. Comm., 1970, 1369.
${ }^{7}$ F. Huq, W. Mowat, A. Shortland, A. C. Skapski, and G. Wilkinson, Chem. Comm., 1971, 1079.
${ }^{8}$ F. Huq, W. Mowat, A. C. Skapski, and G. Wilkinson, Chem. Comm., 1971, 1477.
${ }^{9}$ Lj. Manojlović-Muir, J. Chem. Soc. (A), 1971, 2796; K. W. Muir, ibid., p. 2663.
${ }_{10} \mathrm{~J}$. de Meulenaar and H. Tompa, Acta Cryst., 1965, 19, 1014.
${ }^{11}$ 'International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962.
${ }_{12}$ R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.
${ }^{13}$ D. T. Cromer and J. T. Waber, Acta Cryst., 1965, 18, 104.
chlorine, phosphorus, and silicon atoms, using values of Δf^{\prime} and $\Delta f^{\prime \prime}$ from ref. 14.

Refinement of the positional and isotropic thermal parameters of all non-hydrogen atoms converged at $R 0.073$ and $R^{\prime} 0 \cdot 100\left[R^{\prime}=\left\{\Sigma w \Delta^{2} / \Sigma w F_{0}{ }^{2}\right\}^{\frac{1}{2}}\right]$. Anisotropic thermal parameters for the atoms $\mathrm{Pt}, \mathrm{Cl}, \mathrm{P}(1), \mathrm{P}(2)$, and $\mathrm{C}(1)$ were then introduced into the refinement and R and R^{\prime} decreased to 0.047 and 0.060 . At this stage the chemically equivalent $\mathrm{Pt}-\mathrm{P}$ bond lengths were $2 \cdot 227(8)$ and $2 \cdot 362(7) \AA$. The coordinates of all atoms were reversed and with no increase in the number of parameters the inverted model was now refined; this led to $R 0.040$ and $R^{\prime} 0.053$, and the two $\mathrm{Pt}-\mathrm{P}$ distances became equal. Accordingly the second model was assumed to represent correctly the absolute configuration of the structure in the crystal used for the analysis. This model was further refined; the twelve non-methyl hydrogen atoms were included in the structure-factor

Table 1
Fractional atomic co-ordinates and vibrational parameters

	x / a	y / b	z / c	B / \AA^{2}
Pt	0	-0.13318(2)	$-1 / 4$	*
Cl	$-0.0030(8)$	-0.0387(2)	$-0.1589(4)$	*
$\mathrm{P}(1)$	$-0.0353(6)$	-0.1820(2)	-0.1139(3)	*
$\mathrm{P}(2)$	$0.0315(5)$	$-0.0737(2)$	$-0.3771(3)$	*
Si	$0 \cdot 2160$ (6)	-0.2486(2)	-0.2881(4)	*
C(1)	0.0103(21)	$-0.2150(6)$	-0.3248(11)	*
$\mathrm{C}(2)$	-0.2254(29)	$-0.1538(10)$	-0.1008(18)	6.1(4)
$\mathrm{C}(3)$	$0 \cdot 1331(26)$	$-0 \cdot 1652(10)$	$0 \cdot 0136(17)$	$5 \cdot 4(4)$
C(4)	$-0.0667(21)$	-0.2666(7)	-0.1121(13)	$4 \cdot 0(3)$
$\mathrm{C}(5)$	$0 \cdot 0428(26)$	$-0.3032(10)$	-0.0342(17)	5.5(4)
$\mathrm{C}(6)$	$0 \cdot 0038(38)$	$-0.3657(12)$	-0.0327(23)	$7 \cdot 4(6)$
C(7)	-0.1321(35)	-0.3883(12)	-0.1062(23)	7-7(6)
$\mathrm{C}(8)$	-0.2522(40)	-0.3496(13)	-0.1894(24)	7-2(6)
$\mathrm{C}(9)$	-0.2095(26)	$-0.2901(10)$	-0.1854(17)	5-2(4)
$\mathrm{C}(10)$	$0 \cdot 3234(26)$	-0.2141 (9)	-0.3665(16)	5-3(4)
C(11)	$0 \cdot 1913(38)$	$-0.3353(14)$	$-0.3162(23)$	7-2(6)
C(12)	$0 \cdot 3526(23)$	$-0 \cdot 2370(8)$	$-0.1461(15)$	4.7(3)
C(13)	-0.0960(21)	$-0.0041(8)$	$-0.4101(14)$	$4 \cdot 5(3)$
C(14)	-0.0168(23)	-0.1063(8)	-0.5061(14)	4.5(3)
C(15)	$0 \cdot 2378(20)$	$-0.0443(7)$	$-0.3351(12)$	3-8(3)
C(16)	$0 \cdot 3460(23)$	$-0.0509(8)$	-0.2296(14)	$4 \cdot 5(3)$
C(17)	$0.5119(27)$	-0.0286(9)	-0.1981(16)	5-2(4)
C(18)	$0 \cdot 5464(30)$	$0 \cdot 0034(12)$	$-0 \cdot 2660(20)$	6.5(5)
C(19)	$0 \cdot 4454(33)$	$0 \cdot 0114(12)$	$-0.3665(22)$	6.9(5)
$\mathrm{C}(20)$	$0 \cdot 2865(27)$	-0.0114(10)	-0.4026(18)	$5 \cdot 6(4)$

* These atoms were assigned anisotropic temperature factors of the form: $\exp \left[-10^{-4}\left(h^{2} \beta_{11}+k^{2} \beta_{22}+l^{2} \beta_{33}+2 h k \beta_{12}+\right.\right.$ $\left.\left.2 h l \beta_{13}+2 k l \beta_{23}\right)\right]$.

The final values of the $\beta_{i j}$ parameters are:

	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
	$134(1)$	$15(1)$	$39(1)$	$0(1)$	$24(1)$	$1(1)$
Pt	$321(12)$	$18(1)$	$68(3)$	$11(3)$	$62(5)$	$-9(1)$
Cl	$321(2)$	$43(3)$	$3(1)$			
$\mathrm{P}(1)$	$185(8)$	$20(1)$	$43(2)$	$8(2)$	$4(2)$	$19(3)$
$\mathrm{P}(2)$	$140(6)$	$15(1)$	$42(2)$	$-6(2)$	$2(1)$	
Si	$178(8)$	$18(1)$	$68(3)$	$7(2)$	$56(4)$	$1(1)$
$\mathrm{C}(1)$	$204(29)$	$14(3)$	$40(8)$	$-5(7)$	$45(12)$	$1(4)$

calculations in positions consistent with the known stereochemistry of $s p^{2}$ and $s p^{3}$ hybridised carbon atoms; adjustment of 129 positional and thermal parameters of the nonhydrogen atoms yielded final values of $R 0.039$ and $R^{\prime} 0.052$. In the final cycle of refinement all parameters shifted by $<0 \cdot 6 \sigma$, except for one which shifted by $1 \cdot 5 \sigma$. The final difference synthesis was featureless, except in the region of the platinum atom where the extreme function values were +0.96 and $-2.43 \mathrm{e}^{-3}$. The appropriateness of the weighting scheme was confirmed by an analysis of the mean

* See Notice to Authors No. 7 in J.C.S. Dalton, 1972, Index issue (items less than 10 pp . are supplied as full size copies).
${ }^{14}$ D. T. Cromer, Acta Cryst., 1965, 18, 17.
$w \Delta^{2}$ as a bivariate function of $\left|F_{0}\right|$ and $\sin \theta / \lambda$. Final atomic parameters and a selection of functions derived from them are presented in Tables 1-4. Observed and calculated structure factors are listed in Supplementary Publication No. SUP 20868 ($5 \mathrm{pp} ., 1$ microfiche).* A view of the molecular structure is shown in the Figure.

Computer programs used were C. K. Johnson's ORTEP, the ATLAS versions of J. M. Stewart's X-Ray ' 63 and

Table 2
Selected interatomic distances (\AA) and angles (${ }^{\circ}$)
(a) Bond lengths

$\mathrm{Pt}-\mathrm{Cl}$	2.415(5)	$\mathrm{Pt}-\mathrm{C}(1)$	2.079(14)
$\mathrm{Pt}-\mathrm{P}(1)$	$2 \cdot 294(5)$	$\mathrm{Pt}-\mathrm{P}(2)$	2.292(5)
$\mathrm{P}(1)-\mathrm{C}(2)$	1.880(28)	$\mathrm{P}(2)-\mathrm{C}(13)$	$1.835(19)$
$\mathrm{P}(1)-\mathrm{C}(3)$	$1.834(18)$	$\mathrm{P}(2)-\mathrm{C}(14)$	$1.807(20)$
$\mathrm{P}(1)-\mathrm{C}(4)$	$1.860(17)$	$\mathrm{P}(2)-\mathrm{C}(15)$	$1 \cdot 807(17)$
$\mathrm{Si}-\mathrm{C}(1)$	$1.844(19)$	Si -C(11)	$1.918(30)$
$\mathrm{Si}-\mathrm{C}(10)$	$1.872(27)$	$\mathrm{Si}-\mathrm{C}(12)$	$1.866(18)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.38(2)$	$\mathrm{C}(15)-\mathrm{C}(16)$	1-40(2)
$\mathrm{C}(5)-\mathrm{C}(6)$	1-40(4)	$\mathrm{C}(16)-\mathrm{C}(17)$	$1 \cdot 45(3)$
$\mathrm{C}(6)-\mathrm{C}(7)$	1-32(4)	$\mathrm{C}(17)-\mathrm{C}(18)$	1-30(4)
$\mathrm{C}(7)-\mathrm{C}(8)$	1-48(4)	$\mathrm{C}(18)-\mathrm{C}(19)$	1-33(3)
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.34(4)$	$\mathrm{C}(19)-\mathrm{C}(20)$	1.39(4)
$\mathrm{C}(9)-\mathrm{C}(4)$	1-37(2)	$\mathrm{C}(20)-\mathrm{C}(15)$	1/38(3)

$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{C}(1)$	93.6(5)	$\mathrm{P}(2)-\mathrm{Pt}-\mathrm{C}(1)$	93.1(5)
$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{Cl}$	85.9(2)	$\mathrm{P}(2)-\mathrm{Pt}-\mathrm{Cl}$	87.3(2)
$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{P}(2)$	173.2(2)	$\mathrm{Cl}-\mathrm{Pt}-\mathrm{C}(1)$	178.1(4)
$\mathrm{Pt}-\mathrm{P}(1)-\mathrm{C}(2)$	$111 \cdot 0(8)$	$\mathrm{Pt}-\mathrm{P}(2)-\mathrm{C}(13)$	113.6 (8)
$\mathrm{Pt}-\mathrm{P}(1)-\mathrm{C}(3)$	$111.7(8)$	$\mathrm{Pt}-\mathrm{P}(2)-\mathrm{C}(14)$	119.1(7)
$\mathrm{Pt}-\mathrm{P}(1)-\mathrm{C}(4)$	$122 \cdot 6$ (7)	$\mathrm{Pt}-\mathrm{P}(2)-\mathrm{C}(15)$	112.2(5)
$\mathrm{C}(2)-\mathrm{P}(1)-\mathrm{C}(3)$	105•1(11)	$\mathrm{C}(13)-\mathrm{P}(2)-\mathrm{C}(14)$	$101.5(8)$
$\mathrm{C}(2)-\mathrm{P}(1)-\mathrm{C}(4)$	100.0(10)	$\mathrm{C}(13)-\mathrm{P}(2)-\mathrm{C}(15)$	103.7(8)
$\mathrm{C}(3)-\mathrm{P}(1)-\mathrm{C}(4)$	104.6(8)	$\mathrm{C}(14)-\mathrm{P}(2)-\mathrm{C}(15)$	105-1(9)
$\mathrm{P}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	121(1)	$\mathrm{P}(2)-\mathrm{C}(15)-\mathrm{C}(16)$	119(2)
$\mathrm{P}(1)-\mathrm{C}(4)-\mathrm{C}(9)$	117(1)	$\mathrm{P}(2)-\mathrm{C}(15)-\mathrm{C}(20)$	122(1)
$\mathrm{C}(9)-\mathrm{C}(4)-\mathrm{C}(5)$	121 (2)	$\mathrm{C}(20)-\mathrm{C}(15)-\mathrm{C}(16)$	191(2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	118(2)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	118(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	120(2)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	118(2)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	123(3)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$125(2)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	114(2)	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	119(3)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(4)$	$124(2)$	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(15)$	120 (2)
$\mathrm{C}(1)-\mathrm{Si}-\mathrm{C}(10)$	$111.6(8)$	$\mathrm{C}(10)-\mathrm{Si}-\mathrm{C}(11)$	108.6(14)
$\mathrm{C}(1)-\mathrm{Si}-\mathrm{C}(11)$	108.2(11)	$\mathrm{C}(10)-\mathrm{Si}-\mathrm{C}(12)$	106.9(9)
$\mathrm{C}(1)-\mathrm{Si}-\mathrm{C}(12)$	$112 \cdot 9(9)$	$\mathrm{C}(11)-\mathrm{Si}-\mathrm{C}(12)$	108.6(10)
$\mathrm{Pt}-\mathrm{C}(1)-\mathrm{Si}$	116.1(7)		
(c) Intramolecular contacts			
$\mathrm{Cl} \cdots \mathrm{P}(1)$	$3 \cdot 21$	$\mathrm{C}(1) \cdots \mathrm{P}(1)$	$3 \cdot 19$
$\mathrm{Cl} \cdots \mathrm{P}(2)$	$3 \cdot 25$	$\mathrm{C}(1) \cdots \mathrm{P}(2)$	$3 \cdot 18$
$\mathrm{Cl} \cdots \mathrm{C}(2)$	$3 \cdot 48$	$\mathrm{C}(1) \cdots \mathrm{C}(4)$	$3 \cdot 47$
$\mathrm{Cl} \cdots \mathrm{C}(13)$	$3 \cdot 32$	$\mathrm{C}(1) \cdots \mathrm{C}(14)$	$3 \cdot 39$
$\mathrm{P}(1) \cdots \mathrm{C}(12)$	$3 \cdot 85$	$\mathrm{P}(2) \cdots \mathrm{C}(10)$	$3 \cdot 97$
$\mathrm{Pt} \cdots \mathrm{Si}$	3.33		
(d) Intermolecular contacts $<4 \AA$			
$\mathrm{C}(17) \cdots \mathrm{C}\left(2^{\text {I }}\right.$)	$3 \cdot 49$	$\mathrm{Cl} \cdots \mathrm{C}\left(14^{\text {II }}\right.$)	$3 \cdot 83$
$\mathrm{Cl} \cdots \mathrm{C}\left(20^{\text {II }}\right)$	$3 \cdot 61$	$\mathrm{Cl} \cdots \mathrm{C}\left(13^{\text {II }}\right)$	$3 \cdot 97$
$\mathrm{C}(18) \cdots \mathrm{Cl}^{\text {I }}$	3-79	$\mathrm{C}(12) \cdots \mathrm{C}\left(2^{\text {I }}\right.$)	3.99

Superscripts refer to the following transformations of fractional co-ordinates:

$$
\text { I } 1+x, y, z \quad \text { II } \quad x,-y, \frac{1}{2}+z
$$

Table 3
Root-mean-square amplitudes of motion along principal axes of vibrational ellipsoid (\AA)

	Axis (1)	Axis (2)	Axis (3)
	0.178	0.188	0.220
Pt	0.174	0.252	0.337
Cl	0.178	0.210	0.256
$\mathrm{P}(1)$	$0 \cdot 178$	0.184	0.239
$\mathrm{P}(2)$	0.200	0.221	0.252
Si	0.164	0.183	0.264

Table 4
Equations of mean planes through various sets of atoms, and, in square brackets, deviations (\AA) of relevant atoms from the planes
Plane (A): Pt, Cl, P(1) $\quad 7.686 x-0.911 y+1.573 z=-0.263$ $\mathrm{P}(2), \mathrm{C}(1)$
[Pt $0.009, \mathrm{Cl}-0.025, \mathrm{P}(1) 0.022, \mathrm{P}(2) 0.021, \mathrm{C}(1)-0.026$, $\mathrm{Si}-1 \cdot 696]$
Plane (B) : $\mathrm{C}(4)-(9) \quad-6.955 x+4.354 y+11.896 z=-2.022$ $[\mathrm{C}(4) 0.009, \mathrm{C}(5) 0.003, \mathrm{C}(6)-0.014, \mathrm{C}(7) 0.013, \mathrm{C}(8)-0.001$, $\mathrm{C}(9)-0.010, \mathrm{P}(1)-0.119]$
Plane $(C): \mathrm{C}(15)-(20) \quad-4.032 x+18.553 y+5.799 z=3.706$ $[\mathrm{C}(15) 0.019, \mathrm{C}(16)-0.034, \mathrm{C}(17) 0.037, \mathrm{C}(18)-0.023, \mathrm{C}(19)$ $0.005, \mathrm{C}(20)-0.003, \mathrm{P}(2)-0.025]$

A perspective view of the molecular structure. The thermal motion ellipsoids enclose 50% of probability. The numbering scheme is shown
X-Ray ' 70 systems, the Hilger and Watts software package for the Y 290 diffractometer, and the HILGA data processing program of M. A. Bush, K. W. Muir, and D. White.

DISCUSSION

The crystal structure contains discrete $\left[\mathrm{PtCl}\left(\mathrm{Me}_{3}{ }^{-}\right.\right.$ $\left.\left.\mathrm{SiCH}_{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ molecules separated by van der Waals contacts (Table 2). The platinum co-ordination is distorted slightly but significantly from ideal squareplanar geometry. The $\mathrm{C}-\mathrm{Pt}-\mathrm{P}$ angles average $93 \cdot 3^{\circ}$ whereas the mean $\mathrm{Cl}-\mathrm{Pt}-\mathrm{P}$ angle is $86 \cdot 6^{\circ}$. Alternate ligand-donor atoms deviate in opposite directions from the mean co-ordination plane of the platinum atom by $0.02-0.03 \AA$ (Table 4). We consider these minor distortions to be a consequence of overcrowding of the bulky phosphine and $\mathrm{Me}_{3} \mathrm{SiCH}_{2}{ }^{-}$ligands.

The geometries of the phosphine ligands are as expected. The mean $\mathrm{P}-\mathrm{C}\left(s p^{3}\right), \mathrm{P}-\mathrm{C}\left(s p^{2}\right)$, and $\mathrm{C}\left(s p^{2}\right)-\mathrm{C}\left(s p^{2}\right)$ bond lengths are $1 \cdot 84(2), \mathrm{I} \cdot 83(3)$, and $1 \cdot 38(2) \AA$. Interbond angles at the phosphorus atoms show the expected deviations from tetrahedral geometry. The mean
${ }_{15}^{15}$ R. Eisenberg and J. A. Ibers, Inovg. Chem., 1964, 4, 773.
${ }_{16}^{16}$ G. G. Messmer and E. L. Amma, Inorg. Chem., 1966, 5, 1775.
${ }_{17} \mathrm{~K} . \mathrm{W}$. Muir, ' Molecular Structure by Diffraction Methods,' Specialist Periodical Report, 1973, vol. 1, p. 606.
${ }_{18}$ L. Pauling, 'The Nature of the Chemical Bond,' 3rd edn., Cornell University Press, Ithaca, New York, 1960.
interbond angle at a phenyl-ring carbon atom is 120°, and the deviations of these carbon atoms from the mean plane through each ring (Table 4) are without significance.

The four Si-C bonds are equal in length ($\chi^{2} 4 \cdot 2$ on three degrees of freedom). The weighted mean $\mathrm{Si}-\mathrm{C}$ distance of $1 \cdot 868(13) \AA$ agrees well with the corresponding value of $1 \cdot 860(13) \AA$ in $\mathrm{Nb}_{2}\left(\mathrm{CSiMe}_{3}\right)_{2}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{4} \cdot{ }^{9}$ The silicon co-ordination is almost exactly tetrahedral; the mean $\mathrm{C}-\mathrm{Si}-\mathrm{C}$ interbond angle is 109.5°, and the root-mean-square deviation from this mean is $2 \cdot 1^{\circ}$. The $\mathrm{Pt}-\mathrm{C}-\mathrm{Si}$ angle of $116 \cdot 1(7)^{\circ}$ is appreciably greater than normal interbond angles at $s p^{3}$ carbon atoms; comparable angles in $\mathrm{Nb}_{2}\left(\mathrm{CSiMe}_{3}\right)_{2}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{4}$ and $\mathrm{Mo}_{2}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{6}$ are $119 \cdot 8(6)$ and $121 \cdot 1^{\circ} .8,9$ We share the view ${ }^{8,9}$ that this effect is steric, rather than electronic, in origin. Opening of the bond angle at $\mathrm{C}(\mathrm{I})$ leads to an intramolecular $\mathrm{Pt} \cdots$ Si contact of $3 \cdot 33 \AA$ which would appear to preclude any significant bonding interaction between these atoms.

The mutually trans- $\mathrm{Pt}-\mathrm{P}$ bonds are equal in length, mean 2.293(3) \AA. Comparable $\mathrm{Pt}-\mathrm{P}($ trans to P$)$ distances are: $2 \cdot 268(8)$ in trans $-\left[\mathrm{PtHCl}\left(\mathrm{PPh}_{2} \mathrm{Et}\right)_{2}\right],{ }^{15} \quad 2 \cdot 28$ in trans- $\left[\mathrm{PtCl}\left(\mathrm{SiMePh}_{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right],{ }^{3}$ and $2.315(4) \AA$ in trans- $\left[\mathrm{PtBr}_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right] .{ }^{16}$ These results suggest that $\mathrm{Pt}-\mathrm{P}$ (trans to P) bonds lengthen slightly when aryl substituents on phosphorus are replaced by alkyl substituents. The greater inductive electron release from alkyl groups would, on current theories, ${ }^{3}$ be expected to increase the trans-influencing ability of a phosphine ligand. However, the range of $\mathrm{Pt}-\mathrm{P}($ trans to P$)$ distances is fairly small, and reliable conclusions concerning the effects of substituents on, for example, $\mathrm{Pt}-\mathrm{Cl}($ trans to P$)$ distances cannot be drawn from the bond-length data available at present. ${ }^{17}$ Plainly more results are needed to substantiate the phosphine transinfluence series suggested here.

The Pt-C distance $[2.079(14) \AA$] agrees well with the sum of the appropriate covalent radii ${ }^{18}(2.08 \AA)$ and with the $\mathrm{Pt}^{\mathrm{II}}-\mathrm{C}\left(s p^{3}\right)$ distance of $2 \cdot 106(17) \AA$ in $\left.\mathrm{K}\left[\mathrm{Pt}(\mathrm{acac})_{2} \mathrm{Cl}\right]\right]^{19}$ The $\mathrm{Pt}-\mathrm{C}$ distance in $[\mathrm{PtCl}-$ $\left.\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ and the covalent radii of $s p^{3}$ and $s p^{2}$ hybridised carbon atoms yield a predicted value of
 the value of $2 \cdot 043(13) \AA$ in $\left[\mathrm{Pt}(\mathrm{Ph})\left(\mathrm{PEt}_{3}\right)_{2}\left(\mathrm{GePh}_{2} \mathrm{OH}\right)\right]^{20}$ where the σ-bonded phenyl group is trans to phosphine. In cis- and trans- $\left[\mathrm{PtCl}_{2}\left\{\mathrm{C}\left(\mathrm{NPhCH}_{2}\right)_{2}\right\}\left(\mathrm{PEt}_{3}\right)\right]$ the $\mathrm{Pt}-\mathrm{C}$ distances have also been found to be insensitive to replacement of chlorine by phosphine in the trans-coordination site. ${ }^{21}$ On the other hand, the sensitivity of $\mathrm{Pt}-\mathrm{C}(\pi$-olefin) distances to the nature of the transligand is well established. ${ }^{22}$
The $\mathrm{Pt}-\mathrm{Cl}($ trans to C$)$ distance $[2 \cdot 415(5) \AA]$ agrees

[^0]well with the comparable value $(2 \cdot 430 \AA$) in cis$\left[\mathrm{PtCl}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \cdot \mathrm{NH}_{2} \cdot \mathrm{CHMePh}\right)\left\{\mathrm{CH}_{2}\right\}_{2} \mathrm{CH}: \mathrm{CH}_{2}\right] \cdot{ }^{23} \quad \mathrm{Pt}-\mathrm{Cl}$ (trans to P) distances typically lie in the range $2 \cdot 36$ $2 \cdot 39 \AA^{17}$ whereas the $\mathrm{Pt}-\mathrm{Cl}$ (trans to Si) distance in $\left[\mathrm{PtCl}\left(\mathrm{SiMePh}_{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ is $2 \cdot 45 \AA .^{3}$ The $\mathrm{Pt}-\mathrm{Cl}$ distances thus lead to a relative trans-influence series: SiMe $\mathrm{Ph}_{2}{ }^{-}>$alkyl $>$tertiary phosphine. An identical series has been obtained from i.r. and n.m.r. data. ${ }^{2}$ There is no suggestion from either structural or spectroscopic results that $\mathrm{CH}_{2} \mathrm{SiMe}_{3}{ }^{-}$is appreciably different in
its electronic effects from other alkyl ligands in platinum(II) complexes.

We thank Dr. M. M. Truelock for a gift of crystals, Professor M. F. Lappert for many helpful discussions, the F.F.S.R. (Yugoslavia) for a grant (to B. J.), and the S.R.C. for computing facilities at the Chilton Atlas Computer.
[3/1270 Received, 18th June, 1973]
${ }^{23}$ C. Pedone and E. Benedetti, J. Organometallic Chem., 1971, 31, 403.

[^0]: 10 R. Mason, G. B. Robertson, and P. J. Pauling, J. Chem. Soc. $(A), 1969,485$.
 ${ }_{20}$ R. J. D. Gee and H. M. Powell, J. Chem. Soc. (A), 1971, 1956.
 ${ }_{21}$ D. J. Cardin, B. Çetinkaya, E. Çetinkaya, M. F. Lappert, Lj. Manojlović-Muir, and K. W. Muir, J. Organometallic Chem., 1972, 44, C59.
 ${ }^{22}$ M. R. Churchill, Perspectives in Structural Chem., 1970, 3, 91.

